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IRISH MATHEMATICAL SOCIETY

Drdiﬁary Meeting

3 Wednesday, April 18th, 1984, 12.15 p.m., DIAS
9 Agenda
1 1. Minutes of Ordinary Meeting of 21st. December
1983.
2. Matters Arising.
19 °
3. Proposal to change Constitutional procedures
34 for elections to membership.
46 - 4, Proposal to change rule on lapsing of membership.
53 5. Reciprocity with I.M.T.A.
6. Elections to ordinary membership.
7. Any other business.
61
Ordinary Meeting
76 Wednesday 22nd December, 1983, 12,15 p.m., DIAS
83
1. There were 16 members present.. The President, A.G. 0O'Far-
rell, took the Chair. The minutes of the Ordinary meeting
89 ! ‘of 31/3/83 were read and signed.
i | | ; ‘ N
; : ; - I
92 2. The President reported that, having written to the Minister
% ‘for Educatién concerning post-graduate awards for those with
a B.A. in Nathematical Sciences from N.U.I., he had received
101 a negative reply. However, as a result of a private conv-
ersation he had with the Minister, the President proposed
104

to write again reiterating the points of the first letter

and requesting that a mathematician be appointed to the
Committee which oversees these awards.




" interest which is at a low ebb.

The Treasurer, G. Enright, presented his report which had
been audited by Professors J.J.H. Miller and D.J. gimms.
The meeting approved the report and expressed its apprec-
iation to the Treasurer for his careful handling of the

financial affairs of the Society.

The President mentioned that the Committee of the I.M.S.
had agreed to:

(i) the use of a form by those members seeking support for

Conferences (available from the Treasurer);

(ii) a library subscription rate of £15 for the Newsletter.

At the request of the President, the meeting ratified the
membership of all those listed in the membership list who

have not been formally elected to membership.

The meeting expressed its thanks to the Treasurer for prep-

aring the list.

The President reported on the progress of continuing negot-
jations by M. Clancy (on behalf of I.M.S.) with the I.M.T.A.

concerning reciprocal membership.

The Secretary enquired from Aer Lingus about the possibility
of the I.M.S. sponsoring a prize for mathematical projects
at the Young Scientists! Exhibition. fhe reply, eventually,
was that the organisers felt that a prize would not be suff-
icient to stimulate interest in Mathematical projects, an
Having discussed various
ideas, including the possibility of circulating a list of
possible topics for projects;, the Committee felt that the
most effective way the I.M.S. could use its limited res-
ources would be to concentrate on a small number of schools.
D. Hurley agreed to work with M. Brennan (Bower School,
Athlone) and R. Timoney with H. Macklin (Blackrock College).
All membefs were asked to try and stimulate interest in the

Young Scientists' Exhbition.

During discussion A. Wood mentioned that there would be a
course on Mathematical Modelling for teachers on 3rd March
1984 at N.I.H.E. (Dublin) rum in conjunction with the I.M.
T.A. He felt that this kind of mathematics would lend its-
‘elf to project work.

The following were nominated, seconded and elected:

Secretary: R. Timoney (T.C.D.)
Treasurer: G. Enright (M.I.C.E.)
Committee: R. Bates (Met. Service)

P. Fitzpatrick (U.C.C.)

M. Stynes (Waterford R.T.C.)

S. Tobin (U.C.G.)

N. Buttimore (T.C.D.)

all for two years, except N. Buttimore, who is elected for
one year. The President, A.G. O'Farrell, the Vice-Pres-
ident, f. Holland, P. Boland, M. Clancy and J. Hannah cont-

inue on the Committee until December 1984.

A. Solomon raised the question of human rights for Jewish
Mathematicians in the Soviet Union. As a result of int-
ense pressure from academics and societies in the West, the
situation has improved somewhat in that the practice of rem-
oving doctorates from persons applying to emigrate seems

to have been discontinued. However, discrimination cont-
inues and he ﬁentioned the examples of Scharansky, Josef
Begun (both in prison), Brailousky (in exile) and Jewish

entrants to Moscow University.

N.N. Yanenko was nominated for membership of the Society
by J. Miller, seconded by D. Simms (in writing). After

some discussion it was agreed to follow the constitutional
procedure and vote on his candidature at the next Ordinary

Meeting.
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dent reported that the Committee had nominated
o the National

10. The Presi
. Hannah as the I1.M.S5. representative t

Committee for Mathematics of the R.I.A.
Also the Secretary i{s to write to the N.B.S.T. expressing
the gratitude of the I.M.S. for their printing of the News-

letter.

R. Timoney (Secretany)

MASSERA CAMPAIGN

p motion of support for the Soviet mathematician/statistic—

ian V. Kipnis and for the Uruguayan mathematician J.bL. Massera
was passed at the December 1982 ordinary meeting of the Irish

Mathematical Society. At the same meeting, 2 voluntary coll-

ection faor the Support M
ulted in £15 being farwarded to the headgquarters of the campaign

in Toronto, Canada.

assera Campaign was collected and Tes-

During the year, the secretary of the Society wrote to the

gn Affairs mr P. Barry, the Uruguayan Ambass-
Aleksandrov

No

Minister for fForei

ador in Berne senor Grambruno, and Academician A.P.

ning the situation of these mathematicians.
but the Minister

(Moscow) concer
replies were received from Berne OF Moscouw,

for Foreign pffairs was quite sympathetic. Mr Barry was alr-

eady aware and concerned about DT Kipnis' situation and prom-

ised to inform the g5ociety of any information regarding this
case which might become available through

Moscow. As Ireland has no diplomatic re
rmation regarding professor Mass-

the Irish Embassy in

jations with Uruguay,

he was unable to obtain info

era's case, but promised to take such action as is possible,

through, for instance, the United Nations Commission on Human

Rights.

In the last year, W€ have had no new information regarding

V. Kipnis and sO must assume that his situation has not impr-

-7 -
o i .
m:i:ei: ?;znza:QBS)The latest bulletin regarding Professor
naser - tells us that he is now (in his 78th year)
‘ym 0l of resistance to his fellow prisoners and a
guilt to his tormentors who have ‘said "Massera will si:jbzi ZF'
ri-

son unti i i
til he dies." His torture continues.

UItSDZZSiiz:l-?1121ZS an the%r behalf may never yield the res-
N Dfim to em?grate for both Kipnis and Massera
ered university positions in both Fran
and Italy), but our involvement can only help and en -
those in the forefront of the campaign to serve themC::ZaE:lp

revent i i
p such situations from arising in the future

S. Dineen

MEMBERSHIP LIST SUPPLEMENT 84-1, 12th January 1884

Ms N. Sheehan, 10 Oak Park Rocad, Carlow

Mr L. Leyden, Regional Technical College, Waterford
Dr B. Goldsmith, Dublin Institute of Technology, Kevin St
Mr V. Ryan, 6 Kerley Road, Model Farm Road, Cork .
Prof. F. ngary, University of Michigan, U.S.A. '

Prof. R. Geoghegan, State University of New York, U.S.A
Dr R. Critchley, N.I.H.E., Limerick. o
Mr M. Ryan, N.I.H.E., Dublin.

Mr M. O'hEigeartaigh, N.I.H.E., Dublin.

Ms A, Brady, Student, U.C.D.

Mr T. McGrane, Student, U.C.D.




CONFERENCE SPONSORSHIP

The Irish Mathematical Society has a small fund out of
which it can give limited assistance to the organisers of math-

ematical conferences. -

Application forms are available from the TreasuTrer.

G, Enaight (Treasunen)

INVITATION TO NOMINATE SPEAKERS
AT

CONGRESS 1988

Acting on an invitation from the Internationalvmathematical
Union to prepare a panel of mathematicians who will be invited
to address the 1986 International Congress of Mathematicians at
Berkeley, Califorhia, the National Committee for Mathematics
hereby solicits names of suitable speakers. Each nomination
should be properly motivated and should include a short list
of publications. All submissions should be in the hands of

the undermentioned by April 30, 188B4.

Secrnetany,

National Committee foa flathematics,
Royal Irish Academy,

79 Dawson Sineet,

Dullin 2.

NEWS AND ANNOUNCEMENTS

THE BOOLE PAPERS

Late in November, 1883, University College Cork became

aware of the following item to be auctioned in Sotheby's (Lon-

don) on 8 December:

*Boole (George, 1815-1864), mathematician and logician, Fellow

of the Royal Society). Large collection of papers by and rel-
ating to Boole assembled by his sister Mary Ann Boole, including
the manuscripts and typescripts of her (unpublished) biography of
him, her copies of letters by him and of his (unpublished) poems
and lectures on mythology, education, astronomy and Ireland,
together with some of his autograph poetical drafts, autograph
mathematical notes and a notebook, some two hundred or more
autograph letters by him to his sister and aother letters sent to

him, thousands of pages, in a tin box, sold as a collection not

subject to return £500-600.

*Boole, who was born and educated at Lincoln and pursued a dist-
inguished academic career at Queen's College Cork, wrote some
fifty books and papers on logic and mathematics of which the
most important and "durable" is his Laws of Thought (1854) -
"a work of astonishing originality and power" (Dictionary of

National Biography).

Naturally, it was felt that the College's Boole Library
would be an eminently suitable home for this unigue collection
of material and an immediate effort was made to raise funds -
£600 being regarded as a rather crude under-estimate, consid-
ering Boole's international reputation. Through the generos-
ity of the College, the Library, the Royal Irish Academy, Cork
Chamber of Commerce and a number of interested individuals, a

larqge amount of money was pledged.
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The bidding at Sotheby's was carried ocut on behalf of the
College by the firm of Bernard Quaritch who, on the previous
day, had paid the world record price of £8 million for a 12th
century illuminated German manuscript on behalf of the German
Government. In the event, the College acguired the Boole pap-
ers with the more modest bid of £2,400 (sterling) despite some
transatlantic opposition. Dutside the library of the Royal
Society in London, Cork now has the largest collection of Bool-
eana in the world and the Boole Library should certainly become

a centre for Boolean studies.

The collection is a very extensive and importamt one which
throws great light on the personal aspects of Boole's life,
particularly his 1life in Cork. It consists mostly of personal
letters to and from his family covering the period 1B45-18565,
but there are a number of items of mathematical interest. Faor
example, there is a copybook written when he was about 16, con—‘
taining a large number of worked examples from Gregory's Exam-
ples on the Differential Calculus. Each exercise has been
carefully worked out by Boole and neatly written into the copy-
book with loving care. When doing questions on differentiat-
ion, Boole always uses the notation if y = x® then dy = 3x2%dx.
There is also a notebook with jottings on geometry, elementary
number theory and word games such as "change BLACK to WHITE in

the minimum number of moves".

The collection 2lso contains a number of originmal offprints
of Boole's early papers, but the main item of mathematical int-
erest is an unpublished manuscript on astronomy in which Boole
uses probability to make various predictions such as the occ-
urrence of binary stars. It is hoped that the various items
in the collection, mathematical and non-mathematical will be
collected together in book form to give é personal and down-to-

garth view of the life and times of George Boole.

Boole's sister Mary Ann, who assembled the collection, also
had personal connections with Cork. She was governess to the

children of William Fitzgerald, Church of Ireland Bishop of Cork,

who later became Bishop of Killaloe. i One of those children,
whom Mary Ann taught, afterwards became a famous scientist.

He was George Francis Fitzgerald (1851-1801) who was well known
for his work in electro-magnetic theory and one of the fore-
runners of Albert Einstein. Fitzgerald's name is commemorated

in “"Lorentz-Fitzgerald contractions" in Physics.

Where the Boole papers have lain hidden since Mary Ann's
death in 1882 is a mystery and the sellers remain frustratingly
anonymous. However, perhaps there were some omens - Sotheby's
codename for the auction was "SEAMUS" and the sale took place

on the 119th anniversary of Boole's death.

D. MacHale

Editorial Note: D. MacHale's biography of G. Boole is due to appear shortly.

PERSONAL ITEMS

Da Benthold Faanzen has been awarded a Department of Education
post-Doctoral Fellowship at the Dublin Institute of Technology,
Kevin Street. His research interests are in the area of Abel-

ian groups and module theory.

Da Brendan Goldsmith of the Mathematics Department, Dublin Ins-
titute of Technology, Kevin Street, has been appointed Head of

Department.

Da Andrew Pressley of the Mathematics ODepartment, Trinity Coll-
ege, Dublin, will be on leave at the Mathematics Institute in

Berkeley, California, from March to September 1884.

Da Brian Smyth of the Mathematics Department, University Coll-
ege, Dublin, has been appointed to a professorship at Notre

Dame University, Indiana, U.S.A.
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Dn James Wand who had a temporary position at University Coll-

ege, Cork, has taken up a Junior Lectureship in Mathematics at

University College, Galway.

CRACKING A RECORD NUMBER

Mathematicians Solve a Three-Century-0ld Puzzle in 32 Hours

Sandia National Laboratories in Albuguerque is a sprawling
research establishment best knoun for its work on highly secret
defense projects, including nuclear weaponrIy. Last week San-
dia exploded a different sort of bombshell. Its mathematic-
ians announced that they had factored a 69-digit number, the
largest ever to be subjected to such numerical dissection.
Their triumph is more than an intellectual exercise. It could

have far-flung repercussions for national security.

As anyone who has ever passed through intermediate algebra
knows (or once kneuw), factoring means breaking a number into
its smallest whole-number multiplicands greater than 1. fFor
example, 3 and 5 are the only‘such factors of 15. But as num-
bers get larger, factoring them becomes increasingly difficult.
Until recently, mathematicians despaired of factoring any num-
ber above 50 digits. They calculated that it would take the
fastest computer, performing as many as a billion divisions

a- second, more than 100 million years to finish the task.

Then, in the fall of 1982, a chance encounter closed the
gap. During a scientific conference in Winnipeg, Canada,
Gustavus Simmons, head of Sandia's applied-math department,
was mulling the factoring problem over a few beers with another
mathematician and an engineer from Cray Research, makers of
the world's fastest computer. The engineer, Tony wWarnock,
pointed>out that the internal workings of the Eray were espec-
ially suited to factoring, which is essentially done by a pro-

cess of trial and errorT. Unlike ordinary computers, the Cray

- o -

can sample whole clusters of numbers simultanecusly, like a

sieve sifting through sand for coins.

At Sandia, Simmons joined with his colleagues Mathematic-
ians James Davis and Diane Holdridge to teach their own Cray
how to factor. That involved developing an algorithm, or set
of algebraic instructions, that would break the problem down
intc small steps. They succeeded admirably. In rapid succ-
ession they factored numbers of 58, 60, 63 and 67 digits.

At this poinf, however, even the power of their Cray seemed
to have reached its limit. But the Sandia team made one more
try. This time their target was the last unfactored number\
in a famous list compiled by the 17th century fFrench mathemat-
ician Marin Mersenne. The number:132686104338972053177608575-
506090561429353835989033525802831469453697, which mercifully
can be expressed as 22%'. 1, After a total of 32 hr. and 12
min. of computer time, snatched at odd hours over a period of
a month, they came up with their answer. Mersenne's number
had three basic factors: 178230287214063283511 and 616768821~
98695257501367 and 12070386178249893039969681 . Says Simmons:
"You can't help feeling triumphant after solving a problem

that has been around more than three centuries."

Some may not share in the jubilation, especially if they
are dependent on a widely used cryptographic system thought
to be uncrackable. Known as RSA (the initials of its three
inventors), it employs difficult-to-factor multidigit numbers
to encode secrets and keep then secure. These include elect-
ronic funds transfers and military messages. By factoring
the numbers, the codes can be broken. When RSA was first
propased, its inventors suggested using 80-digit numbers on
the assumption that they were too big to be factored. (Obv-
iously, with researchers at Sandia closing in on ever larger

numbers, even RSA could eventually fall to the code breakers.

From TIME Magazine (February 13th, 1984)
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THE SUPERBRAIN COMPETITION AT u.c.C.

gver coffee after a student mathematics society meeting

a discussion arose as to who were

at University College, Corks
students of Elect-

the best mathematical students in College.

rical Engineering claimed that because of high points require-

ments, they were obviously the best-
A challenge went out which led to

However, Science stud-

ents hotly disputed this.
etitive examination open to all full-

regardless of subjects oT
on and the

the organizing of a comp
time registered students of College;,
It was dubbed the Superbrain Competiti
and corrected by Dr D. MacHale.

to give an advantage to students who had taken advanced CcOuUTL-
ing Certificate

the topics were those of the Honours Leavi
the standard was 2 good deal moTe
y Arthur Guinness and

faculty.
questions were set 5o as not

ses,
course thoughs of courses
difficult. Prizes were kindly donated b

Company .

Qut of 44 entrants, top place was filled by a fourth yeat
Science student, Stephen Buckley,
ever, the next eight places weTe fi
led by James Cunnane and BarTy Ambrose, with
A Science stud-

with a score of 70%. Houw-
1led by students of Electr-

ical Engineering,
scores of 66, 58, 57, 42, 41, 38, 3B and 34.

ent filled tenth place with 33. Further doun the scale, marks

were 32, 31, 30, 28 (3), 28, 27, 26, 25 (2), 24 (3), 23, 22,

21 (3), 19, 17, 18 (2), 15, 14, 13, B (2), 7, 4, 3 (2). Int-
eréstingly the bottom three places were also filled by Engin-
eering students! The average mark was thus about 25 and the

pass mark was declared to be 0 - taking part being equivalent

to pessing!

There were many ingenious solutions and suggestions but

weaknesses appeared on tpopics such as GeometrTys Diophantine

Equations, Induction, and the Associative Lauw.
a mathematics examination

many of the

students found themselves labouring at
1t was comforting to note that a girl came

for the first time.
put that in

in sixth positien with an excellent scoTe of 41.

your pipe and smoke it!

1.

2.

3.

4.

5.

8.

7.

8.

8.

U.C.C. SUPERBRAIN 1984

Answer any ten questions

N
Usir g eac umber once and once o ly, place the numbers 1 2, 3, 4, 5
7 9 5 ? 9

5, 7 8 and 9 in a 3x3 square so
B C X - that all TowsS, columns and diago 1a.Ls
sum to elg t different tDtalS, l.2. o two sums are e 1
qual.

I X d Yy a t t f a
a Tre positive lntegers, ind all solutions o the equatior

2xy - 4x% + 12x - 5y = 11.

I ABC is a tria gle show, wit proor, ow to find polr ts S and R or

the line BC, P on .
the line AB, and Q o R
is a square. 5 n the line AC, such that PQRS

£ . .
valuate the indefinite integral I (sec?® + sec®9)dd

en books are arranged in a row on a shelf. I ow many different
Yy

ways can thi i
is be done, if one particular boock A must al
left of another book B? et

X
Assuming that (i /liﬁ i
xig Tox exists, find its value.

I =2 or 4 = 1 10ns
» T ( T ) » U
fn f k21 show tha ( the ber of combinations

of n things i i
gs T at a time, is an even number, for 1 < r < n

I = [ i) rd}
A a,b [} is a set o our distinct elements 1s t FJ()SS]blE
B 1
closed bi Ty DpEEath on A suc that the
to define a osed bina he associative

law x *z) = Xy )Xz never ho n A ]
) (Y ) (X Y) r 1ds for a Yy trlple X zZE equal or
distinct? " ,

3 6
Ifa=14+35 +32 XX
N SN - x* X!
3t 51 s B—X+a!+7l+...,
2
X x5 8
Y o= A o+ o+ X, s
5T ST g1 -.05 assuming that all three series conver
ge

for x€ R, prove that o + 8% + y? = 1 + 3aB
= Yo
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10. Prove that cos29° is not a rational number.

11. Form a nime digit number using each of the digits 1, 2, 3, 4, 5, 6, 7,
8, 9, once and only once so that the number formed by the nine digits
is a multiple of nine, the number formed by the first eight digits
is a multiple of eight, the number formed by the first seven digits
is a multiple of seven, and so on, i.e. the number formed by the first

n digits is a multiple of n, for 1 s n £ 9.

LETTER TO THE EDITOR

December 1983

Dear Editor,

The National Committee for Mathematics received the following
letter from the International Mathematical Union appealing for
financial support for the Special Development Fund, and would
appreciate your bringing it to the notice of your readers in

the belief that many of them would wish to contribute to the

fund.
banks mentioned in Professor Lehto's letter or to the undersig-

Donations can be sent anytime either directly to the

ned, marked "I.M.U. Special Development Fund".

Yours sincerely,

Secnetany,
National Committee fon Mathematics,
Royal Irish Academy,
19 Dawson Street,
Dublin 2.
May 4, 1983

TO ALL NATIONAL COMMITTEES FOR MATHEMATICS

The Special Development Fund aids IMU to fulfill the important oblig-
ation of helping developing countries within the framework of mathematical
research. The means of the Ffund, which go unreduced to mathematicians
from developing countries, are used primarily for travel grants to young
mathematicians, to make them possible to participate in Intermational Cong-
resses of Mathematicians. The Executive Committee of IMU elects an inter-

national committee to distribute the grants.

Means to the Special Development Fund come from private donations.
This letter is addressed to you in the hope that you could make a contrib-
ution to the Fund, either directly or by making an appeal among the math-
ematical community of your country. Donations can be sent at any time and

.in any convertible currency, to the following accounts:




Schuweizerische Kreditanstalt
Stadtfiliale Zurich-Rigiplatz
Universititstrasse. 105
CH-BD33 Zirich, Switzerland
Account Number 0862-656208-21

Kansallis-Osake-Pankki

Aleksanterkatu 42

SF-00100 Helsinki 10, Finland

Account Number 100020-411-USD-5705 FR.

The next goal is to collect money for travel grants for the 1986 Int-

ernational Congress of Mathematicians in Berkeley.

With best thanks for your cooperation,

Yours sincerely,

0llie Lehto

THE_EVOLUTION OF RESONANT OSCILLATIONS N CLOSED TUBES

E.A. Cox* and M.P. flonteld?

1. INTRODUCTION

This paper discusses the formulation and solution of a non-

linear initial value, boundary value problem that arises from

a simple experiment in gas dynamics. A tube which is closed
at one end, contains a gas. The gas in the tube is driven
by an oscillating piston. It is observed that when the freg-

uency of the piston is near to a natural frequency of the tube
the resulting gas motion is periodic and characterised by a )
éhack wave travelling over and back along the tube. The theor-
etical work to explain the final periodic moticn goes back to
Betchov [2] and Chester [31. The reader should consult Sey-
mour and Mortell [9] for more recent work aon the problem.
However, the problem of the evolution of the periodic motion

of the gas from an initial state has not until now [4] been

solved.

It is worthwhile noting, at this juncture, that nonlinear
effects, such as shocks, can occur without any dramatically .
large input into the system. For example, in the present case
when the piston is operating at the fundamental frequency of
the tube, a shock has been observed even though the ratio of

piston displacement to tube length is of the order 10-2 (8],

Befare giving the details of the particular problem, the
broader background in which it is set will be sketched. The
study of nonlinear waves began with the pioneering work of
Stokes [10] and Riemann [7]. Whitham {11] distinguishes two
main classes of waves, hyperbolic and dispersive waves.
Hyperbolic waves are solutions of a set of hyperbolic partial
differential equations and our problem fits into this class.
The intersection of characteristics for a nonlinear hyperbolic

equation gives rise to the physical phenomenon of a shock.
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If the nonlinear wave is travelling in one direction only and
into a constant state, the exact solution is called a 'simple
wave' and was known to Riemann. Riemann also exposed the fun-
damental difficulty when nonlineaT waves are travelling in opp-
osite directions. It is not, in general, possible to integ-
rate the equations for the characteristics. This corresponds
to the fact that nonlinear waves interact and one must knou

the details of the right-going waves to calculate how the
left-going wave will propagate, and vice-versa. The
fundamental difficulty still remains, and even in such authorit-
ative works as [11] and [B] problems of nonlinear waves trav-
elling through each other in opposite directions receive scant
attention.

The problem discussed in this paper involves waves in a
tube of finite length and, since shocks appear, automatically
involves the propagation of nenlinear waves through each other
in a finite space domain. The problem will be approached thr-

ough a novel use of perturbation methods.

Finally it should be noted that at resonance, aside from
the appearance of a shock which is a nonlinear phenomenon, lin-

ear theory predicts the evolution to an unbounded motion.,

2. FORMULATION

In terms of nondimensional Lagrangian variables the equat-
ions expressing conservation of mass and linear momentum for

the gas are

3 3

5% * 025—5 = 0 (2'1)
2y 290 2.2
at + a ax = 8] ( )

where u, p, a, denote gas velocity, density, and sound speed
at the gas particle x, for time t. The equation of state for

the isentropic flow of an ideal gas may be written as:

a? = pY-! (2.3)

where Y is the gas constant.

Equations (2.1), (2.2) and (2.3) are supplemented by the

boundary conditions

u(o,t) 8]

]

u(1,t) = -27ewsin2mwt, € << 1 (2.4)

and by the initial conditions

u(x,t) = 0 0 s x <1, t s Q,
(2.5)"
a{x,t) = 1 0 £ x 51, t 5 0.

The problem is to follow the evolution of the gas motion under
the prescribed boundary conditions (2.4) from the initial undis-
turbed state (2.5) to the final periodic state.

Replacing p in (2.1) and (2.2) by using (2.3) the resulting

equations can be combined to form the coupled system

i}
1
}

r Y+1
9 + av-1 9l u + Y%1a = 0
1ot aﬂ L 3
(2.8)
" Y+1 0 7]
9 ¥-7 9 2
o _ SY-1 9 - -
‘at a B__U Y_1&1 0
The Riemann Invariant u + Y‘1a is constant on the characteris-
tic curves a(x,t) = constant given by
5 Y+1
X Yo7
ox = .agv-!
5T . = a (2.7)

with a similar statement for the other Riemann Invariant.

Equation (2.7) cannot be integrated since a(x,t) is unknown




until the solution is found.

The approach adopted to solve the system (2.6) is to assume

a reqgular pertﬁrbation expansion for u and a in (2.6) of the

form
ulx,t) = euy(x,t) + e2ua(x,t) + ...
(2.8)
a(x,t) = 1 + ear{x,t) + e2as(x,t) + ...
Linear theory results from terms‘at 0(e) with a nonlinear
correction at 0O(e?). The linear terms u,,a, satisfy

3 3 2 B
(3t * gz Jlus + 553 2a]= 0
(2.9)
3 9 =
[§T’- Bx][u1 Y-1 a,l=0
with general solution
up = F(t+x-1) - g(t-x)
(2.10)
av = - AU (exe1) ¢ gleex)]
where f,g are arbitrary functions - the linear Riemann Invar-
iants. It should be noted that the two sets of linear char-
acteristic curves t+x-1 = constant and t-x = constant are par-

allel straight lines and are independent of the solution ui,a:.
In other words the linmear waves neither distort, nor interact

with each other.

The boundary conditions on x=0, x=1 given by equations
(2.4) imply that on x=*%

F(t) - f(t-2) = -2mewsin 2mwt, t > 0 (2.11)
an equation which is augmented by the initial condition

ft) ; 0, t s0 ' (2.12)
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when W= %, n=1,2,3 ... equation (2.11) predicts that
f(t) is asymptotic to -nt sin(nmt), as t + =, (2.13)

in other words predicting unbounded growth frequencies equal

to the natural frequencies of the gas tube.

On substituting for u, and a, into (2.8), (2.8) we obtain
the particular integral
ba(x,t) = B (o(t-x)gt(t-x) + Fltex-1)F" (4x-1)]

Y+1
4

+ x[F1(t+x=1)G6(t-x) - g'{t-x)F{t+x-1)]

where t t
S(6) = sy ana F(e) = [ riney.

We note that the caomplementary functions associated with

u, may be absorbed into the representation for uy.

The novel feature of the approach now outlined is that the
boundary conditions are applied not to u;, and u: separately

but to the combined approximation eu,; + £2u,, i.e.

euy (0,t) + g2y, (0,t) = 0 (2.15)

and

eu, (1,t) + e2u,(1,t) = -27ewsin 2nut.

The aim is to formulate in one relationship a mechanism

of controlling the linear growth by the nonlinear terms.

The boundary condition on x = 0 implies that
fF(t-1) = g(t), t =z 0O (2.18)
After some manipulation the boundary condition on x = 1 implies

that f{t), the linear Riemann Invariant, satisfies the nonlinear

equation
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Y[ () Fr () +f (£-2)F 1 (£-2)]

t t-2
el riea) [r(ay + fr(e) [ rGey (2a7)

27w sin2mwt = f(t)-f(t-2) + €

with ipitial condition (2.12).

Ecuation (2.17) is a nonlinear functional differential

equation of neutral type, see [5]. The equation of linear

theory is included in (2.17): the nonlinear terms in (2.17)
(y+1)

2 .
effect of amplitude dispersion by which shocks form, while the

which are in the brackets associated with represent the
remaining term represents the nonlinear interaction of opposite

travelling waves.

The soclution of the nmonlinear initial value, boundary value
problem on the semi-infinite strip 0 £ x £ 1, t 2 0 and defined
by equations (2.1) - (2.5) has now been reduced to a solution
of the nonlinear equation (2.17) with the initial conditions
(2.12).
particle velocity and sound speed in the tube can be found from
the representations (2.10), (2.16).

When the linear Riemann Invariant, f, is known, the

3. GOVERNING PARTIAL DIFFERENTIAL EQUATION

The functional differential equation (2.17) was derived
using only a regular perturbation expansion and retaining the
sum of the first two terms as the basic approximation. We
now show how equation (2.17) can be simplified to a hyperbolic
partial differential equation by the use of a two variable exp-
ansion technigue. There are two natural time scales in the
physical problem under consideration: the time for a signal
to travel the length of the tube and the time for a shock to
form. The basic assumption underlying the simplification of
(2.17) is that the latter time scale is much larger than the
former. The fast time scale is t¥ = t and the slow time scale

is T = et. The function f(t) is then expanded in the form

Flrze) = fu(t5,¥) + ef(EH,F) + L. (3.1)
Since the primary motivation’is to find solutions near the
resonant frequency w = %, we introduce the small detuning para-

meter

A = 2w - 1 << 1, (3.2)

We now seek solutions which are periadic in the fast time
variable t+ with the same period as_the piston, viz, 1/w and

are slowly modulated on the long time scale.

Therefore we assume that

Foler - D) = Fi(eh,E) (3.3)

1
w

On using (3.1) - (3.3) in the functional differential equ-

ation (2.17) we obtain the partial differential equation

3f,

CAR + A EEL oM _ omew sin 2wttt (3.4)
5

2e
A W gt

e(Y+1)f,

where terms inveolving 0(a?), 0(eh), 0(e?) have been neglected.
We note that the integral terms in (2.17) which represent the
interaction of oppositely travelling waves are O(gA) and thus

negligible.

The initial condition corresponding to (2.12) and the state

of rest is

f, (£¥,0) = 0 (3.5)
Since the solution of (3.4) is periodic in t* with periods

%, integration of (3.4) over a time interval of length %, with

an appeal to weak shock conditions when necessary (see [111]),

yields the mean condition




gl-

(3.6)

n
o

J f1(s,¥)ds
0

Thus the mean value of f remains constant on lines of constant
% as the signal evolves. In order to put (3.4) in a form more

amenable for analysis we define

Fln,t) = (y+1)ewf, (£%,%) + 2 (3.7)
where % )
n = wtt, 1= 3c (3.8)

Then (3.4) becomes

oF

oF .
5T+ F T -A sin (2wn) (2.9)
A = 2mew?(y+1) << 1, (3.10)
The initial condition becomes
F(n,0) = 4 (3.11)

The remainder of this paper is concerned with the analysis
of (3.9) subject to (3.11). It should be noted that the phys-
ical properties of the system are all contained in the simil-
arity parameter A, given by (3.10). Variations in the piston
amplitude, €, and freguency w, or the gas properties Yy, corres-
ponding to different experiments are immaterial to the solution

of (3.12) as long as the parameter A remains constant.

4., EXACT SOLUTION

The nonlinear partial differential equation (3.9), which
describes the evoclution on the boundary x = 1 of the linear
Riemann Invariant, is hyperbolic and can thus be studied by

the method of characteristics. The transport equation

df
37 (n,1) = -Asin2mn (4.1)

describes the variation of the signal F on the characteristic

curves al(n,t) = caonstant given by

dn

g7 = Fln.1) (4.2)
The characteristic curves are parameterised by a(n,0) = n.

The coupled system (4.1), (4.2) and the initial condition (3.11)

are equivalent to the second order equation

o

2
dTg = -A sin 2mn (4.3)

with initial conditions

n(0) = a, -3 saos % (4.0)
~and J
an -
dt(o) =4

Thus the chara;teristic paths are given by the nonlinear pend-

ulum equation (4.3) with the signal profile given by (4.1).
On using (4.2), equation (4.3) is written as

F 95 - _asin2m (4.5)

dnyz 2 B?
()2 = F2 = 051 - m2sin2(mn)) (a.8)
where
;
n2(a,0) = a7, 82 = A (4.7)

In a standard manner, integration of (4.6) then yields

exact solutions for n(o,t) expressed in terms of elliptic func-
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tions (see [1]). With F given by (4.6) the solution of (3.9) " L
can then be tabulated.

0. Prout \ '

ke~
11. Form 5. SOLUTION CURVES AND DISCUSSION C:\\\;\\\\\\\~
qQ .
?;; Fig. 1 corresponds to A = 0.01, A= 0.02 and shouws the
. growth of the amplitude of the signal over the initial periods ::::::) i
%S. (as predicted by linear theory), but with a simultaneocus cum- e .
;sd ulative distortion of the signal shaQe until a shock forms in <:::::::::::: ;
the seventh cycle of the piston. One can see in this output . |
what was anticipated in applying the boundary conditions as :::::>
in (2.15). ) Cin
Fig. 2 shows how the signal settles down to the periodic <::::::::::: |
state, containing a shock, after about 30 cycles. Figs 3 and 2 }
4 show the evolution of the signal for the case A = 0.01, ::> s
A = 0.06. This is a particularly interesting case since exp- C:::::::::'“* ; .
eriments show that the periodic state is continuous and is, % 3
in fact, essentially determined by linear theory. The figures : E i
show how a shock forms and then decays out of the system so :> ;
that the eventual steady state is shockless. The solution rm ;

thus goes through a nonlinear regime but eventually reaches

a periodic state which is closely approximated by linear theory.

1
A shock is a dissipative mechanism so that when the piston L~ ) 1

is operating at or near resonance the shock dissipation balan-
ces the energy buildup due to the phase matchihg of the input
and response to allow a final periodic state containing a shock. :

Away from resonance, e.g. when A = 0.06, there is a sufficient
mismatch of phase to obviate an energy buildup and a shock can-
not be sustained. Thus a continuous periodic steady state

results.

The analysis given here is based on numerical calculations v T T + T T T d

™
of the exact solution. It is 'also instructive to consider = 3 = o S N 2 8 =
the phase plane associated with (4.3), (4,4) and the reader S & & & o <|: IO lO ‘o

will find this in [4].




31

30

AR

80 90 70 20

200

700

90-0

800

—

Z JHN9aI4

- 900 -

o0

[ NOD -

00-0

£=u
- 20-0

- 4900

=U

0=
S w00

j=u

10.
1.




REFERENCES
4. M. Abramowitz and I.A. Stequn (Eds.) Handbook of Mathemat-
- ical Functions. National Bureau of Standards, D.C. 13864,

2. W. Betchov, Nonlinear Oscillations of a Column of Gas. I
Phys. Fluids 1, 205-212 (1958). } f

3, W. Chester, Resonant Oscillations in Closed Tubes. J.
Fluid Mech., 18, u4-64 (1864).

4. E.A. Cox and M.P. Mortell, The Evolution of Resonant Osc- i

illations in Closed Tubes. Z. Angew. Math., Phys., 34,
845-866 (1983). o

0-8

5. J. Hale, Theory of Functional Differential FEquations. . ;, |
Springer-Verlag, New York, 1877,

6. J. Lighthill, Waves in Fluids, Cambridge University Press,
Cambridge 1978.

0-6
-3

B. Riemann, Uber die Fortpflanzung ebener Luftwellen von

endlicher Schwingungsweite. Gottingen Abhandlungen.
Vol. 8, p. 43.

8. R.A. Saenger and G.E. Hudson, Periodic Shock Waves in Res-

T
FIGURE 4

onating Gas Columns. J. Acoustic. Soc. 4mer., 32, 8961-970,
(1960).

0L

g, B.R. Seymour and M.P. Morfell, Resonant Acoustic Oscillat-
ions with Damping: Small Rate Theory. J. Fluid Mech.,
58, 353-373 (1973).,

10. G.GC. Stokes, On the Theory of Oscillating Waves. Camb. ;
Trans., 8, 441-473 (1847). ; |

02

11. G.B. Whitham, Linear and Nonlinear Waves. Wiley, New York
(1974).

YDepantment of Mathematical Physics, 2Registnan, N

Univensity College, Univensity College, ‘
Betlfield, : Conk., (.
Dutlin ¢, i

010
008 -
0-06
004 -
0-02 ~
000




|SOTROPIC TENSORS AND SYMMETRIC GROUPS

Rex Dank and Martin Newell

Introduction

Students usually meet tensors in courses on Mathematical
Physics [1, Chapter 3], and are sometimes told that all isotr~
opic tensors can be expressed as sums of products of Kronecker's
§ and the alternating tensor € (see below). Several years agpo,
the first author was asked by an inguisitive student how to
prove this fact. The author in guestion did not, at that time,
know of a proof in the literature, and (having more energy then
than now) he tried to find his own proof. He was led to a
question about the group rings of symmetric groups, which he
found interesting in its ouwn right, and which he answered to
the satisfaction of both himself and the student who had prom-
pted the question. Soon afterwards, he learned that the state-
ment about isotropic tensors is eguivalent to a result proved
by Weyl [4, page 53, Theorem (2.9.A)] using a different method.
More recently, an error was noticed in the calculations in the
group ring of the symmetric group, and we give here an exposit-

ijon of a corrected version of this proof.

Notation

For each positive integer m, put m = {1,2, ...
let n™ be the

,m}, and

set of maps from m to n. An element of nT can
be identified with a polyindex

with

(1) = (i,512s eos sip) where

1 si,s0 (1 s s m) . respect to given axes in n-dimen-
sional Euclidean space E7, a tensor u can be defined as a map

from n® to the field of real numbers: for gach polyindex

(i)e nT, we have a real coordinate ul(i). We shall say that

u has dimension n and order m.

Examples A tensor v of order 1 is the same as a vector in EM

with coordinates v(1), v(2), ... ,v(n). a tensor

T or order 2 can be regarded as an nxn matrix with entries

Similarly,
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T(ilriZ)‘ In particular, we put
'lifil=ii
§(iy.ip)= )
0 if ip # 1
which corresponds to the identity matrix. Moreover, for each
polyindex (i) = (i),ip, oo 2ip) € nl, we can define
1 if (i) is an even permutatian of n,
e(i) = {-1 if (i) is an odd permutation of 0,
g if (i) is not a permutation;
then € is a tensor of order n, equal to its dimension. If 7T

is a tensor of order 2, then we can use ¢ to give a formula for

its determinant:

det T = I, oelipsips oo )T, 1)T(2,1p) .. Tl ig).

(i)e o~

Remark The indices i3, ip, «.- ,im are usually written as sub-

scripts or superscripts, but we prefer to avoid double suffices;
we consider anly perpendicular axes in €7, so we do not need

to distinguish between cogredient and contragredient indices.
Also, we.shall not use the Summation Convention [3, page 59].

Examples of physical quantities represented by the concept are
the strain tensor

1,9uy duy
fik = 5(57; * %)

in the Theory of Elasticity [1, page 98, Section 3.101], and

the metric tensor gik of Differential Geometry (as used in the

Theory of Relativity) which determines the incremental distance

C k.
ds =jf4;§kvgikdxldx H

in our case gjx = 8(i,k).

Definition: When we change the axes in £EM, there is an nxn
matrix T(h,k) such that the coordinates of a vector v are alt-

ered to
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n
vt(n) = L T, K)u(k)

For u to be a tensor of order m, .it is required that its coord-

inates become

n

ne~13

Ut(iys oee sig) L e jm;lT(il,jl)...T(im,jm)u(jl,.,,,jm>

3
A tensor is said to be isotropic if its coordinates remain un-
altered when we change from one set of perpendicular axes to
any other such set with the same orientation; this means that
u'{i) = u(i) whenever the matrix T(h,k) is orthogonal with det-

erminant 7.

Examples It can be verified that the tensors § and € defined
above are both isotropic {1, page B7, Section 3.03)], and It is
known that, in the 3-dimensional case, any isotropic tensor
of order 2 or 3 is a multiple of § or € respectively. More-
over, it can be shoun [1, page 88, Section 3.031)] that the iso-
tropic tensors of dimension 3 and order 4 are the linear combin-

ations of the tensors
8 (1) ,ip)8(ig,iy ), 80y .z )8(iy,d,), 6(iy,1,)8(iniz)

which are called outer products of § [1, page 115]. These

facts can be used to motivate the next definition.

Notation

Taking outer products of § and €, we define the follouwing

isotropic tensors of dimension n and order m:

(1) 6(11,12)6(13,ih) oo §(igo1sip) if m is even,
d(i) =

0 - if m is odd,

E(il,iz, cee sig)dligggs eessipg) if moz N,

It

e(i)

o ’ if m o< on.

If o is an element of the symmetric group Sp of all per-
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mutations of m, and if ha denotes the image under a of an elem-
ont h&€ m, then o acts on the polyindices (i) as a place perm-

tation: (oi) = (igipgs «+- sigg). This leads to an action
on the tensors of order m given by (ua)(i) = u{ai); we shall
call the tensor ua a conjugate of u. It is clear that the
conjugates of d and e are still isotrepic. OQur aim is to give

a proof of the following result.

Theorem Let Dy be the set of linear combinations of the con-
jugates of the tensors d and e of order m, and let U, be the

set of isotropic tensors of order m. Then Dp = Unp-

Remark We have seen that D5 s U so we have to show that

Up % Ope
the conjugation action of Sp, which is said to have been first

m,
Dur proof uses induction on m, and our main tool is

exploited by Schur, and developed by Ueyl [4, page 96, Section
65]. We begin by deriving certain relations between the coord-

inates of an isotropic tensor.

Lemma 1 If u is isotropic, then
p .
(a) T 6(p,iplu(ip, oo sipysQripyys oo yig)
= m
= 1_21 ‘S(Q’ir)u(il) s ’il'—l ’p’ir+li o8 o yim)
m
(b) (n=1).uliy, »ee »ig) + 22 Wliprips eov sdpgadysdpgyseein)
Ir=
m n
- rzz 53y »ip) DZ1 W(Prigs wor sipoyBripy s inh
Proof The equation (a) is trivial when p = g, so we suppose
p # q. Define
cos ¢t when h = k = p or h = k = q,
( ) sin t when h = p and k = g,
T{hy;k) =
’ |l-sin t when h = g and k = p,
16(h,k) otheruise.




3. Prov

1. Forl
By
is
is

is
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Then T(h,k) represents a rotation of the pg plane by an angle

t, and is an orthogonal matrix with determinant 1. Therefore

n n .
_2 _2 T(iy537) oon Tl dgiuliygs - »3q) = uliy, cerig).
N =1 Jm=l

We differentiate this equation with respect to t, and then take
t = 0. Note that, when t = 0,

T(h,k) = 6(h,i), SLth,k) = 8(p,n)6la,k) - 6(p,k)6(a,n);
hence we get

m n n
2 X oo z é(il’il) o e 6(ir_l,jr_l).(G(D,ir)MQ:jr)—
r=1 j=1 Jm=1

§(p,ip)ela,ig)) e 6lipy sdpay) «o» 8Uigrdn)uldy,eesin)=0.

Now & has the substitution property [1, page 59, Section 2.021]

| o~ 3

6(il"jl‘)u(jl’ o5 o ’jm) = U(jlv v ew 9jr,l!irsjr+l: o0 e sjm)
1

t

q

Using this, we can deduce (a) from the last eguation.

In (a), take i, = p, and add the resulting relations for

P =132, o0 sNe This gives

m

noulasins wvv sig) + Ly ulipsdp, wov sippasizgys oo sip)

m

n
= U(Chizz ° o0 sim) + rzz d(q’ir)piz»‘ U(D,iz: e :ir_]_ ;psir+l;

Replacing q by i;, we get (b).

Definition The eqguation (b) suggests the following notation

and Lemma. Let Ry be the rational group algebra of the symm-
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etric group Sp [3, page 42, Section 2.2]. The elements of
Ry a@re the expressions 8 = Ztaa, where the coefficients ty
are rational, and where a runs through S. If further, u is
a tensor of order m, we define uf = [t,(ua), where ug is given
by the conjugation actiqn. As usual, 1 denotes the identity
permutation in S;, and (h,k) is the transposition which inter-
changes h and k, but fixes the other elements of m. We write
o = (p=1).1 + (1,2) + (1,3) + ... + (1,m)E R

me

Lemma 2 (a) If u is isotropic, then

n

m
up = L, S(il,ir)pz1 Wlpsings wee sipogsPorips wen Lig).
(b) {8€ Ry ¢ UP s DL} is a (2-sided) ideal of Rp.

proof (a) is a restatement of Lemma 1(b) in terms of the above
definition. To prove (b), note that if a,B € Sy then clearly

Unp® = Ups DpB = Dy Hence UpaBf < DB = D as required.

Proof of the Theorem We use induction on m. We interpret

a tensor of order 0 as a scalar (a real number whose value does
not depend on the choice of axes). This means that when m=0,
then every tensor is a multiple of d, so the Theorem is trivial.
When m=n=1, then a tensor is again the same as a scalar, and

is a multiple of e, and so lies in D, as required. Next supp-
ose m=1 and n 2 2, and let u be isotropic. Taking p # q and
(i) = (g) in Lemma 1(a), we get u(p) = 0 for all p, so the The-
orem is again true. We have now proved the result when m=1

or 2, sSo we may suppose m > 2, and assume that the Theorem

holds for orders less than m.

The contracted tensor [1, page 87]

Eal
'EU'-(‘Drizy R ,ir_l,D;ir+l, 0 e e y‘im)
p=1

is clearly isotropic of order m-2, so it lies in Dp-2 by the
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inductive hypothesis. Hence Lemma 2(a) implies that ud € D,

whenever u is isotropic, and therefaore
(1) Up® £ D

The following result will be proved later.

Suppose 1 s m < n, and let X be the
Then 1€ X.

Lemma 3

erated by ¢.

ideal of Ry gen-

It follows from (1) and Lemma 2(b) that UpX s Dp. Ass-
uming Lemma 3, we deduce that Un s UpX s Dg. This proves the
Theorem when m < n.

Remark For each subset {15105 a. sip} of m, define
ﬂ'(il,iz, e ’iI’) = EEOLG'
where a runs through the permutaticns of {il,iz, o ,ir} and

where

1 if a is even,
8q =
-1 if a is odd.

It can be shown that if m = n, then ¢.7(1,2, ... ,m) = 0, which
implies that the conclusion of Lemma 3 no longer holds.

Indeed, the tensor € appears in Up for the first time in this
case, so a different argument is needed.

Returning to the proof of the Theorem, suppose that
m =n >2, and that u

and (i) = (2;2’3147 o5 e

is isotropic. Taking p = 2, g = 1,

sm) in Lemma 1(a), we get

u(1,2, oo ) = -u(2,1,3,4, ... ,m).

Similarly, one can show that, if the polyindex (i)e nl is

a permutation, then interchanging any 2 indices alters the sign
of u(i).
136, Thearem 21], it follows that if (i) is a permutation, and

Since Sy is generated by transpositions [2, page
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ifFu, = ul1,2, o.. ,m), then u(i) = uge (i), Writing
(i) = ul(i)-uy (i), we deduce that v is an isotropic tensor
with
(2) v(i) = 0 when (i) is a permutation.

gut if (i) is not a permutation, then it must haue a repeated

Now if iy = iy and 8 = 1 - (1,2) € Ry» and if w is
then

entry.

any tensor,
(w8)(i) = 0.

we-note also that if y is the sum of the even permutations of
m, then 6 = w(1,2, »m) [2, page 137, Proposition 26],
whence the last eqﬁation implies that (w.w(1,2, ... ,m))(i)=0
Similarly, one can see that if (i) is a polyindex

with a repeated entry,

when 1i=i5.

and if w is any tensor of order m, then

(wer{1,2, .o ym))(1) = 0.  Combining this with (2), we conc.
lude that
(3) (vom(1,2, c.0 ,m))(i) = 0 for all (i)e mm,

The following result will be proved later.

Lemma 4 Suppose m = n 2z 1, and let Y be the ideal of Rm gen-

erated by (1,2, ... ,Mm) and 4. Then 1€ Y.

Copying the proof of Lemma 2(b), we see that if UV, is the
set of isotropic tensors v which satisfy (3), then
(6 Ry Vp® = D,) is an ideal of R -

we deduce that VpY =

Using (1) and (3),
Dps so Lemma 4 implies that

v = vle VoY 5 Dp.

Hence u = uge + veE Om as required.

Finally, suppose m > No. Then there must be a repeated
index among 1,15,
u.m(1,2, ...

case,

cee sippys and it follows as before that
sN+1) = 0, In the same way as in the previous
the Theorem is a consequence of the following result,

which will be proved later.




- 43 -

- 42 -

3 Ifm=1c< th = (n-1),1,
Lemma 5 Suppose m > n 2z 1, and let Z be the ideal of Ry gen- Proof of Lemma m n en ¢ (n-1),1

erated by w(1,2 n+1) and ¢ Then 1€ 1Z we may therefore suppose m > 1, and use induction
39&y eoce 9 N o

particular, the inductive hypothesis allows us to

i <r < m, then 1 is in the ideal generated b

It now remains to prove the ‘Lemmata 3, 4 and 5. This wiljlF ! + tf 8 ¢ b oth i y
rmutations aj ; of © suc a

be done with the help of the following calculations. We writeare pe iroRPL -

) 1 = (08, .,
8 = n.l+ (1,2) + (1,3) + ooe + (1,1) € Ay, (4) Le; 8,

We shall prove by induction on r that

Lemma 6 (a) #(l,r+l,r+2, .. sm) = {(l,r).m(r,r+1, ..,m).(1,r;
5) plr+l,0+2, ... ,m) € X (0 g1 < m).
(b) B.m(r+l, t+2, ... ,m)-= ¢.m{r+l,r+2, ... ,m) (
+ "(l¥r+l’r+2,gi}. ,m). we note first that if 1 < i s m, then (1,i).n(71,2,

-m{1,2, ... ,m) and hence ¢.m(1,2, .. ,m) = (n-m).qn(1,2,

Since n > m, it follows that (S) holds when r = 0.
Proof (a) follows from the rule for conjugating permutations

[2, pages 128-130]. To prove (b), let G and H be the symm-

etric groups of permutations of the sets {l,r+l,r+2, ... ,m}

therefore suppose r > 0, and assume that w{(r,r+l,

we deduce that
and {r+l,t+2, ... sm} respectively. Then H is a subgroup of

G of index |[G:H| = (m-r+1)!/(m-t)! = m-r+l. If i # j then 9.m(r+l,c42, ... ,m)<E X.
(1,i)-1(1,5) = (1,1i,3) H and therefore the cosets (1,i)H and
(1,3)H are distinct [2, page 33, Proposition 5]. It follous
[2, page 34] that {1,(l,t+1),(1,r+2), ... ,(l,m)} is a set of

. . m(r+l,c+42, ... ,m) to get
representatives (or transversal) for the cosets of H in G, and

that
m(r+l,T+2, ... ,m) = zdi&W(r+l,r+2, cee ym)BrE X,
G = HU (1,z+1)8 U (1,r+2)0U .. U(1,m)H. i
This proves (5). Taking r = m-1, we conclude that 1 =
Noting that multiplication by a transposition (1,i) changes as required.
even to odd permutations and vice-versa, we deduce that
ml,r+1,742, «.. ,m)
Proof of Lemma 4 We shall prove by induction on r that
= (1 - (l,r+1) - (l,v42) - oo. = (1,m)).m(r+l,742,... ,m)
{ ( ) ( ) (1,m)).m( (8) m(r+l,t+2, ... ,m)E ¥ (0 st <m.
= (6 - T +1,T42, .. ,m R
( 0).ml ’ ’ ) By the definition of Y, (B6) holds when r = 0, so we may suppose
which is equivalent to the required relation. r >0, and assume that n(r,r+l, ... ,m)E VY. Using Lemma 6,
as above, we deduce that 8.m(r+l,t+2, ... ,m)E Y. Since

whence 1 &€ X.

on m,

In

assume that

6, so there

,m) =

We may

,m) & X.
Then w(l,c+l,r+2, ... ,m) € X by Lemma 6(a). Using Lemma 6(b)

Now the permutations g; in (4) are disjoint fram #{r+1,r+2,

.. ,m) and so commute with it. Hence we can multiply (4) by

m(m)e X,

m=n >r, it follows from Lemma 3 that 1 is in the ideal gen-

erated by 8. As before, this enables us to prove
we get the result by taking r = m-1.

(5))

and
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Proof of Lemma 5

1= p.(1,2) € 1.

If m = 2, then n =1 and ¢ = (1,2), so

We may therefore suppose m > 2, and use ind-

Y or

- 45 -

7 can be replaced by a one-sided ideal in Lemma 4 or 5.

We mentioned in an earlier remark that n(1,2,

uction on m. In particular, we may assume that if n+l <1 < m . cee am) s
then 1 is in the ideal generated LY w(1,2, ... ,n+2) and ¢. needed 10 Lemma 4. It can also be shown that if either m = 2
Since and n =80, orm =4 and n =1, or m = 6 and n = 2, then 1 is
not in the ideal of R, generated by §. However, we do not know
7(1,2, ... ,n+2)

= (1 - (1,n+2) - (2,n+2) - ... =(n+l,n+2)).w(1,2, ...

it follows that there are permutations oy, Bi’ A uj, such tha

jy

(7) Layml,2, ..

3
If r =

gdieﬁi + ,n+l)Uj,

provided n+l <1 < m. n+l, then the same result follou

from Lemma 4. Moreover, if r < n+l, then Lemma 3 implies that

1l is

(73,

in the ideal generated by 8, so we again get the equation 2.

but now with Aj = My o= 0. Thus (7) holds whenever © < m,

3.
We shall prove by induction on r that

(8) a(r+l,t42, ... ,m)E€ Z (m-n-1 s T <m.

If yisin the m-cycle (1,2, ... ,m) & S, then

m(m=n,m-n+l, ... ,m) = Y‘m+”+1ﬂ(l,2, e ,rn)‘fr"“'-'“l & 1,

for which values of m and n,

m1,2, ... ,n+l) is needsd in

,n+llLemma 5.
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so (8) is true when r = m-n-1,

We may therefore suppose that Galway.

T 2 and assume that 7n(r
51

multiply (7) by w(r+l,r+2, .

m=n,

we deduce that O.m(r+l,r+

g{r+l,T42, ...

:m) = Z
1

+ X)\jﬂ(l,Z,
J

This proves (8). Taking ©
ult.
Remark It can be shown tha

right or left ideal generate

sT+ly cee sm)E .
29 s 0 ,m)G .

.. ,m) to get

Using Lemma

As before, we cat

Giﬂ(r+l,r+2, e

’m)Bj.»

vew sn+l)qu(r+l,T+2, ... ,m)gje 7.

= m-1, we obtain the required res-

t if 1 s
d by ¢.

then 1 is in the

We do not know whether

m < n,
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GROUPS AND TREES

John MecDenmoti

For some years now, the M.S5c. Algebra course in U.C.G.
has included a unit on group presentations based mainly on
the first half of Johnson's book [4].

of the book is its emphasis on computational aspects of the

One of the attractions
subject such as coset enumeration. On the occasions that

I taught this unit, I have experimented with the use of graph-
theoretical ideas in the presentation of supplementary material
and also to provide an alternative approach to some of the
topics in the text. The graph theory involved uses little
more than basic concepts (in particular, a course on graphs
is not a pre-requisite); but the intuitive "geometric" frame-
I

"made some comments along these lines in a talk at the DIAS Sym-

work it provides is, I believe, helpful to the student.

posium in December 1882. In this note, which is based on that
talk,

group presentation.

I outline some of the graph-theoretical approaches to

AR graph 1is usually defined to be a (non empty) set V of

vertices (points), some pairs of which are joined by edges.

In the context of group presentations we should, strictly, tall
that is, '

about directed multigraphs: an edge may be directed

frem one vertex to the other, and there may be several edges

Moreover,

between two given vertices. the graph may be col-
oured: its vertices and/or its edges may have colours (labels)
attached; these are usually elements of G, some group related

to the graph. In particular, we adopt the convention that an
edge from x to y labelled g is implicitly an edge from y to x

coloured by g~ '€ G.

The classical examples of graphs related to group presen-
tations are Cayley diagrams and Schreier diagrams. Let G be

a group generated by a,b, ... 3 the corresponding Cayley diag-

‘direction.
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is the graph having the elements of G as vertices and for

~ram
each generator, such as a, an edge from x to y coloured with a
if y = X3 If H is a subgroup of G, the corresponding

gchreier diagram has the cosets of H in G as its vertices and,

for each generator a, an edge labelled a from Hx to Hy if

Hxa = Hy. There are examples in Fig. 1. '
2 |
a a
. 3
(1) (ii)

FIGURE 1

In (i) we have the Cayley diagram for G <ala? 1>,

the cyclic group of order 3; for convenience, we use i to den-

ote the vertex ai‘1, and an arrow on each edge indicating its

In (ii) we have the Schreier diagram of G with respect
to H, <a,bla® = 6% = (ab)?
Sym (3) of order 6, and H

where G

1>, the non-abelian group
The

solid edges are each coloured a in the direction of the arrow,

<b>, a subgroup of order 2.
the dotted edges are coloured b (in either direction) and the
vertex Hal-! is denoted by i.

A Schreier diagram is particularly useful in the study
of a group presentation. We can read off from it not only
the index of H in G - which is just the number of vertices in

the diagram - but also the images of the generators of G in

the permutatinn representation of G on the cosets of H. For

example, we can see in (ii) that

ar——s(123) and

One may view the construction of a Schreier diagram as a

‘pictorial implementation of the technique of coset enumeration:

and with a little elaboration it may also be used to describe
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the process of finding a presemtation for H in terms of the

given presentation for G. There is a nice informal descr-

iption of some of these ideas in the first section of Chapter
VIII of the book [1] by Bollobas.

Now we need a couple of definitions. A path from x to

y in a given graph is what intuition suggests, essentially a

SEQUENCE XgyX1seess

s X, of vertices such that x¢ = x, E

Xk Yy
If some of the

we do not insist that the direction is fran

and each pair Xj.;» X3 is joined by an edge.
edges are directed,

i-1
x; it is necessary to indicate which edge is intended in

the path.

Xj., to xi; moreover, if there are several edges between x
and
R tree is a graph in which, given any distinct vert
ices x and y, there is a unique path from x to y; eqguivalently,
a tree is connected (there is a path betuween any two vertices)
and contains no cycle (path with Xk = Xp» k > 0, not using any
edge twice). It can be shouwn, by successive deletion of edges
from cycles, that any connected graph contains a spanning tree,
that is a tree using all the original vertices. For example,
-the graph in Fig. 1(ii) is obviously connected; it contains

cycles such as 1231, and two of its spanning trees are shouwn
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[on. Tﬁe Cayley diagram T(Ff) of a free group F with respect
ﬁo a set of free generators is a tree: the "genmerating" prop-
.rty says that T(F) is connected, and the "free" property says
Ehat it has no cycles, Moreover, F acts by left multiplic-
stion as a group of automorphisms of T(F) and the action is
free (no vertex or edge is fixed by any nan-identity element

5f F). This property actually characterises free groups:

THEQREM: A group F is free if and only if it acts freely on
some tree.

Remark: The proof of the "if"™ part is non-trivial, but it
is possible to extract a reasonably simple account
from Sections 2 and 3 of the first chapter in [8].
The proof actually produces a set of free generators
for F. A key technical point is that given a span-
ning tree T, of the natural quotient graph T/G, there
is a subtree of. T which projects isomorphically onto

To -

An immediate pay-off is Schreier's subgroup theorem:

in Fig. 2.
“ - COROLLARY: If F is a subgroup of a free group F, then F is
S free.
I
Ay
1
[ e ] Proof: The theorem.ensures that Fo acts freely an some tree
T. Since F is a subgroup of Fo» it acts freely on
(i) (i1) the same T, and hence it is free.
FIGURE 2 X .
—s Remark s In the situation of the cerollary, cansider f as

In the last fifteen years, there has been a new and str-
iking use of graphs to illustrate the theory of group present-
ations, in particular the basic constructions such as free
groups and free products. This is the'Bass-Serre theory of
groups acting on trees,

book [B].

and the basic reference is Serre's

The starting point is the following easy observat-

acting of T(F,), and choose a spanning tfee Toe in
the Schreier diagram of F, with respect to F. Then
the free generaters for F produced by the theorem
are in one to one correspondence with those edges

of the diagram that do not belong to T,. Using this
fact, it is easy to establish the Schreier index

formula for the rank (number of Free generators) of F
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when the index |Fy :F| is finite. Morecver, there
is a link here with the classical approach to these
corresponds to a cert.

matters. The spanning tree To

ain Schreier transversai for Fg in F: choose as cosef
representative for a given vertex i the product of
the colours on the unique path in T, from 1 to i.

For example, recall thé'groups G and H used to illus-
trate the idea of a Schreier diagram in Fig. 1(ii).
If we interpret G as Fo/N, where F, is the free group
on a and b and N is the normal subgroup of F, gener-
ated by a’, b? and (ab)?, we may consider Fig. 1(ii)
as the Schreier diagram of F, with respect to F,
where F is the pre-image of H in Fg . If we choose
To as in Fig., 2(i) then the corresponding Schreier
transversal is {W,a_ia-lb); and since there are four

edges in Fig. 1(ii) that are not im T, we have rank
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the stabiliser of x (respectively y). We note that
ANSB = 1 by (i). A routine, if tedious, argument
shows that each edge = e‘is labelled by an alternat-
ing product of non-trivial elements from A and 8,
thus identifying G with the free product AX*B,

given G = A*B, construct T as follows:
the vertices of T are the cosets of A and B in G,

Conversely,

and Ag is joined to Bh if and only if Ag N Bh = ¢
It is clear that G acts on T by right multiplication

and that there are two corbits of vertices, so (ii)

holds. The standard properties of the free product

ensure that T is a tree and that (i) holds also.

A familiar fact follouws readily:

F = 4. JROLLARY: Let H be a subgroup of the free product G = A%B
» If no conjugate of H meets A or B non-frivially
What else can be studied in the graph-theoretical frame- then H is free.
work? By way of illustration, consider the following result.
roof: Let G act on a tree T as in the proposition. For
PROPOSITION: A group G is a free product if and only if there any vertex z of T the stabiliser G. is conj te i
ugate in
is a tree on which G acts (i) regularly on the G to A or to B according as z is ii the orbit of
it o
edges but (ii) not transitively on the vertices. A-cosets or the orbit of B-cosets Thus the h th
; " ypoth=-
esis of the corollary ensures that H N G, = 1; in
Proof: Assume that G acts with properties (i) and (ii) on other words, H acts freely on the vertices of T
o .

the tree T, and let e = xy be a particular edge in
T. Property (i) says that, given any edge f in T
there is a unique element of G which moves e to f;
we label f by the corresponding ge& G, so that e is
labelled by 1.

the same orbit as (that is, can be moved to) at leas!

It follows that every vertex 1s in marks :

one of x or y; but in view of (ii) there are then
exactly two vertex orbits, and the end vertices of

any edge are 1n different orbits. Hence, the edges

# & that meet x (respectively y) are labelled by the

non-identity elements of A = Gy (respectively B = G

Since H, being a subgroup of G, also acts freely an
the edges of T,

that H is free,

we deduce from the earlier theorem

(a) It is possible to produce similar 'special case'
treatments for free products with amalgamation and
for HNN groups; whether this is worth doing depends
on, among other things, the amount of time available

It might be argued that if there

is time for several special cases then one should treat

ghe_generalvstrpcture theorem of I.5 [6].

for the course.

However,
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1 feel that students should meet the various constr-

uctions separately in a first treatment; the general

theorem can follow if there is time - and a desire -
for it.
(b) It may be worth mentioning the somewhat surpris-

ing fact that the theory of groups acting on (infinite

trees is significant in the study of finite groups;

see, Tor example, Goldschmidt's article [3].

(c)
Theory see Cohen's notes [2] or the Scott-Wall art-
icle [5].
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AN _INTUITIVE PROOF

OF BROUWER'S FIXED PQINT THEOREM [N R®

Clanence C. Mornisontand Mantin Stynes?

Fixed point theorems play a major raole in general equilib-
‘ium theory. Brouwer's theorem is the most basic of these;
|t states that any continuous function mapping a closed bounded

sonvex set into itself must contain at least one fixed point

For a more topological account of the Bass-Serreii_e,, a paint that is its own image).

Elementary discussions invariably qive an intuitive prD;F
sf the theorem for functions of a single variable, as illustr-
ated in Fig. 1. In R a set is convex if and only if it is
an interval; thus a continuous mapping of the closed boundary

interval [xo,x;] into itself can be represented by a curve f.

Xy

x® L

45°

X

[P R,

I|>

FIGURE |

Since f connects the left-hand side of the rectangle to the
right-hand side of the rectangle, it is intuitively obvious

that f must intersect the diagonal of the rectangle at least

Reprinted from the Mathematics Magazine, Vol. S6, No. 1, January 1983.

We are grateful to the Editor of Mathematics Magazine for permission to
reprint it here.




- 54 -

once, and at this point F(x*) = x%, A bit more formally, if - 55 -
flxo) = xo and f(xy) = x1, then ¢(xe) = flxo) - xo > O and apping is continuous and maps the closed rectangle ABCD into
¢(x;) = f(x,)-x; <0. Since ¢ is continuous on [xos%xy], the For simplicity we denote the extended mapping by f and rep-
intermediate value theorem impliés that ¢ must assume the Valk;sent f by f(x,y) = (x',y') where
zero somewhere on the open interval (xg,x,), which proves the
theorem. . xt = glx,y)

' y' o= hix,y) (1)

An intermediate- or advanced-level student should be a bj

. 1 . | . ; .
street-wise and skeptical of the validity of demonstrations ﬂlth xx' & [xosxals yay'e [yosyals and with 9 and h contin

based on two-dimensional diagrams. The purpose of this noteious‘

is to demonstrate that the intuitive graphic proof generalizes

to three dimensions (i.e., to functions on R?) and can be mads Fig. 3 gives a three-dimensional representation with W

rigorous at that level and the rectangle ABCO in the horizontal coordinate plane.
gepresented above the two-dimensional rectangle ABCD is the X
EIJFCKLH. The sides EI, FJ, GK and HL

and FG all correspond to the interval

To begin, let W be any closed bounded (i.e., compact) Ccﬁhree dimensional box

vex set in R? and let f be any continuous function mapping W 2% well as EH, IL, JK

into itself. Since W is bounded it can be contained in a relxo’xl] Similarly, the sides EF, IJ, LK and HG all corres-
angle as shown in Fig. 2. We may now extend f to the closeg?ond to the interval [ye,y:]. The graph of g is given by the
B=(xp.3) C=(x,. 1) : surface MNOP which is restricted to the closed three-dimensiaonal

sox since x' is restricted to [xo,xi].

b

) Now consider the projection mappings Pxs Py defined by
a X = Dx(x,y)
W y = pylxsy) (2)

The graph of py, in Fig. 3 is the diagonal plane EFKL and the
intersection of g and px is the manifold RQ which projects into
the horizontal coordinate plane as TS. Since 081ther the sur-

face MNOP nor the diagonal plane EFKL have any rtips in them,

it is 1ntu1t1vely obvious that the intersection of g and py must

A = (xg, yo) D =(xy, y)
connect the face and back of the three-dimensional box and that
FIGURE 2 the projection TS connects opposite sides of ABCD. Further,
TS represents the points (x,y) in ABCD for which x' = x.  Sim-
rectangle ABCD as follows. Choose an arbitrary interior POlilarly, the intersection of h and Py projected to the coordinate

a in U and for each point b in the rectangle but not in v, plane will connect the left and right sides of ABCD as UV does

define f(b) to be the image of the point c at which the linein Fig. 3. This projection represents the points (xsy) in

through a and b intersects the boundary of U. The extendedapcp for which y! = y. Again, intuition tells us that UV must

intersect TS (at least once) and any intersection of UV and TS




FiGure 3

is a fixed point of f.

To make this demonstration rigorous, it is necessary to
prove that TS (or UV) actually connects opposite sides of
ABCD. As a first step we show that if Brouwer's theorem holds
for functions which are "very close" to f, then it must hold
for f itself. Let |’Q-r|| denote the usual Euclidean dist-
ance between two points g,T in R?. For any given €> 0, supp-
gse that there exists a cdht{ﬁhous function f*:ABCD -+ ABCD such
that ||F*(x,y)-f(x,y)||'§ ¢ for all (x,y) € ABCD, and such that
fx has a fixed point in ABCD. We claim that this property
implies that f has a fixed point in ABCD. Applying the prop-
erty, we can assume that for each n = 1,2,3,... there exists
a continuous function fn:ABCD -+ ABCD such that

HEnGoy)-fOGy) T s 5

for all (x,y) e ABCD, and there is a point L,& ABCD such that
fn(Zn) = 1. The compactness of ABCD implies that the seqg-
uence {Zn} has a limit point, Z%. We invite the reader to
show that Z*¥ is a fixed point of f.

It is thus sufficient to replace f by another function
which closely approximates f, then prove the Brouwer theorem
for the replacement function. The Weierstrass approximation
theorem (a generalized version is proven in {4, 8§36]; for the
specific R? case see [2, p. 187, problem 2]) yields, for a
given € >0, a function f = (?1,?2):ABCD + R? such that
[1f(x,y)-F(x,y)|]| = € for all (x,y) & ABCD, with f; and f,
polynomials in x and y. However f may give values lying at
a distance € outside of ABCD, so we must shrink its range sli-

ghtly. To do this, replace ?l(x,y) by

] Xo + X3
Xo + X ( filxy) - 2
— 5 + X1 = Xo)
Xy = Xo + 4€
and replace ?2 by a similar expression. A short calculation

shows that these new functions (which for simplicity we again
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call f, and Fz) approximate f and give us f = (f, ,f,):nBCOD =

To complefe the proof, we define ﬁ x = ? - .
interior of ABCD. » (x,y) 2 (x,y) y

Clearly h is continuous. Since Q(S) =0 = G(T), the inter-

" diate value theorem assures us of the existence of at 1
Now define-g on ABCD by: me . east

one point (x*,y*) on TS such that ﬁ(x*,y*) = 0 or {(equivalen-
8(xny) = B (xsy) - x | tly) fa (x¥,y%x) = y¥. Since all points (x,y) on TS satisfy
! é(x;y) = x, we have a(x*,y*) = x*, Thus there exists at least
Then f one point (x¥,y%) in ABCDJsuchthat (x*,yx) = F(x*,y*). Since
§ >0 on AB and § < 0 on CD (3) : FiABCD » W we must have (xfty¥)65 W, Thus (x*,y%X) is a fixed
. point of ?.
We must modify g still further so that its partial derivatives
satisfy certain conditions, while retaining property (3). It is well known that in the class of compact sets, the
First, on AD, y = y, is constant so on AD §(x,y) = §(x,y,) is fixed point property is not restricted only to convex sets [s,
Jjust a polynomial in x, By altering g(x,y) slightly if nec- f p. 91, It can be shown that if a set has the fixed point

essary we can ensure that g(x,y,) has no repeated factors. property, then any set to which it is homeomorphic also has

There are then no points on AD where G(x,y) and 38g(x,y)/ ax ' the fixed point property [5, p. 9]. This theorem can be used
vanish simultaneously. A further slight perturbation of 6

to prove that various plane sets with amoeboid shapes have the
will ensure that at least one partial derivative of § is non- fixed point praoperty. Our proof given above shows that any
zero at each point in ABCD where 4(x,y) = 0. This assertion

follows from Sard's theorem ([3], [6, Chapter 13, §14]; or for

a proof of a special case of this theorem which can easily be

bounded set S in R? having an interior point x such that each
ray from x has only one intersecting point with the boundary

of S has the fixed point property.
adapted to the present situation, see [1, p. 35]).

We can now proceed directly. ' By the implicit function ; References
theorem (see any advanced calculus book) the above condition ;
on 88/3x and 33/3y in ABCD guarantees that §7(0) is a simple f 1. M.5. Berger and M.S. Berger, Perspectives in Nonlinearity,
one-dimensional curve in a neighbourhood of each point on ? Benjamin, New York, 18968.
§7'(0). Consequently g~'(0) is a collection of simple curves, f 2. E. Isaacson and H.B. Keller, Analysis of Numerical Methods,
no two of which intersect. Wherever one of these curves inter-; Wiley, New York, 1966.

sects AD, our earlier condition on 33/8x guarantees that the : . .
3. A. Sard, The measure of the Critical Points of Different-

curve is not tangent to AD. B 3) and the 39/9x condition, .
9 y ( ; 9 iable Maps, Bull. Amer. Math. Soc., 48, (1842), 883-890.

the number of points in AD N @"‘(D).is odd, since at each such

point 9(x,y,) changes sign. Curves,which originate and term- 4. G.F. Simmons, Introduction to Topology and Modern Analysis,
inate on AD account for an even.number of these points so there | Mcbraw-Hill, New York, 1963,

must be a curve that has only one endpoint on AD. ~The other 5. D.R. Smart, Fixed Point Theorems- Cambridge Univ. Press,
end of this curve cannot be on AB or CD by (3), so it must join 1974,

AD and BC and we are free to label the endpoints T and S,
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THE _ANALYTICAL REFORM OF IRISH MATHEMATICS

1800 - 1831

N.D, McMillan

The Origin of the Dublin Mathematical School

The mathematical tradition established by the Dublin Phil-
osophical Society of Wiliiam Molyneux (Fig. 1) had a major inf-
juence on the character of mathematics in Ireland [1]. The
convergence of interests at the University of Dublin on spec-
ific aspects of mathematics, e.g. the theory of equations,
optics, potential theory and variational principles (2], and
the strong Irish tradition in statistics [3)] had their origins

in the interests and contributions of the members of the society.

W, Petty, Political Arithmetick (London, 1690).

STATISTICS F. Robartes, An Arithmetical Paradox Concerning the
Chances of Lotteries, Phil. Mag. XVUII (1693) pp.677-84,

CEOMETRY St. George Ashe; A New and Easy Way of Demonstrating
Some Propositions in Euclid, Phil. Mag. XIV (1684),
pp. 672-6.

0PTICS W. Molyneux, Solution of a Dioptric Problem, Biblioth-

eque Universelle et Historique, III (1686).

ENGINEERING W. Molyneux, 4 Demonstration of an Error Committed by
MATHEMATICS  Common Surveyors .....»Phil. Mag., XIX (1677) pp. 625-31.

W. Molyneux, Concerning the Parallax of Fixed Stars,
Phil. Mag. VXII (1693) pp. 844-9.

ASTRONOMY
J. Walley, Ptolemy's Quadripartite, {Dublin, 1701).
ACOUSTICS N. Marsh, An Introductory -Essay to the Doctrine of
Sounds, PHil. Mag. VIX (1684) pp. 472-88.
FIGURE1: Mathematical Interest of the Dublin Philosophical Soc-

iety Illustrated by Selection of Works.,
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"The 18th century began on a high mathematical note at the
University of Dublin with the first fundamental Critique of
Newton by George Berkeley. He began tentatively his critic-

ism of Newton's cosmology with hi's Essays Towards a New Theory
‘of Vision (1709) and ended forcefully in his apology for the-
ology, The dnalyst (1734) which pointed out the unsatisfactory
state of the underlying logical base of the Newtonian calculus
[a]. Newton had disguised the inadequate logical base of his
calculus by juggling away higher order terms which experiment
had shown to be extraneous. "The good Bishop" took issue with
_Newten (and Leibniz) demanding proof of the truth of the calc-
ulus as a representative of material motion, rather than a util-
itarian defence of the methodology whose inadequacies the foun-
ders of the calculus camoﬁflaged Ey a good deal of mysticism.
‘Berkeley was not the only man in Britain to criticize Newton

[5] and indeed in Dublin there were anti-Newtonians during this

period [6].

In the 18th century there was apparently little original
work in mathematics at the University of Dublin except for the
work of Hugh Hamilton (1729-1783) and Richard Murray { ? -

‘1799) which was to lay the foundation of the Dublin Mathemat-
ical School. Hamilton wrote the elegant work De sectionibus;
-conicis, tractatus geometricus (1758) which earned the foll-

owing accolade from Leonhard Euler:

"There are three perfect mathematical works: these are by

Archimedes, Newton and Hamilton."

-In addition he wrote The Analysis of the Infinifies (date unc-
‘ertain) and Lectures on Natural Philosophy (1766). Murray

was professor of mathematics from 1764 (two years after the
chair was established) to 1795 and devoted his energies to the
improvement of mathematics at the University of Dublin. From
his patient teaching arose a broader mathematical base in the
University and, in particular, during this period mathematics
became the most important single subject in the Fellowship
examinations which were then the only method of entry into this

academic world [7].
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Séégﬁnebﬁhé was strongly influenced by Murray was Matthew
Young (1750-1800) whose books such as An Enguiry into the
principal Phenomena Of Sounds and‘Musical Strings (1784) [8]
contained some original researches. However, Young's most
Significant contribution to Dublin mathematical research was
his role in the establishment of the Royal Irish Academy (9].
The Academy uwas dedicated‘to the development of new knowledge
in contrast to the Qublin ?hilosophical Society's commitment
to dissemination and diffusion of technical knouwledge. will-
iam Hales also wrote several books on mathematical subjects
(10] and his Analysis aequationium (1786) was complimented in
a letter from Lagrange. Hales provided a thoroughgoing att-
empt to defend Newton's fluxign notiom in his 4nalysis Flux-

jonum which he wrote after he had retired.

Young died leaving unfinished a work of great scholarship
on Newton's Method of Prime and Ultimate Ratios, Illustrated
by a Comment of the "Principia” [11]. The suppression of this
work was unfortunate for mathematics in Dublin. Apparently
it resulted from some feared heterodox doctrinal deviation by
the pious peclymath Young [(12]. As for mathematical deviation,
Rev. William Jones, the author of Essays on the First Principles
of Natural Philosophy, claimed that in Dublin there were math-
ematicians who kept guard for the system of attractions '"more
severely that Newton himself did and would not suffer a heretic

to land on their wast"™ [13].

The days of orthodox Newtonianism had, by the time of Jones!
comment, already passed in Dublin and the old University math-
ematical establishment was to be superseded by a nmew generation
of analytical reformers in the next period. The arrival of
John Brinkley from Cambridge as the new Andrew's Professor of
Astronomy in 1790 was the turning point. The growth of his
influence in Dublin progressively.subverted the old Newtonian

tradition.




The Gentlemen of Science, Rev. John Brinkley and Rev. Barthol-

omew .Lloyd and the Reform Movement

The Dublin School of Mathematics [14] was the creation of
In 1792 Brink-
ley became the first Astromomer Raeyal of Ireland [15] and,

two men, Bartholomew Lloyd and John Brinkley.

“while he waited patiently for more than a decade for the arr-
ival of the great Ramsden Circle for Dunsink, he prepared him-
self with magnificent thoroughness for his later parallax abs-
ervations with the Circle [16]. In 1800 he was already demon-

strating a great awareness of the work of Lagrange and Laplace.

It is evident that at the University of Oublin, Brinkley was

the catalyst for the reform of mathematics there since he was

the most senior University reformer in the period of great
political reaction following the Rebellion [17]. He was isol-
ated from University life because of his position at Dunsink
and it was perhaps because of this that he was able to take

the lead in introducing a knowledge of continental mathematics

'and physics into Dublin without raising a hornets' nest of
opposition in the University. He was the first Dublin prof-

"essor to use the analytic notation [18] early in the new cen-

“tury and this is of great significance in understanding the

"roots of the advanced analysis in Dublin.

The period 1798-1830 was an age of Tory hegemony at the
University of Dublin, but one in which there must have been
a working relationship existing between, on the one hand, the
Tory Provosts and Tory majority on the Board and, on the other
hand, the reformers. The reformers’ roots were the old Whig
‘establishment of the University. Lloyd, who was a member of
a third generation of mathematicians at the University from
this reforming tradition (Fig. 2), was evidently a trusted rad- _
jcal in that in 1813, when still a Juniar Fellow and comparat-
‘ively a young man, he uwas appoinfed to the Chair of Mathematics
in an unprecedented promotion. As a reformer, Lloyd was in

tune with the needs of his age and he has been credited with

the single-handed reform of the University's mathematical curr-
EF9¥UWAITS]AWPEEMFhiS is far from the whole truth. The morkingg
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5ut of the events leading to this important reform are far more
complex than this "lone crusade theory" suggests, and it will
require much patient scholarship‘to unravel it in any satis-
factory manner. On his promotion; Lloyd immediately intrg-
duced the works of Lacroixz Ppisson and Laplace into the meda]
examination [20], and more Significantly perhaps also into the
Fellowship examinations. He was .in fact continuing the reforn
of the mathematical curricqlum for undergraduates which had
already been initiated with the earlier introductiaon of math-
ematics and algebra [21]. To effect his reform, Lloyd chose
the method of writing a text-book., His Analytical Geometry,
a Treatise on the Application of Algebra and Geometry for Use
of Undergraduates at T.C.D. uwas published in 1815 seven years
after the appearance of another "reformed® classic, Brinkley's

Elements of Plane dstronomy.

The reform movement in Cambridge had begun with the work
of Robert Woodhouse, Senior Wrangler in 1795, who has been des-
cribed as the apostle of the analytical movement, since his
Principles of Analytical Calculation (Cambridge, 1803) had
~apparently little contemporary influence in Cambridge. The
‘official history of Cambridge Mathematics [22] dates the beg-
inning of the reform as 1812, with the formation of the under-
‘graduate "Analytical Society" of Babbage, Peacock and Herschel.
.These Cambridge reformers produced three publications in the
period 1813-1820 [23], However, William Whewell's Elementary
Treatise in Mechanics (1819) was, perhaps, more influential
in effecting this reform as he was appointed moderator of the
university mathematics examinations in 1820 [24]. In 1820
Woodhouse was appointed to the Lucasian Chair in the univer-

sity, copper-fastening the reform in Newton's university.

The real distinction between Dublin and Cambridge was due
to the positions of Lloyd and Brinkley as professors, while
the reformers at Cambridge were outsideAthe establishment bef-
ore 1820. The Dublin reformers had in addition published ref.

ormed text-books which, significantly, were not an uncritical

" has

f,% the book of Hales and Stack.
of
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ce ;f French work, but rather were works of scholarship
tan

to a recognizable extent -on a University of Dublin trad-
ed to

3 of mathematical text-books; thus Lloyd's was a replace-
:Pﬂ- rt of Hamilton's book and Brinkley's a replacement
fie, in P2 Brinkley had, in fact, obt-
ained the Andreuw's Chair in competition with Hales, although

1egs had strong support in his application from Fellows of
Hale .

the University.

The analytical notation was introduced into the curriculum
f'the University of Dublin in 1815, which was five years bef-
é

5 . Cambridge. .During this period Lloyd moulded the minds
ore

'f the leading undergraduates to produce an analytical school
of:

{n Dublin. This school arose because of Lloyd's excellent
geaching and boasted among its members some outstanding young
libnS- Lloyd'!'s first generation disciples included Thomas
Romney Robinson (1792-1852), Denis (Dionysius) Lardner (1793-
1856), H.H. Harte (1790-1848), Thomas Luby (1800-1870) and per-
haps Franc Sadlier (1774-1851) who later succeeded Lloyd.as
Those of this group were characterized by their

The Dublin ref-

Provost.
commitment primarily to educational works.
ormers seemed to be classic examples of consolidations in a

Kuhnian paradigm [25] and they boasted with their leaders an
impressive 1list of educational publications in the period up
to 1831 (Fig. 3).
of their mentor Bartholomew Lloyd to the Provostship in 1831

Their work was rewarded by the promotion

and the succession of Sadlier.

The reasons for the advanced position of Dublin with resp-
ect to Cambridge are simple to guess at, but almost impossible
to substantiate. Cambridge was the centre of the British New-
tonian tradition, while Dublin had a long legacy of critical
acceptance of this tradition beneath which there lay a Cart-
esian current [26]. The connections between Ireland and France
wvere very strong in the period up until 1798, and this uwas seen
by those of influence in England as being treasonable. The

principal reason for the advanced analytical position of Dublin




s D

1820 : T.R. Robinson, System of Mechanics,
D. Lardner, Cen;ral Forces

1823 : p. Lardner, Algebrajc Geometry,
1824 : p, Lardner, Elementary System of Mechanics,

D. Lardner, 4 Series of Lectures op Lock

1825 : p. Lardner, Treatise on Differentiaz and Integraj
Calculus,

1826 : 8. Lloyd, Treatise op Mechanica] Philosophy.
Brinkley Promoted to See pf Cloyne.

1827 : w.R. Hamilton becomes Astronomer Royal at age of 21

1828 T. Luby, Physical Astronomy,
D. Lardner, Discourse on the ddvantages of Natural
Philosophy (London).
D. Lardner, Treatise on Plane and Spherica] Trigon-
ometry (Landon),
D. Lardner, Firse Six Books of Euclid (Londan).
1829 : p, Lardner, Hechanics apg Pneumatics ang Newton's

Optics (SDuk).

1830 : H.H, Harte, The System of rhe World (2 Vols) (Lan-
don), Translation of Laplace's Systeme
du Honde, Later translates Laplace's
Mecanique Celeste ang Poissontg Mecani-

que.
D. Lardner and H. Kater, Treatise on Mechanics
(London). .
D. Lardner, 4 Treatise on fAydrostatics and Ppeumae -
ics,

1831 = 4, Lloyd, Treatise on Light and vision, (soux),
8. Lloyd becomes Provost of T.C.0. . .
H. Lloyg Professor of Nat. Phi),
Maderatorship Examinations (Honouts).inttaduced.

FIGURE 3: Chrbnology of Reform Text Books by Uniuersity af
. Oublin Authors Before 1831, .
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Society had been lost in 1830. The provincial scientific soc-
ieties, which had emerged along with the Mechanics?! Institutes
with the development of the industrial revolution, were largely
led by Newtonians such as Edinburgh's Henry Brougham and David
Brewster.

The process of professionalizatiaon in France [30] had been
associated with a political struggle for ascendancy betuween
"the savants" (theorists) and "manants" (experimentalists) and
by 1815 "the savants" had effectively established an ascendancy
over the "manants". in Britain the mathematicians had set
out to repeat this process by rendering the new Baconian scien-
ces mathematical. This threatened seriously to undermine ’
their dominance, as these new sciences appearsd to have at that
time destroyed the dominance of the Newtonian sciences. This
"analytical revolution' as it has been called was therefore
a refarm out of necessity for the University of Dublin, as it
was threatened by the emergence of a burgeoning Baconian inst-
jtute, the Royal Dublin Society and later the new Oublin Mech-
anics Institute from 1825. The paradox was that the practical
men largely defended the old Newtonian orthodoxy which the the-
‘oreticians, who had formerly been stoutly Newtonian, now att-

acked.

The emergence of a neu mathematical physics mhich developed
‘from this ideological struggle was consequently modelled on
the French !'physique'. That development has been recently
investigated from an English perspective and the study iden-
tified a strong Irish involvement in this process [311]. The
first group of Lloyd reformers at the University of Dublin with
the two leaders, effected a tharaugh going change in the old
Newtonian tradition of Dublin with their wide-ranging educat-
ional works. Pérhaps more significantly this prepared the
ground for a neu second generation of mathematiclans, who uere
differentiated from the first by their commitment to the gener-
ation of new knowledge. The change can be summed up by saying

that the ideals of the Royal Irish Academy in this period gained

‘the undergraduates body "were employed fathoming the mysteries
of Decimal Fractions" [33].
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ascendancy over those of the Dublin Society.

concluding Comments

The analytical reform carried through by Lloyd was a major
preak with the old tradition at the University of Dublin which,
as his disciple Lardner said, allowed "the study of mathematics
to leap a chasm of one hundred. years" faz]. Lloyd brought
into the centre of Irish mathematics not only an awareness of
the contemporary French works of Lagrange, Laplace, Poisson,
fourier, Monge, Legendre and Lacroix, but it also enabled the
publin mathematicians to assimilate the earlier work of the
18th century continental mathematicians such as that of Euler

‘and the Bernoullis.

An objective measure of Lloyd's educational reform was the
1822 undergraduate science Medal Examinations. These were
pased on Woodhouse's Trigonometry, Lardner's Algebraic Geometry,
Lacroix's Calcul Differentiel et Integral and Theorie des Lignes
Courbes, Lloyd's Mechanical Philosophy, Poisson's Mecanique and
selections from Newton's Principia and Laplace's Mecanique Cel-
este. This curriculum was followed by the best of the under-
graduates in the subsequent period. Before Lloyd's reform
In 1822 they boasted among their
number William Rowan Hamilton who was then pursuing his res-
earch into mathematical optics [34]. -Lloyd's principal ach-
ievement therefore was that his work opened up for the first
time in a British University the great range of continental
discovery and marked the introduction to these islands of higher
analysis. He led his disciples into an alliance with Cambr-
idge based mathematicians, initially on the mutual commitment
to what Babbage called the pure principle of "D-ism", that is
the Leibniz notation, against that of Newton which Babbage char-
acterized as the "dot-age", but later this alliance had other

major and far~-reaching implications for British mathematics.
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One of Lloyd's devoted admirers, J.H. Singer, delivered
the eulogy at his Memorial Service. This eulogy provided a

contemporary assessment of the significance of his reforms.

"Our University bears proof of the skill and prudence
with which he could adapt the institutions of venerated
antiquity to meet the Heﬁands of modern improvement, and
the rapid and accelerated advance which our Institution
and our country have made in all the various Departments
of Science is connected essentially with the name and

labours of our gifted and venerated Provost.®

The Rev. Bartholomew was undoubtedly the most successful
reforming "gentleman of science" Df his age and it was through
such reforms that Britain was transformed into a great power
of the 19th century. Mathematics had as part of this process
of modernization to be reformed tﬁ-meet the new demands of a
nation rapidly industrializing and widening continuously its
spheres of activity. The only way for Britain to meet the
challenge of the french in the early years of the 19th century
was by emulation and Lloyd was the man at this time who argan-
‘ised the stealing of the French cloths and thereby prepared
the way for the advance of Irish mathematics which began its
first real independent flowering in the period of his short
Provostship. The Dublin Mathematical School was Lloyd's cre-
ation although initially inspired by Brinkley. Brinkley was
also the man who provided the model for the work of the second
wave of Lloyd's reformers on whom the fame of Irish mathematics

still securely rests.
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TOWARDS MORE EFFECTIVE MATHEMATICS EDUCAT ION

5. Close

"The effects of our teaching programme are frequently

disastrous ---- The students have no sense of history of

They see no relationship

the subject, nor 1its origins.
They

between mathematics and the world in which we live.

are continually confronted with definitions and theorems

completely cut off from their historical and quite valid

origins ... But worst of all we kill any enthusiasm our

students have for the subject whi
sults from an apparently

(a]

ch we present as a logical

and pedestrian development of re

arbitrary base made up of some axioms."

"We have become convinced that a major contribution to

the difficulties that students are having (in first univer-

cs courses) comes from their grasp. Or
-—- We have discovered

sity Physi rather lack
of the fundamentals of mathematics.
g lack of the most elementary mathematical prepar-

an appallin
(10}

ation among the first year Science students.”

this most likely know what's wrong
The only

"You who are reading

with secondary school mathematics in Ireland.

swered now is: When is something

(3]

question you need to have an

going to be done about 1t?"

The above comments, made by authors of articles which have

e Irish
e serious problems in mathem-

appeared in recent issues of th Mathematical Society

Newsletter, suggest that there-ar

atics education at both the secaon

ing. Indeed, at second-level, .the GCovernment Department

of Education Syllabus Committee in

the existing syllabus.

Mmathematics is presently

reviewing This is probably as a
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1 below.

A diagram of the model is pres-

‘ented in Fig.
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cate learning

gorised under the headings: mathematical cantent,
environment, time for learning, results of learning, and, the
The problem of building mathematical and statisti-

ne the nature of the relation-

learners.
cal models to describe and exami
ships in this kind of theoretical model of the instructional
process has proved to be more complex and difficult than is

the case with models of physical and natural processes. The

al research literature 1is laden with reports of empir-
ated hypotheses find no

education

ical studies in which carefully formul

support in the data collected and analysed. On the other hand

there are also many reports of studies yielding clearcut find-

ings which can be used to develop more effective instructional

principles. In a joint publication of the Mathematical AssocC-

iation of America and the National Council of Teachers of Math-

ematics, £.G. Begle [(1] and his colleagues at Stanford compreh-
ensively reviewed the (largely pamerican) empirical literature

in mathematical education in which they categorised the find-

ings under headings somewhat similar to those of the above

1 would like to make some comments on aspects of the
g educational theory

model.
model based on interpretations of existin

and research.

Type of Mathematical Content: The selection of mathematical

content for cOUTSES is an aspect of mathematical education

which is often fraught with controversies and difficulties.

This is understandable when oneé considers the wide range of

mathematical topics available, the wide range of abilities of

learners and the rapid development of madern society. Current

educational theory suggests that logical structure, psycholog-

ical factors, and sociological factors should be given varying 1

emphasis and consideration in making content decisions for var-

jous groups of students. Nathematiciaﬂs would argue that as

one moves further up the mathematical tladder' the more import-

ant the logical structure of the content becomes. The Inter-

mediate Certificate course in geometry has come in for strong

criticism due to its apparent lack of structure and cohesive-

ness (31.
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In regard to the psychology of learning mathematics, it
can.be argued that, since mathematics is a highly structy
subject, serious effort should be made to choose, or an.'ured
?lace topics so that students or groups of stude;ts ianlze o
irly accurately located on a continuum of knowledge acquizi:é_
(or mathematical development) appropriate to the past achiev;Dn

-ments. . w? do not pay nearly enough attention to the notions_
of ?ontlnulty and of maintemance of acguired knowledge in th
bu;lness of syllabus/curriculum design. Many of the le 'E
problems in second and third level courses are probabl ”arzlig
fo the lack of a number of very basic prerequisite skiilze e
items of knowledge which could easily be incorporated int e
syllabi and given some attention (manipulation of algeb: ?
expressions and of quantities expressed in scientific noi;iion

a t i
re two often-mentioned ones at first-year college level)

ro a SOClOlOglCal viewpol t, the signlrlicance OT relav-
ance of a t P a g ec
opic should be anothe consideratio 1 ki C

isions about syllab
us content The
. relevance or signifi
gnificance

of a Fopic ?esides in its historical origins, in its useful-
vzeis‘ln.soclety, in its applications in technology and in its
t:gr;;j:caizz:ii;n Einally, I ?ould argue that, to some extent,
e e ot . given to l?glcal coherence, meaningfulness,
; : ce in syllabus design the more successful will stud-
ents be in learning the syllabus content. It might also be
added that there is a need to consider the interaction of co
tent sglection considerations and student characteristics N
For example, soﬁe studenté seem to:learn mathematics more'eff—

ectively when the relevance of the topic is stressed

Goals of i
of Instruction : The specification of the desired out-

comes of & course progra e 1 athematics should cons
/ ist o
somet ing ore concise and more ta glble tha a listi g o at

emati i
ical content topics. The inclusion of reference to the

le iti
vels of cognitive complexity in relation to each content
area

helps to ensure a balanced coverage of the mathematics

and . X .
fac%}}tgte§ lnst?UCF}Oﬂ and assessment by delineating the
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range of tasks or class of problems under consideration. An

example of a system of classification of levels of cognitive

complexity which was used in the International Study of Achiev-

ment is given in Fig. 2.

Caontent Areas

1. Knowledge of definitions,
notations.

2., Technigues and skills.

3. Translation of data.

4, Comprehensian.

5, Inuventiveness. J

FIGURE 2: Levels of Cognitive Complexity in Mathematics

The intersection of the cognitive level and content topic

defines the objective of instruction (e.g. knowledge of a tech-

nique for proving a particular theorem). A cognitive level -

content area approach to goal setting would particularly suilt

_ordinary level courses and college service COUTLSES in mathem-

‘atics. Another suggestion for teachers/lecturers on such

t they set objective questions and performance
This

courses is tha

standards that are within reach of most of the students.
suggestion 1is unlikely to be feasible in post-primary schools
e the public examination system is designed

of mathematics scores

mathematics wher
to achieve a nice 'normal distribution!

with means and standard deviations so as to facilitate grading

and selection and not such as to alarm the public.
on of a Curriculum and Examinations Board

berhaps

the recent formati

may herald a move towards a more beneficial approach to goal-

setting and assessment.

Type and Amount of Instruction Here we come to consider br-

tegories of variables which are at the hub of the
with the development of many

iefly the ca
mathematical education process.
alternative instructional models (eﬂg. dis;overy learning,

inductive thinking, inquiry training, advance organisers, to
name a few) and a burgeoning educational technol;gy (vis;al
projection devices, micro-computers, T.V. and videotape, progr-
ammed texts, copying devices etc.) one might have expected that
the traditional teaching approaches of a series of lecture/ ,
chalk and talk sessions and assignments to large groups of stud-
ents, would be on the wane: Not so, according to many obser-
Yers.. Although I cannot quote any Irish research survey it

is unlikely that mathematics instruction here is any less trad-
itional than in the U.S. where a 1977 National Science Found-
ation study of approximately 5,000 secondary school classrooms
revealed that the predominant instructional pattern is teacher
explanation followed by pupil work on class assignments [B].

It is probably fair to say that in our third-level colleges

and universities, apart from some advanced mathematics courses
the.predominant‘instructional style is still that of lecture ’
serl?s and occasional seminars. Such an inflexible and unres-
ponsive learning environment promotes mediocre learning and
poor study habits at all levels of mathematics education. A
number of educationists [9] argue that with the advent of comp-
uter-based education the opportunity will shortly exist to pro-
vide students in many student areas, including mathematics,
with a learning environment in which (1) they have much more
Tore control over what they learn, and the rate at which learn-
ing material is presented and, over the time of instruction

and assessment, (2) they obtain better and more regular feed-
back on performance. The instructor will be freed to do hig-

he
r level work such as course development and management, Indiv-
idual consultation, group discussion, etc.

Characteristics of the Learners : It makes good sense in prov-
iding mathematics courses to take account of individual diff-
érences. Many pupils come to mathematics courses already know-
ing quite a lot of the content to be learned, others come to
mathematics courses without various prerequisite mathematical
concepts and skills. Such differences can be easily accomod-

ated in instructional provision but are often ignored. Other
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individual differences which are related to mathematics perfarm-
ance, such as spatial and logical reasoning [8], cognitive
style [5], and internal structure of mathematical knowledge
[2] are less easily accommodated but may, with further invest-
igation, become more accessible variables.

In conclﬁsion, I would suggest that although the provisiaon

of mathematics education is a complex process, there is scope

for substantial improvement through changes in instructional

variables such as those described above, a willingness to try
new approaches, and a cooperative spirit among mathematics

teachers at primary, secondary and third levels of education.
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COMPUTERS IN THE TEACHING OF MATHEMATICS AT UCD

Colin D. Walten

In common with many other university mathematics depart-
ments, a considerable portion of our effort is involved with
service teaching of first year courses. Much of this cons-
ists of rote technigues such as solving linear eguations,
inverting matrices, differentiating polynomial functions, and
curve sketching of rational functions. These are all, with
more or less ease, amenable to programming as tutorial sessions
on a computer. The advantages are clear: a uniform procedure
is taught to everyone, and each student can practice as much
as necessary whenever he wishes. In this way the tutorial
system can be extended, less dependence need be placed on tut-

ors, and some formal tutorials can be replaced by sessions where
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groups of students use the computer while the tutor gives indiv-
idual help. This is all at essentially no extra cost to the

Colleqge.

Whereas teaching softuware does exist at school level, it
is extremely difficult to find good university level programs.
The interactive nature of such programs is often limited to a
choice of several options and, after a selection is made, the
problem is then completely solved without further assistance
from the student. One would prefer at every possible oppor-
tunity te ask the user to think about what step should be done

"next and let the machine perform the requested task, adding
comments on the choice.

There is the apparently opposing desire to avoid any req-
uirement for introducing special notation, teaching programming,
or knowing the operating system. In practice, this means a
student can only be asked either to choose from a set of opt-
ions or type in a mathematical expression in its usual form.

It is catering for this latter possibility that makes good prog-
rams exceedingly large: too long for most micros and very time-

Eonsuming to write and to make uwork correctly.

: At the present time we have two such programgﬁ one for
solving linear equations and the other for calculating determin-
ants. In both cases the user may enter his own problem or have
the machine generate one for him. He then types in elementary
row {or column) operatiaons until the conclusion of the problem,
with a remark about his progress being made at most steps.

Flow charts outlining each program are given in Figs 1 and 2.

As exemplified by these diagrams, all algorithms can be desc-
ribed using a directed graph, each node or vertex correspond-
ing to a step, which, in a program, becomes a block of state-
ments. The most natural size of step for these programs is

to take a step as consisting of one request for input from the
student together with the subsequent calculations up to the

next request.

FIGURE 1:

First none Number of
Equation? Equations?
. Number of
Next Equation?
l 9 on Variables?
I
none
Print Augmented generate H
Matrix eguations) omogeneous?
—
/ suitabl
l Row operation? % Sint e>' Rank coefficient
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ppsieny form Rank augmented
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<
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N Solution?
> .
homogeneous
case . -

Dim. of Kernel? Next solution of
: > homog. egns?

I

none

! ! | Restate problem
: : Stop J < and solution

Sketch Flow Chart for "Solving Linear Equations”
Program




none
i ? . .
First Row? Matrix size?

Next Row?

generate
remaining
rows
1f Conclude
-—}—{&ow/Col operation? determinant
d
possible

Change of Coefficient? ‘ Stop l

FIGURE 2: Sketch Flow Chart for "Calculating Determinants”

Program

fach request from the computer can be answered either by
an appropriate reply or one of a small set of letters which
allow the user to move backwards or forwards through the exer-

cise at will, ask for hints, or recap on the current state of

the problem. These extra chaices are as follous:
H (= Help) produces this list of letters,
F (= Foruward) gives the answer to the current guestion
and asks the next,
R (= Reverse) moves back to the previous questian,
C (= Current) reproduces the present state of the

problem with the current question,
I (= Info;mation)giues a hint to answer the present gues-

tion,
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g (= Quit) stops the session.

In particular, Dy repeatedly pressing F the student 1is able
to obtain a complete worked exampie. This means that the pro-
gram could be used before the material is covered in lectures.
By pressing R, he can return to the previous step and make a
different choice instead. The letter C is to ensure that the
student is ablé to have sufficient information on the screen
to answer a question; intervening hints or comments may have

scrolled the material out of sight.

Expansion of such a service would obviously benefit stud-
ents. The problems seem to be twofold. Firstly, users need
a directory oﬁ a computer which allous interactive work. Res-
trictions on the number of terminals and on CPU time mean that
careful scheduling of tutorial sessions is required. One sol-
ution is to have a login command file which logs the user of f
immediately if it is the wrong hour of the week and otheruise
runs the program, with an automatic log-off when the program
stops. This avoids any requirement to know about the system.
However, examination time revision could certainly result in
greater use of the programs to the detriment of the machine's
performance: this is a problem of which we have no experience

as yet.

The other main problem is with extending the software.
The language used in the present programs is Basic, chosen bec-
ause of the text editing facilities and the hope of using them
on a microcomputer. A structured language such as Pascal
would have been more appropriate because changes would be eas-
ier to make, existing subroutines could be used in new programs,
and other authors might have a hope of adding to the existing

programs.

Qverall, many man-years of work are required to extend this
to cover most first year material, probably several mathemat-

icians directing some competent programmers.
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It seems clear that funding for such a project would reap
as benefit an improvement in our teaching so that the country
would produce, for example, better engineering students and
more capable scientists. At any.rate the increasing abundance
of available computer time is still something that we are only
just beginning to appreciate and there is now a need for prog-
rammers as "laboratory technicians", not just in computer sci-

ence departments but also in mathematics departments.

Depantment of Mathematics,
Univeasity College,
Dublin,

X While the author is on leave of absence at the University of East Anglia,
.Normich, copies of the programs are available from Dr J.B. Quigley, ‘
Mathematics Department, U.C.D., at a cost of £30 to cover the magnetic

tape, packing and postage.
Minor modifications will be necessary if DEC Basic is not available.
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BOOK REVIEW

"SINGLE-VARIABLE CALCULUS"
By Robent A. Adams

Published by Addison-Wesley, 1983, £19.95 (sterling), 590 pp.

It must be a daunting task to set about writing a 600-
page text book. It could be that the author wishes to intro-
duce to a wider audience material not available in book form:
however, in the case of a calculus text, a new author must
search for new .approaches, which will bring a greater unity or
clarity to the subject matter. In the past twenty yeérs,
calculus texts have grown considerably in size (satisfying
logistic growth rather than exponential growth, I hope), the
increase in size being partly due to increase in page size for
clarity in reading, but also partly due to additions of appen-
dices to make each new edition more comprehensive. In the
preface of Single-Variable Calculus, Professor Adams claims
to have produced a book which "is not as massive or bulky in
appearance as many other books available in recent years."
Although this is certainly true, measuring 73"x 9%"x 13" and
weighing 2% lbs it is in no way a pocket calculus. The aut-
hor is able to keep the number of pages below 600 because he
regards calculus of several variables as suitable for a separ-

ate text (perhaps, he is writing a sequel himself).

Single-Variable Calculus is primarily designed for a tuwo-
seémester course for science and engineering students. In
Chapter 1, Functions, Limits, Continuity, the author introd-
uces the e~ § definition of a limit but relegates the proofs
of the results about limits ‘and continuous functions to an
appendix. The brief treatment of inequalities I found uns-

atisfactory but the inverse of a 1-1 function is introduced

without the confusing terminology of injections and surjections.
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Some new ideas appear in Chapter 2, Differentiatiaon: Def-
inition, interpretation and techniques. A worked example
brings out the idea of a cusp and the modulus function [x]| is
differentiated as sgn x. Both these ideas could give rise
to interesting new problems in later chapters but unfortunately
the opportunity is not taken. In this chapter, the author
also introduces antiderivatives, indefinite integrals, differ-
ential equations and initial value problems. This is cert-
ainly -a change from the traditional treatment. It appears
to succeed but for those who teach differentiation then teach

integration it may be difficult to change habits of a lifetime.

Chapter 3 is devoted to teaching The Elementary Transcend-
ental Functions. This is done at this stage so that these
functions can be utilised in the next chapter. Interestingly,
the author gives the pronounciation of 1ln as 'lawn' but gives

no guide as to how to pronounce sinh, tanh etc.

Chapter 4, Various applications of Differentiation deals
fully with the search for local maximum and minimum points by
noting that these can occur at critical points, end points and
singular points. Systematic procedures are given for solving
Optimisation and Related Rates problems which end with the
sound piece of advice "Make a concluding statement ansuwering
the question asked." My only quibble with this chapter is
that in treating Newton's method it is good practice to show
how the calculations can be laid out neatly in tabular form.

This is not done.

The smallest éhapter, Curves in the Plane, consisting of
optional material, is followed by the longest on integration.
A list of 20 integrals is given that the reader is told to
memorize, undoubtedly another piece of sound advice, although
certainly frowned upon by most Irish secondary school teachers.
One of the handiest rulesof integration is

j 210 dx = 1In f(x) + C.

fx)

No mention is made of this: has it gone out of fashion?

The standard applications of integration are covered in
Chapter 7, viz. Volumes, arc length, surface area, center

of gravity all within the limitations of one variable calculus.

Ue must wait until Chapter 8 on Infinite Series to meet
those dreaded words "the proof is left as an exercise.® Apart
from an unusual way of proving lim x" = 0 if ]x] <1, the treat-
ment of infinite series is good with a section on "Estimating
the sum of a series™ which other calculus authors should cons-
ider adding to their next editions. The book concludes with

a short chapter on Pgwer Series representation of functions.

Interspersed throughout the text are more than 2000 prob-
lems: the vast majority provide drill in basic techniques but
there are also a number of more interesting and harder aster-
isked problems to challenge the better student. Solutions
of odd-numbered problems appear at the end of the book.

Overall, the presentation and layout of the material is
excellent, up to the high standard one has come to expect from
Americal text books. With a first edition, there is always
the problem of errors and misprints. Although the author does °
suggest that these have all been removed a number of mistakes
remain. These are mainly of a minor nature although the sta-
tement of Theorem 2 of Chapter 9 and a subsequent statement
are false, and there is a mistake in a worked problem on

L'HOpital's rule.

A modern trend, of which I wholeheartedly approve, is ta
give biographical details of those whose names appear in the
text (one book recently even had photographs and half-page
biographies of the principal workers in the area). I cert-
ainly feel that such (trivial?) details make a text book much
more friendly. Perhaps, in America the history of mathematics

is sufficiently covered in other courses but here in Ireland
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we seem to ignore these matters. I would certainly welcome
such additions to this text.

In the Preface, the author argues for the need for a sep-
arate text on calculus of several variables, Personally, I
am not convinced, for economic as well as other reasons, by
this argument. However, for thase who feel the need for a

text on Single-Variable Calculus I can certainly recommend this
book.

G. Lessels,
Depantment of Mathematics,
National Institute fon Highen Education,

Limenick,

"TOPOLOGY AND GEOMETRY FOR PHYSICISTS"

By Chandles Nash, St, Pataick’s College, Maynooth, and Siddastha
Sen, Tainity College, Dubiin
Published by Academic Press, London, Landon, 1383, Stg. £31.50,

ISBN 0-12-514080-0
MATHEMATICAL PHYSICS YOUR MOTHER NEVER TAUGHT YOU

Mathematical Physics as a discipline has been defined and
dominated by a single book in a way that no other field of sci-
ence has been. This book is, of course, Methods of Mathemat-

ical Physics by Richard Courant and Oavid Hilbert. Courant

-and Hilbert first appeared in Germany in 1924, and has been

continuously available in a sequence of different forms ever

since. It is still in print, the two volumes costing well
over £100.
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The mathematics in Courant and Hilbert, despite some mod-
ern touches, has a curiously nineteenth century flavour to it.
The book is focused on differential equations and so naturally
deals with continuous functions. ® The way it links up with the
discontinuous nature of much of modern physics, especially quan-
tum mechanics is via the eigenfunction/eigenvalue approach where
each individual eigenfunction is a solution to a differential
equation and so inherits its differentiability properties from

it, but the eigenvalues themselves tend to be discrete.

The only significant branch of Mathematical Physics which
stood apart from the Courant-Hilbert approach was group theory,
which used the discreteness of the group elements to model nat-
ure. Thus, ten years ago, if one had a good grounding in both
Courant/Hilbert and some group theory, all one needed was a
smattering of physics and one could hold one's head up as a

mathematical physicist in the fanciest of company.

This golden age has completely vanished. In the last
decade there has been a flood of new ideas flowing into physics
from mathematics especially in geometry and topology. For
example, a unit cell in a crystal is a three-manifold without
boundary. This means that it is trivial to show that the
total charge in each cell must be zero. 0f course, this is
not a new result, but it is a very simple example of how even

elementary topology can and should be used.

The book under review is -an attempt to codify and make
available to the ordinary physicist the key ideas of modern geo-
metry and topology. It assumes no previous knowledge, and so
starts off with two introductory chapters, one on general top-
ology and one on differential geometry. Then come four chap-
ters on homotopy, homology and cochomology. The last of the
mathematical chapters is a long (B0 page) chapter called
"fibre bundles and further differential geometry". The last
three chapters apply the previously developed tools to a range
of physical problems, Two of these are fairly short and deal

respectively with Morse theory, which is applied to phase tran-
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sitions in crystals, and the theory of defects.

P;ide of place, naturally, is given in the final chapter
to Yang-Mills theory. Yang-Mills theory was invented thirty
years ago but. was virtually ignored for twenty years. How-
ever, in the last ten years there has been an enoImous invest-
ment in time and effort by the physics community to understand
Yang-Mills theory and much of the recent advances in element-
ary particle physics have come from this work. Yang-Mills
theory is what physicists call a gauge theory, which means that
it has a natural geometrical structure. It is the attempt to
unravel this geometrical structure that has forced physicists

to learn geometry and it is the prime motivation for this book.

In their preface, the authors claim that they have attem-
pted to strike a balance betuween rigor and clarity. I do feel
that they have done this admirably. At no point during my
reading of the book did I feel that the authors were sliding
past me, or trying to persuade me of something, rather than
proving it. At the same time, they had no hesitation in prov-
ing anly part of a theorem rather than slogging through the
whole thing. This means that at svery stage in the book, the
reader should have a very good idea of the difficulties encoun-
tered and of the techniques used to overcome these, without
having to absorb a mass of material. This, I feel, is a great
strength because it generates a feeling of confidence in the‘
reader, which enables him or her actually to apply the ideas,

without feeling permanently ill-at-ease.

On the other hand, this is not a book for bedtime reading.
In the 300 pages is an enormous range of new ideas; not only

new ideas but a new vision, a new uway of seeing things. This

sort of shift is not something that comes easily. When I first

got the book, I was interested in learning something about Morse

theory and so immediately turned to Chapter 8. I gave up very

quickly. The whole structure of the book is pyramidal. Each

chapter depends on the ones before, with none of the little ref-

reshers which help reinforce the new ideas. It might be worth-
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while for the novice, before plunging in, to read something
easier, for example Geometrical Methods of Mathematical Physics

by Bernard Schutz (Cambridge University Press, 1880).

The authors were not well-served by their lay-out man.
In many places throughout the book relevant illustrations are
misplaced. The printing, on the other hand, is very good,
with very few mistakes in spelling or grammar oTr, even moTe

importantly, in the eguations.

In conclusion;, I would love to teach a course with this
book as a text. Both I, and the students, would learn a great
deal. I can recommend it unhesitatingly. I am sure that my

éopy will be read and re-read in years to come.

Niall O'flurchadha,

Expenimental Physics Depanimeni,
Univensity College,

Conk.




PROBLEMS

Jim Stack from Waterford R.T.C. sent a solution to the
parkihg problem (Issue No. 8) which arrived just too late for
Issue No. 8. His solution was similar to the one given last
time and he mentions that the idea is to be found in an article
by D.E. Knuth ("Computer Science and Its Relation to Mathemat -
ics", Amer. Math. Monthly, April 1974) which discusses the ret-
rieval of information from memory locations, using the analogy

of musical chairs instead of car-parking.

Now for solutions to the most recent pToblems.

1. The Plank Problem. Does there exist a positive integer

n such that a closed disc of diameter 1 can be covered by feuwer
than n planks of width % ?

To see that the ansuwer is 'no', recall that when two par-
allel planes meet a sphere of diameter 1 the area between the

planes on the surface of the sphere is wd, d being the distance
between the planes.

If the original disc is taken to lie on the equator of a
sphere then the vertical projection of any plank of width %
meets the sphere's surface in a region with area at most %.
If a collection of planks covers the disc then their vertical
projections cover the surface of the sphere and so at least n

planks are required.

Remark. The "generalised plank problem" deals with convex sets

with diameter 1 (i.e. the smallest door they can be pushed thr-
ough has width 1), and the planks need not have equal widths.
It is to be shown that the sum of the plank widths is at least

1 and this was done by Bang, but I'm afraid I've mislaid the
reference.
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2. The PlanetAProblem. A finite number of equal spherical
planets are in outer space. A region on the surface of one

of the planets is called hidden if it is invisible from any of

the other planets. Find the total area of the hidden regions.

In fact their total area is equal to the area of the sur-
face of a single planet. This is much easier to visualise

than to write down - but here goes.

Suppose that the planets have radius 1 and let p ,...,pn

denote their centres (I shall identify positicn vectors and

points throughout). Let So = {u:zlu] = 1}so that
S; = {p; + uslul =1}, 1= 1,000,
n

denote the surfaces of the planets. Alsoc let S = il:l15-l, and
for each u& Sp put

[ul = {p; +u : i=1,.0.50)a

The proof consists of noticing the following facts.

(1) The set € = {y : p; + u is visible from p5 + u, scme i = j}

lies in a finite union of circles on S, and so has area zero.

(ii) A point p€ S is hidden <=> there is a plane m through p
such that S\[p} lies entirely to one side of m.

(iii)For any u € S, there is a plane 7 orthogonal to y and a
non-empty set F& [H] such that SF lies entirely to one side
of 7. 1f |F| > 1 then u€ E and if |F| = 1 then F = {p]} where
p is hidden.

(iv) Each set [u] contains at most one hidden point. Thus,
for each u& S, E the set [u] consists of exactly one hidden

point and the proof is complete.

Remark. It looks as if the result remains true when the sph-
eres have different radii, if we replace "areas" by "sclid

angles".
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3. Group Theory Problem from September 1883 Issue (page 74).
Let n be a natural number. A group G is said to be n-Abelian

if (ab)™ = a™s" for all a,b € G. Find all the values of n for
which ’

(1) G is n-Abelian implies that G is (n+1)-Abelian.

(1i) G is n-Abelian implies that G is (n-1)-Abelian.

Solution (i) G is n-Abelian implies that G is (n+1)-Abelian
if and only if n = 2 or 3.

Proof Clearly G is 2-Abelian if and only if G is Abelian.

All groups are 1-Abelian, so G is 1-Abelian does not imply that
G is 2-Abelian. Also trivially if G is 2-Abelian, G is 3-
Abelian.

Now assume that G is 3-Abelian. Then (ab)® = a’b?®, so

by cancellation (ba)?.= a?b? for all a,b € G. Then

(ab) = [(ab)?]?® = (b%a2?)? = a"b", so G is 4-Abelian.
Next assume that n > 3. We claim that for each such n there
is a group which is n-Abelian but not (n+1)-Abelian. Let G
be a non-Abelian group of exponent n-1. Then (ab)n-1 -

an"='un-1 aad (ab)? = ab = a™w", for all a,b G. Thus G is

(n-1)-Abelian and n-Abelian. If G is (n+1)-Abelian, then G
is k-Abelian for three consecutive values of k, so by a well-

known result, G is Abelian, a contradiction.

(ii) The above example shows that G n-Abelian implies G 1is

(n-1)-Abelian only in the trivial cases n = 2 and n = 1.

Just one new problem this time from me:
Problem. For 1 s p s 2 show that ' -

(1+x2)P = 1 & (2P - 2)xP + x 2P, «

v
o
.

What happens for other values of p ? i

;I
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This inequality (whiech I learnt from Jim Clunie) is related to
a problem in P spaces posed by Finbarr Holland. It is a very
special case of a conjectured inequality in n variables, which

I'1l say more about next time.

Finally, a short test on Linear Analysis and Ring Theory

from Robin Harte.

Problem 1 Supbuse T:X + 7 and $:Y + I are bounded linear map-
pings between normed linear spaces, and write row(T,S) for the

mapping
(x,y) -+ Tx+Sy ¢ XxY + Z.

(a) If T and S are bounded below and row(T,S) is one-one, does
it follow that row(T,S) is bounded belouw?

(b) If @ » 0 and B > 0O are such that, for each x,y © X,Y,

Hxtl sallt<]} ang flvll s 8lisyll

and if row(T,S) is one-one, does it follow that

max( [l Tyl ) = [laTx + BSy[] 2

Problem 2 Suppose T:X - Y and S:Y -+ Z are bounded linear

mappings between normed linear spaces:

(a) if ST is one-one, T is bounded below and S is relatively
open, does it follow that ST is bounded belouw?

(b) if o > 0 and B > 0 are such that, for each x,z&€ X,Z,
[1x]] s a]}Tx]| and z€ S(Y) = z€ {Sy:|vll =8llz]|,

and if ST is one-one, does it follow that ST is bounded belouw?

Problem 3 Suppose A is a ring, uithH identity 1, and a;, a,;
b,, b,& A satisfy

does it follow that aza)ycaza; = azai, with possibly c = byby ?
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Problem 4 Suppose A and B are rings with identity 1, and sup-
pose that T:A +» B is additive and satisfies

T(1) =1 and T(A™') &€ 8-},

where A~™' and B~' are the groups of invertible elements in A
and B. Does it follow that T is multiplicative? Does it at
least follow that T has the Jordan property

T(a,a,+a;a,) = T(a,)T{a,) + T(a,)T(a,) 7

Problem 5 Suppose A is a ring with identity, and write Anxn
for the matrices over A. . If ae Anxn has mutually commuting

entries aijfi A and a left inverse b € Ay ns must its determin-

ant |a] have a left inverse in A?

Phil Rippon,

Faculty of Mathematics,
The Open Univensity,
Milton Keynes.
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A_SHORT DICTIONARY OF MATHEMATICAL TERMS

Des MacHale

As a young graduate student I was frequently perplexed by
certain words and phrases which cropped up again and again in
the research papers which I attempted to read. Conventional
Mathematics dictionaries gave me no help whatsoever, but exper-
ience has since taught me the true meaning of many of these exp-
ressions. For the benefit of those who find themselves in the
same position, I offer a selection, in the hope that it will
stimulate others to contribute to this sadly neglected area of

mathematical education.

1. The proof is Left as an exencdise: I've lost the envelope
on which I jotted this down, but it seemed reasonable at

the time.

2. While the nesulits of Holland ane nelatlively deep: Holland

once mentioned a paper of mine in his references.

3. Foamal Process: 1 can't understand this for the life of

me, but it seems to work.

4, By fan the most significant nesudis in this field are due
to Hunley: Hurley is likely to referee this paper.

5. I wish to thank the nefenee for a numben of useful suggest-
Zions: The old meanie cut me down from tuwenty pages to a

miserable four.

6. While onfy pantial nesults have feen obfitained: I1I've made
no progress at all with this problem but I figured I could

get at least one publication from it.

7. Il is well known thet: 1'm not guite sure how to prove
this and I'm.hanged if I'm going to the trouble of finding

out who first discovered it.
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8. Hante (onal communication) has shown that: I cornered him

and bored him to tears during a coffee break at a recent to.a distinguished journal like ours.

conference.

21. Some of his nesults ane in conflict with ouns: The guy's

8. A straighiforwand calculation gives: A very difficult cal- crazy. SL(2,p) is an obvious counterexample.

culation, which took me the best part of a week, gives. . '

. ' 22. Da. Fitzpaiadick has kindly poinied out an earon in Lemma 3
10. Without Loss of generclity: 1 can't handle the general Why doesn't that **¥*¥ mind his own business.

case at all,
23. I wish to thank my supervison foa his valuable assistance

11. Which completes the proof: \Which completes the proaf, I in the prepanation of this papea: 1 saw him once in the

hope. distance at a conference.

12. Evidently, clearnly, obviously: Maybe.

13. Using a deep nesult of Veanon: \Vernon's work is completely
beyond me, but I know a useful theorem when I see one. Depantiment of flathematics,
Univensity College,

14. An intenesting companison might fe made fetween the present Conk

nesultls and those of Banny: There is na connection at all,

but his name looks great in my references.

15. On pseudo-compact semiheaps with involution I: I hope to
get at least four papers out of this useless and obscure

topic.

16. This prcélem ({5 of great theonetical significance: I1'm the

only one who is interested in it or knows anything about it.

17, 1 wish to thank Miss Sheehan fLon hen patience and excellent
typing: She has threatened never to type another word un-
less I put this in.

18. I wish to thank Dar. Seda for some valuwlle suggestions:

All the ideas and work are due to Dr. Seda, my supervisor.

19. It is natural to ask the question: One of my research

students just has.

20. We ane soany that due to fLack of space we cannot rublish

youn anticle: Some peaple have a neck sending such rubbish
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CONFERENCE_ANNOUNCEMENTS * FRIDAY 30 MARCH :
9:00-10:45  SESSION THREE
' TATISTICS IN IRELAND
FOURTH CONFERENCE ON APPLIED S ‘ 8. Maximum Likelihood Estimation in S. Gardirer (Qus)
This conference will be held at Kilkea Castle Hotel, ( . Electrophoretic Studies
K M h 29-30, 1984. i 9. Application of a Special Case of D. McSherry (QUB)
Castledermot, County Kildare on Marc i ANOVA in the Testing of a Stat-
? istical Information System
f 10. The Application of Psychological P. Whalley (OU) !
CONFERENCE PROGRAMME ’ Data to Multivariate Analysis
! 11. The Influence of Measurement E. Gillespie (UP)
‘ Errors in Multivariate Analysis
THURSDAY 29 MARCH L

10:40-11:10 Refreshments
12:00- 2:00 Registration and Lunch

11:10-11:55 The Role of Statistics at Guinness C. Smith Cui
. i A. Reynoldgf SHinness
2:00- 3:45  SESSION ONE ) ¢
. ; . Uco ;
1. Design of Model Discriminatory A. Dunne ( i
Pharaacokinetic Experiments L. Lacey (May & Bitzg . : :
‘ 12:00-12:50  SESSION FOUR |
2. Practical Problems in the Statis- G. Horgan (7CD) i 12. A New Comtinuous Multivariate A, Raftery (TCD)
tics of Image Processing ~ Exponential Distribution with
3. Maximum Likelihood Discriminant J. Haslett (TCD) : Applications to Reliability,
Analysis on the Plane Using a Computgr Breakdowns and Data
Markovian Model of Spatial Context Analysis
_Mapping of the Census of A. Horner (UCD) 13. A Sequential Design in Attribute A, Yazdi
. %gﬁggziiurzﬁpStgtistics J. Walsh (Carysfort) Testing M. Khan (ksu)
3:45- 4315  Refreshments ! 1:00- 2:30 Lunch
: t- T.P. Linehan
:15- 5:00 An Introduction to the Cent;a} Sta .
4ie istics Office and Its Activities (Director, CSO)
2:30- 3:45 SESSION FIVE
14, Does Random Sampling Affect A. Unwin (TCD)
. L Irish Elections?
. . PSSTON :
5:10- 6:25  SESSION TWO N A. Moran (UCC) ] 15. Non-Parametric Regression D. Barry (uUCC)
ards .
S, Marks and Stan © o Puil Active O, Egan (ERC) 16. Bootstrapping a Regression G. Kelly (ucc)
5. Teacher Assessment 0O up - . Equation
ity: A Regression Model
7. Some Uses of the Micro-Computer in E. McEntee (UP) 3:45- 4315 Closing Remarks and Refreshments
the Teaching of Statistics |
§:25- 7:00 Demonstration of Computer Equipment The Conference Fee of £60 covers meals and lodging plus the ‘
B8:30 Dinner " Registration Fee. In addition to a display of computer equip-

ment, it is hoped to have an exhibition of some statistical
books.
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for further details, consult: ,i' Further contributions are sought and persons wish .
; shing 0

speak are i
asked to inform the organisers as soon as passible

Da P.J. Boland,
Depantment of-llathematics,
UCD, Belfield, the
Dublin 4. (

! and

A report of the conference, including short éccounts aof

i
[
1

I

papers presented, will appear in the journal Linear Algeb
Its Applications. e

All those who expect to attend the conference are reques

ted to inform the organisers without delay.

MATRIX THEORY AND ITS APPLICATIONS : | fee will ] The conference
f i be £8.00, which will include the cost of refreshments

A conference with the above title will take place at
University College Dublin on March 22-24, 1984. ) !

i Organisers: 7.J. Gaines and 7ode Laffey,

The following persons are expected to speak: ;
; Mlathematics Department,
Univensily Col ;
Professor G.N. De Oliveira (Coimbra, Portugal) ! i y fege Dublin,
. Belfleld,
Matrices Over Finite Fields )
Dublin 4,

professor H. Wimmer (Wurzburg)

The Algebraic Riccati Equation

Dr L. Fleétcher (Salford) '
‘ GROUPS IN GALWAY

Recent Results on Pole Assignments in Descriptor Systems

e This conference will take place on 11-12 May at University
College, Galuway. The speakers will include Dr P Fitzpatrick
‘ - . c
(University College, Cork), Dr T. Hurley (University College
9

Professar F. Holland (U.C.C.) ‘ Galway) and Dr D. Lewis (University College, Dublin)
: - s u in).,

Factorization of Matrices

(Title to be announced)

s Latrey (.c.0) | Those who 'wish to present shaort communications are asked
to get in contact, as soon as possible, with Dr T.C

Hurle
from whom further details are available. "

Integer Matrices

Dr D. Lewis (U.C.D.)

Hermitian Forms and von Neumann Regular Matrices

Dr R. Timoney

Reinhardt Decompositions of Operator Matrix Spaces

Professor K. Seitz (Budapest)

On Matrix Quasigroups
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BRITISH MATHEMATICAL COLLOQUIUM

This conference will be held at the University of Bristol
on 9-13 April, 1984,

PROGRAMME

Tuesday, 10th April

9.30 - 11.00 Dunwoody, W. Jackson, S.C. Power,

N.H. Bingham
11.50 - 12.40 C.A. Rogers (UCL)
5.00 - B6.00 J.P. Serre (Paris) -

CURVES OVER FINITE FIELDS

Wednesday, 11th April

9.30 - 11.00 R.B.J.T. Allenby, E.A. Thaompson, P.G.
Dixon, C.M. Maclachlan

11.50 - 12.20 E. Rees (Edinbirgh)
5.00 - 6.00 M.0. Rabin (Harvard and Jerusalem) -

THE USES OF RANDOMIZATION

Thursday, 12th April

9.30 - 11.00 D. Fowler, D. Kirby, R.J. Steiner,
F.R. Drake
11.50 - 12.40 J.H. Conway (Cambridge)
5.00 - 6.00 H. Furstenburg (Jerusalem) -

ERGODIC THEORY AND OIOPHANTINE PROBLEMS

The early morning programme will be divided into two pairs
of concurrent lectures, each of forty minutes. In the after-
noon splinter groups on various branches of mathematics will
be held and it is hoped that some will include a discussion and

problem session. Members are invited to contribute short pap-
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ers and problems.
On Wednesday evening there will be an education forum on the
topic '"The Use of Computers in University Mathematics Teaching'

led by D.0. Tall, and on the remzining two evenings some math-
ematical films will be shoun.

The membership fee for the Colloguium is £12 {this incl-
udes the cost of refreshments), This will be increased to £18
for applications received after 31st January 1984,

The charges for meals and accommodation (in Hiatt Baker
Hall, Stoke Bishop) are as follouws:

Bed and Breakfast £8.25, Lunch £3.573, Evening meal £4.50.

(The charge for bed ang breakfast includes the cost of a (self-
service) late evening drink and the coach trips between the Hall
and the University.) The charge for the full Colloguium will
be £61.50, shorter stays will be charged on a2 pro-rtata basis,

Please note - Any alteration on bookings must be received before
25th March 1984,

School of Mathematics, H.E Rose,
Univensity Walk,
Bristol, BSE 17U,

Colloguium Secaetany,
18 Augusi, 7983,
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ST_ANDREWS COLLOQUIUM 1984

Under the auspices of the Edinburgh Mathematical Society,
a Colloquium will be organised by and held at the University
of St Andrews from 25 July to 4 Auqust, 1984,

The morning sessions will consist of the following cour-
ses (each of about seven lectures):

Professor J.M. Ball : The Calculus of Variations and Non-Linear

Elasticity

Professor F.E.P. Hirzebruch Algebraic Surfaces

Professor D.S. Passman Infinite Group Rings and Crossed Products

Afternoon sessions will include the following series of
seminars (which will run concurrently):

ALGEBRA directed by Dr P.F. Smith

ANALYSIS directed by Dr J.R.L. Webb

In addition, the first series of Copson Memorial Lectures will

be given by

Professor W.K. Hayman, F.R.S,.

100 Years of Value Distribution Theory

The registration fee is Two POUNDS per person, which will

be increased to FOUR POUNDS per person for applications received

after 1 May 1984. Registration fees are payable at the time

of application for membership and are non-returhable in the

event of subsequent cancellations.

The following fees are payable on arrival:
Membership fee 18 pounds per person,

Accommodation fee 135 pounds per person.

"“"""'1"'....’-.-.--m
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THE IRISH MATHEMATICAL SOCIETY

Instructions to Authors

The Irish Mathematical Society seeks articles of mathematical interest for
inclusion in the Newsletter. A1l parts of mathematics are welcome, pure
and applied, old and new. Articles of an expository nature are preferred.

In order to facilitate the editorial staff in the compilation of the
Newsletter, authors are requested to comply with the following instructions
when preparing their manuscripts.

1.

Manuscripts should be typed on A4 paper and double-spaced.
Pages of the manuscript should be numbered.

Commencement of paragraphs should be clearly indicated, preferably by
indenting the first line.

Words or phrases to be printed in capitals should be doubly underlined,
e.g.
Print these words in capitals + Print THESE WORDS in capitals

Words or phrases to be italicized should be singly underlined, e.g.

Print these words in italics =+ Print these words in italics

Words or phrases to be scripted should be indicated by a wavy underline,
e.g.
Print these words in script =+ Print these woads in script
R AP
Diagrams should be prepared on separate sheets of paper (A4 size) in

black ink. Two copies of all diagrams should be submitted: the
original without lettering, and a copy with lettering.

Authors should send two copies of their manuscript and keep a third copy
as protection against possible loss.

If the above instructions are not adhered to, correct reproduction of a
manuscript cannot be guaranteed.

Correspondence relating to the VNewsletter should be addressed to:

Irish Mathematical Society Newsletter,
pepartment of Mathematics,
University College,
Cork.




