PROBLEM PAGE

Both the new problems this time are inequalities.

1. If 1 <p s 2 and a = g% show that
%osep
(EE§E> 2 1 + (tana)cos(pB), for 0 = 0 s a.
This was shown to me by Matts Essen of Uppsala. It can

be done by elementary calculus, but function theorists may like

to speculate on how the inequality arises 'naturally'.

The other problem was submitted by Bob Grove of Auburn

University, Alabama,

2. Suppose that 0 = ¢, = ... s 65 < m, that A=[sin(|e;-0;[)],
and that |[A]] = max(|[Ax]]| ¢ ||x|] = 1}. Show that

A

1Al

cot(f%),

and characterize the case of equality.

Now for the solutions of some previous problems.

1. Consider the sequence of digits

19B842376B........
obtained using the rule:

"after 1984 every digit which appears is the final digit of the

sum of the previous four digits."

Does 1884 appear later in the sequence and, if so, when?
What about 18857

This problem was suggested by Pat Fitzpatrick who says

that it originated in a Hungarian mathematical magazine.
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First note that if we reduce all digits mod 2 then the

sequence is
1100011000 ..w.. &

which is periodic with period 5. Hence 1985, which reduces

to 1101 mod 2, can never appear.

To see that 1984 must reappear note that there are only
10* four digit numbers. Hence; some block of four digits
must repeat, say abcd. Since the sequence of digits can be
generated backwards in a unique manner from any given block
of four digits, we can arrive at a second occurrence of 1984

by working backwards froum the second occurrence of abcd.

Working with a computer one finds that 1984 reappears
after 1560 steps. However, Pat points out that this fact can
be ascertained even in the event of a power failure, using a

little algebra to reduce the effort. Here is the idea.
The problem can be written in the form

@n+s T 8n+3 * 8nip + Bney + ap  (mod 10)

where ag = 1, a; = 9, a, = 8, a; = 4, We know that this seq-
uence has period 5 when reduced mod 2 and so it is enough

(since 2 and 5 are coprime) to find the period n when the seqg-
uence is reduced mod 5. The original sequence will then have

period 5n,.

Recasting the problem in matrix form we have

Unsy = ABug(mod 10), for n = 0,1,2, ...,
where
ap 0 1 0 0O
0 0 1 O
Upn = an+1 and A = .
an+2 0- 0 0 1
anys 1T 111




We are then seeking the smallest n such that

AnBo = Yo (ITlDd 5).

Now the vectors ug, U, uU,, U, are linearly independent

over Z5 since

19 8 4
g 8 4 2 -
= =149 2 -1 (mod 5),
8 4 2 3
4 2 3 7
As
ATy, = u; (mod 5), for i = 0,1,2,3,
this shows that
A" 2 T (mod 5).

The matrix A satisfies its own characteristic equation,
that is,

x4 - x3 - x2 o ox -1 = 0 (%)

and, since this polynomial is irreducible over Z,, the smallest
field containing Z sand A is GF(5"). (I am grateful to Bob
Margolis at the Open University for a short refresher course
on Galois theory!) This means that the multiplicative order
of A in GF(5") is a divisor of 5%-1 = 624 = 2%.3.13. It is
now a tedious but elementary exercise to check (with the aid

of (*)) that the multiplicative order of A in GF(S%) is 312.

So the answer to the original problem is indeed 1560=5x312.

Remarks 1. It is easy to check that A® = I(mod 2) and so the
above discussion shows that the period is 1560 whenever

det(uouiusus) is relatively prime to 10.
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2. Tim Lister at the Open University noticed that
9126 appears in 1984 ... after exactly 780 steps (half a

period). In fact

A'S® = -1 (mod 5),

since the non-zero elements of GF(5%) form a cyclic multiplic-

ative group, and so
A78% = -1 (mod 10).

So this is no coincidence!

3. In his book "Geometry", Coxeter credits Lagrange
as the first to notice that the final digits of the Fibonacci
numbers form a periodic sequence with period 60. Houwever,

he gives no algebraic discussion of this fact.

1. Playing solitaire on an unlimited board, on which is
drawn a horizontal line, you are required to lay out pegs below
the linme in such a way that a single peg can be manoevured as

high as possible above the line.

The diagrams below illustrate positions which enable a
peg to reach the second, third and fourth rouws, respectively.

The blocking of the pegs indicates, informally, the order of
play.
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' Any position can now be assigned a value b ddi
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Position 3 i leaves the value of the position unchanged. Evidently we
; require that
Notice that, while playing position 2, we obtain position :
1 moved up one row. Similarly, while playing position 3, we i ITRL- U“+1 . u”+2’ that is, p2 + u - 1 = 0,
obtain position 2 moved up one row.
i and so u = 5(V/S5 - 1) = 0.618, a not-unfamiliar number!
However, there is no arrangement of pegs below the line
which enables a single peg to reach the fifth row above the ; It is now easy to check that no move can increase the
line. Here is the beautiful proof of this fact given in vol- value of a position, and so to reach H it is necessary to start
ume 2 of "Winning Ways for your Mathematical Plays" by Berle- ' with a position whose value is at.least 1. If such a position
kamp, Conway and Guy (warning: these books are addictive!). exists, with all pegs below the line, we may assume that it

contains only finitely many peqs.

Choose a particular hole H on the fifth row. It is
enough to show that H cannot be reached. Assign to H the However, a straightforward calculation shows that the
value 1 and then assign to any other hole the value un, where total value of all the holes lying below the line is 1. Hence
n is the length of the shortest path (parallel to the axes) to ; no such position exists.
H. Here p is a number between 0 and 1 to be chosen in a mom-
ent. ! Remarks 1. This valuation of positions makes the attainment.
. | i of row 4 look rather a modest achievement, since the hole below
; /// j H has value only p. It is much harder, for example, to reach
P |
e | the following position
U 1 u
2 2 H
u M u : o
.. e TERRTE . i
TREERTE SN TE e
URERRTRRNNTE | o
|
TLENRTE I ! O
T ®
. O @ o]

IR




which has value

W+ u* + S = 1 - u" = 0.854.

It seems unlikely that aone can reach every position (below H)

which has value less than 1, but I don't know of .a counter-

example.

2. A similar calculation reveals that for the anal-
ogous problem in three dimensions it is impossible for a peg
to reach the eighth row. The seventh row can be reached,

however.

Phil Rippon,
Open Univensity,

Milton Keynes.

CONFERENCE REPORT

GROUPS IN GALWAY 10-11 MAY 1985

A Conference on Group Theory, sponsored by University
College, GCalway, the Royal Irish Academy, and the Irish Math-
ematical Society was again held at University College, Galuway,
on Friday and Saturday 10th and 11th May 1985, The invited
speakers were T.0. Hawkes (Warwick), G.D. James (Cambridge),
T.J. Laffey (UCD), P.D. MacHale (UCC), T.G. Murphy (TCD), and
5.J. Tobin (UCG). Lectures were also given by D.W. Lewis
(UcD) and M. 0'Searcéid (UCC).

Se4dn Tobin opened the Conference with his talk entitled
'Razmyslov Algebras' (see I.M.S. Newsletter 13 (March 1985)
pp. 57-65). He expleined Razmyslov's construction of a non-

soluble group of exponent p?, for odd primes p.

Tim Murphy, in his lecture on ‘Tensof Croups', discussed
the duality between linear groups and the sets of tensors which
they fix, He also illustrated the use of Penrose's notation
for tensors, and his hand-out demonstrated the qualities of the

TEX computer typesetting system.

Gordon James described 'A g-Analogue of the Symmetric
Group Algebra'. Given a field F of characteristic p, and a
nonzero element q of F, he defined an F-algebra H, whose prop-
erties (for example the number of its simple right ideals, and
the dimension of its centre) can be obtained from those of the
group algebra over F of the symmetric group by substituting g

for p.

Tom Laffey's title was 'Some Maximal Subgroups of the Gen-
eral Linear Group'. He began by presenting a short proof (due
to Radjavi) of the fact that every element of SL,(F) is a comm-
utator in GLL(F), except when n = |F| = 2. He then proved ’

that the invertible monomial matrices form a maximal subgroup
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