ONE ASPECT OF THE WORK OF ALAIN CONNES

Anthony Karel Seda

Introduction

As we all surely know by now, the recipients of the most
recently awarded Fields Medals are William P. Thurston of Prin-
ceton University, Shing-Tung Yau of the Institute for Advanced
Study, Princeton and Alain Connes of Institut des Hautes Etudes
Scientifiques, France. Fields Medals are awarded by the Inter-
national Mathematical Union on the occasion of an International
Congress of Mathematicians, and are the equivalent for mathemat-
icians of the Nobel prize. The last such Congress was origin-
ally scheduled to take place in Warsaw in August, 1982, but in
fact took place there one year later due to political unrest in

Poland.

Thurston's work is in foliations and topology of low dim-
ensional manifolds, Yau's is in differential geometry and part-
ial differential equations and Connes' is in operator algebras.
An appraisal of the work of each recipient was published in the
Notices of the American Mathematical Society in October, 1982.
In particular, Calvin Moore undertook to describe some of the
fundamental achievements of Alain Connes.

Much of Connes' earlier work was concerned with the clas-
sification by "types" of factors of von Neumann algebras, and
three of the five papers of Connes cited by Moore concern this
area. However, the fourth (sur la théorie non-commutative de
1'intégration, which is reference [2] here) and fifth concern
(amongst other things) the interplay between operator algebras
and foliations. This subject, which has been called "non-
commutative differential geometry" is "(a) fusion of geometry
and functional analysis ... likely to have a significant infl-
uence on future developments" in the words of Atiyah in his

review of [2] for Mathematical Revieuws.
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Some of my own work has been in this area, and my purpose
here is to shed a little light on the sort of constructions made
and the results obtained in this new and interesting area of

mathematics.

1 Topological Groupoids and C*-Algebras

A groupoid G with object set X is a small category with

. =1
object set X such that each element o of G has an inverse a .

Exanples
(1)

Let X be a topological space and let G(x,y) = (homotopy
Then G =

Xy YE
groupoid (the fundamental groupoid) over X &{th composition

classes of) paths from x to y. u XG(x,y) is a
just the composition of (homotopy classes of) paths, identity
I, at x the trivial path and inverse "traverse the path back-

wards."

(2) A group is a groupoid with one object, i.e. X is a
singleton set consisting of the identity of G. In fact, a
groupoid is a group if and only if X is a singleton set.

(3) Suppose that a group H acts on the right of a set X.
Then G = XxH has a natural groupoid structure over X in which
the product (x',h')o(x,h) is defined if and only if x' = x.h,
and is then defined to be (x,hh'). The inverse of (x,h) is
(x.h,h™ 1) and the identity at x is (x,e), where e is the iden-

tity of H.
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Many other examples of groupoids can be given, but these

three should serve to convey their nature.

A topological groupoid is a groupoid in which both G and
X are topological spaces and all the structure maps of G are
continuous, i.e. the composition, inverse map and the map

x+— 1, are all continuous.

Suppose from now on that G is a topological groupoid over
X and G and X are both locally compact Hausdorff spaces.
Given a € G, there exists unique x,y € X such that a € G(x,y)s
let m(a) = x, the initial point of @, and let m'(a) = y, the
final point of Q. Let 6* = {B e G; m'(B) = x}. Then an ele-
ment o € G(x,y) induces a homeomorphism La:[;x + Y defined by

LQ(B) = 0oB.

x ¢ —3° Y Ly is called left multiplic-
7
s ation by Q.
g <o
27 %°B

v
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Guided by certain analogies between group theory and
ergodic theory, G.W. Mackey introduced, in 1966, the notions
of measure groupoid and ergodic groupoid. In the topological
context these ideas lead one naturally to formulate a concept
of left invariant (or Haar) measure on a groupoid G, and to
consider function spaces associated with G. In practice, the
most convenient form of an invariant measure is contained in

the following:
Definition: A Haar measure on G is a family of non-trivial
Radon measures {ux; x € X} on G such that:

(1) supp(ux) c G* for each x € X.

(2) The u, are 1eft invariant in the sense that

[ fdux = l foLa_‘duy
G
for all x,y € X, a € G(x,y) and T € CC(G).

(3) The map X U is vaguely continuous, i.e. the map

xr—J fou, is continuous for each f € EC(G).

In this definition, and elsewhere, CC(G) denotes the space

of all continuous scalar functions on G with compact support.

The relationship between two Haar measures on G- 1is,
unlike the group case, quite complicated, see [6]. However,
any Haar measure on G induces a *-algebra structure on CC(G),

as follous. Given f,g € CC(G), we define fxg on G by

(Frad@) = | F(B)als™ a)du () (8):
G

We define also an involution f — £X by fX(a) = fla” ).

Haar measures and the convolution product above were
studied by the author in [6], [7] and by Renault in [5], and

one of the main basic results is as follouws.

Theorem. CC(B) is an associative ¥-algebra with these operat-
ions and is, moreover, & topological *-algebra in the inductive

limit topology.

The remainder of this section is concerned with associat-
ing a C*-algebra with G, and the development is similar to the
Effros-Hahn construction of transformation group CX¥-algebras,
see [5].

A representation of CC(G) on a Hilbert space H is a
X_-homomorphism L ¢ CC(G)——’B(H) which is continuous when CC(G)
has the inductive limit topology and g(H) the weak operator
topology, and is such that the linear span of {L(f)g; f € CC(G),

£ € H} is dense in H.

For f € EC(G), define

"

sup J |F|dpx,
x €X

LIl

fll"™ = su fld( )-l
Fll = svp [ 17190,
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and finally put [[f|[y = max(|[|F]]", [[F]]").

Proposition ([5])
(L) [ 1

than the inductive limit topology.

(ii) || |,
FIFITallal [y and [[FX]], = [|f]|, for all f,ge c.(6).

is a norm on CC(G) defining a topology coarser

is a *-algebra norm on EC(G), iceo ||fx9||, s

Definition ([5]): A representation L of CC(G) is bounded if
[ILCE)Y]] = ||F]], for all f e c.(G).

Now define, for all f e C_(GC), [1f]] = sup ||L(F)]|| where

L ranges over all bounded representations of CC(G).

It is easy to see that || || is a C*-semi norm, and it
is shown by exhibiting enough bounded representations (the reg-
ular representations in, fact) that it is a norm. Finally, we

denote by C*(G) the completion of CC(G) with respect to || |

Then C*(G) is a C*-algebra, i.e. a Banach algebra with conjug-
ate linear involution f+ f* such that []F**Fll = ]|f|'2 for

all f, and is called the C*-algebra of the groupoid G.

2 Foliations and the Holonomy Groupoid

Foliations have a long history even though the definition
and subject matter were not formalised until the 1940s by

Ehresmann and Reeb. One encounters foliations in:

(a) Submersions of manifolds (here the leaves are the comp-

onents of the fibres).

(b) Bundles with discrete structure group.

(c) Actions of Lie groups (here the leaves are the orbits).

(d) Differential equations (here the solutions are the
leaves).
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Jefinition ([1], [4]): Let M be an n-dimensional manifold and
let p»q be natural numbers such that p+g = n. A p-dimensional
. Jass Cr foliation of M is a decomposition of M into a union

,f disjoint connected subsets {1,] called the leaves of

oae A’
the foliation, with the following property: every point m of

Y has a neighbourhood U and a system of local class ¢t coord-
inates x = (x*,x2, ..., x"): U > R" such that for each a € A
the components of UNl, are described by the equations

n
constant.

X = constant, ...., X

x(Unla)

We denote such a foliation by 7 = (la} p is called

o e A°
:he dimension and q = n-p the codimension of 7.

Note that every leaf of 7 is a p-dimensional embedded
submanifold of M but this embedding need not be proper as the
leaves can be dense in M.

. &

Local coordinates with the property mentioned in the def-
inition above are said to be distinguished by the foliation.
‘f x,y are two such coordinate systems defined on an open set
] M, then yx_1 is a local CT diffeomorphism: R™— R" giving

:he "change of coordinates" and is expressed by the equations

i n 5
vyl oy ke, X)), 1= 1,2,..0,0

Ind these must satisfy the differential equations




yi

- = 0
axJ

in U, This means that yx'1 maps leaves into leaves. Thus,
whilst an n-dimensional manifold looks locally like Rn, an
n-dimensional manifold with p-dimensional foliation looks locs
ally like R" - Rn-pxRp trivially foliated by p-dimensional
hyperplanes parallel to RrP.

Examples

trajectories of a

differential equation

The Holonomy Groupoid

Let (M,7) be a foliated manifold as above, and let (U,x
be a distinguished local coordinate. Then the plaques of
U are given by the equation (p2x){(m) = constant, where
P2 ° RPxRY + RY is the projection. Give M the "topology of
leaves", i.e. the topology on M which has the plaques of dist-
inguished open sets as a basis, and call the resulting space
A continuous function U » RY is called distinguished if it i
locally of the form hop,ox, where h is a local homeomorphism

of RY. Let D be the sheaf of germs of distinguished functi

and 0: D + F the map sending a germ to its source; 0 is a col

ering map. [f n~ g if there exists m € M and a neighbourhood
of m such that fly = g|y, then ~ is an equivalence relation

and an equivalence class of v is called a germ at m.] It can
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pe shown that the fundamental groupoid of F acts on D and uwe
glaborate a little on this belou. finally, on identifying
clements of the fundamental groupoid which give the same action
we get the holonomy groupoid G of (M,7). G is a topological
groupoid in a natural way, in fact a locally trivial topological
groupoid. It is this construction together with the results

of §1 which bring about the sort of applicatian of functional

analysis to differential geometry that we have in mind.

Before considering such applications we will look a little

more closely at the notion of holonomy.

Consider a curve C lying in the plane R? as shouwn:

Suppose C; has coordinates (0,(0,a,)) and C, has coordinates
(0,(0,¢,)), and that T, and T, are perpendicular, and hence

transverse, to R? and passing through Ci and C2 respectively.

Any neighbourhood U of C in R?® intersects T, and T, in
neighbourhoods of C; and C, in Ti and T2 respectively, and hence
induces a C -diffeamorphism (x,(0,a1))— (x,{0,a2)) of a neigh-
bourhood of C, in T, onto a neighbourhood of C2 in T2. Clearly
the same statement is true for general transversals Ti1 and Tz,
though the required ci-diffeomorphism is then more complicated

to write doun.
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Now suppose, generally, that C:[0,1] - M is a path
lying in a leaf 1 of a foliation 7 of M, and that To and T, are

two submanifolds of M transverse to 7 and containing z, = C(0)
and z; = C(1) (a submanifold W is transverse to 7 if for each

zZe

M, we have T,M = T,W8T,L, where L is the leaf passing

through z and "T," denotes the tangent space at z). Then to

each neighbourhood U of C in M there corresponds a c'-diffeo-
morphism @C of a neighbourhood of z, in T, onto a neighbourhood
of z, in T, such that:

(i) If ¢C is defined at z € To, then ¢C(z) belongs to T.)
leaf containing z.

(ii) The germ of ¢C at z, does not depend on U nor on the
choice of C up to homotopy.

To construct ¢C we proceed as follous. Consider a seq-

vence of distinguished functions fis i = 0,1,2,...,r defined

on open sets V; and an ordered set of points t; of [0,1] such
that t, = 0, t. =1 and'C([ty,t, 1)) < VU for k = O,...,r-1.
Let Ti, for each i, be a submanifold transverse to 7 containing

the points C(t;), i = 0,1,2,...,1r, and such that T° = T

R4
T = 7

L. We can suppose that Fi(C(t;j)) = 0 and that f; is of

the form h; opa2o Xjs where x; is a distinquished local coord-

inate, for all i. For each i < r, xj carries the portion of

the curve C between E(ti) and E(ti+1), together with U, onto
a curve in R" lying in the hyperplane RP essentially as depicted
above, together with a neighbourhood of this curve in R".

-1

Hence, applying xi  to the diffeomorphism described there, we

see that for each i < r there is a Er—diffeomorphism ¢. of a

neighbourhood of C(t;) in T' onto a neighbourhood of C(tjpq) in
™% qieh that ¢i(z) belongs to the leaf of UJWU passing through

z for each z where @i(z) is defined. Then ¢_ is simply the

composite ¢r_1o¢r_20...0®10¢0, and it is clear from statements
(i) and (ii) that the fundamental groupoid of F does act on D,
as required.

By means of general results of [6]

s Haar measures exist
on the holonomy groupoid G,

even though G is not Hausdorff in
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general- A natural, geometric construction of a Haar measure

on G can be found in [3].

To date, most of the results obtained have concerned the
ideal structure of C*¥(G) or rather the ideal structure of
the reduced C*-algebra C*(G)/k, where k denotes the kernel of
the regular representations of Cx(G). It is important to knouw
whether any/all leaves of 7 are dense in M, and we have the

following criteria.

Theorem (Fack and Skandalis [3]). C*(G)/k is simple (i.e. has
no non-trivial closed two sided ideals) if and only if every

1eaf of 7 is dense in M.

A C*-algebra A is callec p.imitive if it has a faithful
irreducible representation on a C*-algebra B(H) (i.e. a *-homo-
morphism A - R(H) = bounded linear operators on Hilbert space
i)

Theorem (Fack and Skandalis [3]). C*¥(G)/k is primitive if and

only if at least one leaf of 7 is dense in M.

I have only touched on one small part here of the circle
of ideas involved in this subject, a subject which embraces
transverse measures on foliations, Connes' generalisation of
the Atiyah-Singer index theorem, non-commutative integration
in general, to name only a feuw topics. There is as yet, as
far as I know, no general account of this material, and the
interested reader will have to consult [2] and subsequent pap-
ers/preprints. There is, however, a detailed account of some
of the measure theory of [2] to be found in Daniel Kastler's
paper "On A. Connes' Non-Commutative Integration Theory",

Commun. Math. Phys., 85 (1982) 99-120.
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NON-L INEAR DIFFERENTIAL EQUATIONS IN BIOLOGY*

Alaustain D. Wood

Introduction

In recent years there has been considerable growth in the
range of mathematical sciences applied to biology and medicine.
For many years the statistics of experimental design had been
regarded as the main application in the life sciences, but with
the advent of mathematical modelling, both deterministic and
stochastic models (see Raymond flood's lecture to the Easter
1983 Symposium [4]) are gaining widespread acceptance. The
introduction of biotechnology courses in Ireland has led to
interest in the partial differential equations which arise in
biological process engineering, such as the reaction-diffusion
equation. Workers in fluid dynamics have linked with medical
doctors to cansider the equations governing the flow of blood
through the heart. Stochastic differential equations arise
in population dynamics and interesting problems in branching
of solutions of nan-linear differential equations have come from
transmission in nerve axons and from the study of reversible

reactions.

The mathematics involved in biological problems can range
from the very recent and sophisticated, such as the sledge-
hammer of topological degree theory applied to branching prob-
lems, to the ingenious application of the maost elementary ad
hoc methods of classical analysis and geometry, as we shall see
in.Section 2. But whatever mathematics is used, the final res-

Ults are only as good as the modelling process employed.

A typical modelling scheme is shouwn in Figure 1 overleaf.
It is rare for this process to flow smoothly from one end to
Often the mathematical problem cannot be seclved

in its original form. A solution may be possible by adding

% Survey Lecture given at the D.I.A.S. Christmas Symposium, 1983.




