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Two Extensions of Cauchy’s Double Alternant

SHULING GAO AND WENCHANG CHU

ABSTRACT. Two extensions of Cauchy’s double alternant are evaluated in closed form
that may serve also as parametric generalizations of the remarkable determinant iden-
tity of a skew—symmetric matrix discovered by Schur (1911) and its multiplicative
counterpart due to Laksov—Lascoux—Thorup (1989).

1. INTRODUCTION AND OUTLINE

There exist numerous determinant identities in the literature (cf. [9,13]). For exam-
ple, the determinants of Vandermonde and Cauchy’s “double alternant”
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play an important role in symmetric functions and group characters (cf. [5,8,10]). In
general, a matrix T'(x1,xa, -+ , %y, ) of order m x n in m variables is called an alternant

(cf. [9, §321]) when the elements of the first row of T" are all functions of variable 1,
the elements of the second row the like functons of xo, and so on. For example

e’ sinx, cosx
e¥, siny, cosy |.

e?, sinz, cos z

Likewise, a matrix T(z1, 22, ,Zm;Y1,Y2, ** ,Yn) is a double alternant if T is an al-
ternant respect to both rows in variables {z1,x9, -, 2} and columns in variables
{y1,y2,* -+ ,yn}. Suppose that f(z,y) is a bivariate function, we have the following
general double alternant

flxi,u), fler,y2), -, f(o1,un)

{f(xi,yj)] 1<i<m = f(mf w, f(xQ.’yQ)’ - f(xz',yn)
1<j<n

_f(xmay1)7 f(xmayQ)a ) f(xrmyn)_

There exist several generalizations (cf. [1,3,6]) of the determinants for Cauchy’s
double alternant. By employing the calculus of divided differences, the second author [2]
evaluated determinants for a large class of variants of Cauchy’s double alternant. As a
complements to the results appearing in [2], we shall examine, in this little article, the
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determinants of two particular matrices. Let T" and {z, yx }1<k<m be indeterminates.
Define two matrices by

x; + Ty;

Un = [tig] i< jam * g = Ti+y; ®
zi + Ty,

Vin = [viglici jem * vis = 1+ @

We shall prove the following two surprisingly elegant determinant identities.

Theorem 1 (m € N).

det U, — (P_l<i§j<m(l'i — ;) (i {sz TH L }

H1<z ]<m(xl + y]

Theorem 2 (m € N).

H1<z<]<m(x] J"Z)(yl - y])
[Ti<ij<m (X + ziy;)

x;{ﬁ(xﬁ—f)l—kyz +H 1—y,~\/T)}.

=1

detV,, =

When T = 0, the corresponding identities in both theorems are equivalent to the
Cauchy double alternant. For T' = —1 and even m = 2n, these identities reduce, in
the case xp = y; for all k, to the following remarkable Pfaffian formulae discovered by
Schur [11] and Laksov—Lascoux—Thorup [7] (see also [12]), respectively:

2
det Xr; — ZL’j . H Ty — xj
- Y
1<i,j<2n | x; + xj |<icj<an \Ti +

det | H T H LT :
1<ij<on |1+ Ti%; 1+ TiTj '

1<i<j<2n

2. PROOF OF THEOREM 1

For the matrix U,,, by subtracting the last row from the other rows, we can check
that the resulting matrix becomes

(1= T)(@: — 2m)y;

, 1<t <mg
m = [ui»j]lgi,jgm ST, 1 Ty;
—_ 1=m.
Tm + Yj
By extracting the common row factor (1—T")(z; —x,,) for 1 < i < m and the common
column factor — 2 for 1 < j <'m, we find the following determinant equality
Tm + Yj
m—1 m yi
B r 1 _ pym—1 L J
det Uy, = det U/, = det U” x (1 —T) 1:[ (zi — &) 1:[ . (3)
=1 7=1
where the matrix U/ is given by
1 .
e 1<i<m
no_ron D
Up = [“w] 1<ij<m - %ij = Zm + Ty,
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Expanding the determinant along the last row leads us to the equality

m

T
det U2, = (—1)”“@”””;?/’“ det U” [m, k], (4)
k
k=1

where U” [m, k] is the sub-matrix of U/, with the mth row and the kth column being
removed. By applying the Cauchy double alternant, we can evaluate
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det U [m, k] =

Here and henceforth for simplicity, || 0k stands for the product with the index £ running
from 1 to m except for £ = k. Substituting this into (4) gives rise to the following
expression

det U =

H1<z<]<m($ z)(yi — vj) H]_ (Tm + 1) i T, + Ty H#m(fﬂz + yk)
H1<z ]<m(93z + ;) Hwém(fm — ) 1 Yk Hﬁgk( —Y5)

k=
Denote by Aly1,y2, -+ ,Ym]f(y) the divided difference (cf. [2]) of the function f(y) at
the points {yg}7",, which can be expressed by Newton’s symmetric sum
m

I S A €7
Alyt, e, s yml f(y) ;H#k(fyk—yj)'

Then we can evaluate the last sum (cf. [4]) as

m
Ty + Typ iz (%5 + yr) Tm + Ty
§ : = Hl?ém( Z_ ) :A[yl,Z/Q,"' ;ym] = H($l+y)
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which leads us to the following simpler formula

heicjem@i —2) Wi —y) I[N (@m+y) (0 fro
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Substituting this into (3) and then simplifying the resulting expression, we confirm
the determinant identity stated in Theorem 1. O

det U =

3. PROOF OF THEOREM 2

By following exactly the same procedure as done in the last section, we can explicitly
evaluate the determinant for the matrix V,,. Subtracting the last row from the other
rows transforms V,,, into the following one:

(1= Ty?) (i — 1)

A A (1+$iyj)(1+xmyj)7
Vin = [Ui:j]lgi,jgm C Uiy =

1<t <m;



58 GAO AND CHU

By extracting the common row factor x; — x,, for 1 <4 < m and the common column
2

-1y . . . .
factor ———— for 1 < j < m, we find the following determinant equality
+ TmY;
m—1 mo]_ Ty
det V,;, = det V), = det V1), x : § 5
e Vm = G Y = CE Fm il;[l(xl ]1;[11+$myy )

where the matrix V! is explicitly given by

1
Tz 1<i<my
V// _ [U// ] . 1)” _ + LiYj
m — Yjl1<ij<m TR T T + Tyj
1-Ty? "

Expanding the determinant along the last row leads us to the equality

m

det V! = S (—1ymikEm LUk ooy i g, (6)
m — 1-Ty?

where V,,[m, k| is the sub-matrix of V/ with the mth row and the kth column being

crossed out. By making replacements x; — xi_l, we can reformulate Cauchy’s double
alternant as

1 ] _ H1§i<j§m(xj — ) (yi — yj)‘

det
lsi,jsm [1 + ziy; [Ti<ij<m( + @iy;)

Then we can evaluate det V,,,[m, k] by the following product expression

det V[, k] = H1§i<j<m($j — ;) H1§i<j§m (4,j7#k) (yi — ;)
" [li<icm Ilicj<m (j;ék:)(l + 1Y)

_ (_1)m—k [T:2, (1 + ziyr) H 1+ xmy; H1§i<j§m(xj — ) (yi — yj)'
Hi;ém(xi — Tm) £k Y — Yj H1§m’§m(1 + z:y;)

Substituting this into (6) yields that

det V" — [hi<icjem(zi —2)(yi — y5) [T/ (1 + 2my;) i T + Ty i (1 + i)
" H1§i,jgm(1 + z3y;5) Hz;ém(xl — Tpm) 1 I Ty,% H#k(yk —Y5)

By decomposing into partial fractions

1 1 1 1
= X — R
1-Ty>  2VT {y +VTT oy VT }
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we can evaluate the rightmost sum again by divided differences

i T + Tyg Lizm (1 + 2iyk)
= 1-Typ Tk —vi)

ZA[yhyz,"wym]{l_Tyg (l’i+y)}

— Al ym1{y’j;‘ﬁ T —x/m}

— =0y, ,ym]{mﬁ H(l +:v/\/T)}

zi + VT —VT
7H1—yz 21—[11-1-.%'\@.
Consequently, we derive the closed form expression
H1<z<]<m(x] i) (Yi — Y5) H;n:1(1 + Tmy;)
[Ti<ijem(1 + ziy;) [Lizm(zi — 2m)
({r 2 +VT 5 o —VT
) 2{H12_yz\/T+H1:'yz\/T}

=1

det V! =

Finally, substituting this into (5) and then simplifying the resulting expression, we find
that

H1<1<j<m(x] i) (Yi — Yj5)
[Ti<ijem(1 + 2iy;)
<o{ s + VD14 3D + TG~ VDL - VD) .

21 - ,
=1 =1

det V,,,

This completes the proof of Theorem 2. U
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