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David was awarded the PhD degree in 1979 by the National University of Ireland.
He was promoted to senior lecturer in 1987 and awarded a DSc degree in 1992. In 1997
he was promoted to associate professor and then in 2006 to full professor. From 1999
to 2002 he was head of department. Colleagues have commented on his fairness and
effectiveness in this onerous role.

From the late 1980s David was involved in an Erasmus exchange with the University
of Ghent. This was an offshoot of a collaboration with Jan Van Geel, and resulted
later on in two of David’s four PhD students. From 1997 until 2006 he was the local
coordinator of two successive European research training networks for PhD students
and post-docs (both called Algebraic K-Theory, Linear Algebraic Groups and Related

Structures), expertly managed by Ulf Rehmann at the University of Bielefeld. In this
context a major conference and a smaller workshop were co-organized by David in UCD
in 1999 and 2004, respectively.

For more on David’s early years growing up in Douglas, his university career, and his
working life at UCD, see the interview [50] by Gary McGuire.

After his retirement in 2009 David remained research active as emeritus professor
for a good number of years. In late 2013 he was diagnosed with Parkinson’s disease.
This led to a gradual decline in his health. David passed away peacefully on 20th
August 2021, his wife Anne having pre-deceased him by three years. David and Anne
are survived by their three sons Alan, Stephen and Gareth and their families. Their
only daughter Joanne had passed away at a young age.

David will be fondly remembered for his fine qualities as a mathematician and the
pleasure of collaborating with him, and for his friendship, kindness, thoughtfulness,
sense of humour, humility and dedication to his family.

2. Work

David published more than 60 papers (including a number of surveys and expository
papers), one volume of conference proceedings [2] and a book on matrix theory [41]. He
also maintained a website about mathematicians from the Isle of Man and the Manx
diaspora, cf. [44].

David’s PhD thesis contained a number of significant results as well as the germs of
ideas that where fleshed out in later papers. His early publications match up with the
chapters in his thesis [28] almost one-to-one, cf. [25], [26], [27], [29], [30], [31].

David made numerous contributions to the algebraic theory of quadratic forms and
related areas, such as central simple algebras with involution. Below I will describe some
of those results with the aim of allowing the reader to form a reasonable impression of
David’s research interests and the impact of his work. My selection of topics is by no
means exhaustive. I will also indicate some noteworthy extensions and generalizations
by other researchers of David’s work. For the benefit of the readers of the Bulletin I
have the kept the style expository.

2.1. Some background material. Consider a pair (R, σ) where R is a unital ring, not
necessarily commutative, and σ : R → R is an involution, i.e., an anti-automorphism of
order 2. With (R, σ) we can associate the Witt group W ε(R, σ) of isometry classes of
nonsingular ε-hermitian forms ϕ : M ×M → R, where metabolic forms are identified
with zero. In this notation ε is a central element in R such that σ(ε)ε = 1, M is a
finitely generated projective right R-module, ε-hermitian means that ϕ is bi-additive
and satisfies ϕ(xα, yβ) = σ(α)ϕ(x, y)β and ϕ(y, x) = εσ(ϕ(x, y)) for all x, y ∈ M and
all α, β ∈ R, nonsingular means that the R-linear map M → M∗, x 7→ [y 7→ ϕ(x, y)] to
the dual module (considered as a right R-module via fα := σ(α)f for all f ∈ M∗ and
all α ∈ R) is an isomorphism, and metabolic means that M contains a direct summand
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that coincides with its orthogonal module with respect to ϕ. The group operation is
induced by the orthogonal sum ϕ1 ⊥ ϕ2, defined on M1 ⊕M2 by

ϕ1 ⊥ ϕ2(x1 + x2, y1 + y2) := ϕ1(x1, y1) + ϕ2(x2, y2)

for all xi, yi ∈ Mi, i = 1, 2. Often one only considers (or needs to consider) hermitian
and skew-hermitian forms, which correspond to the cases ε = 1 and ε = −1, respectively.

Here are some examples (if ε = 1, we write W instead of W 1):

W (Z, id) ∼= W (R, id) ∼= W±1(C, ) ∼= W (H, ) ∼= Z,

W (C, id) ∼= W−1(H, ) ∼= Z/2Z,

W−1(R, id) ∼= W±1(R× R, ̂) = 0,

W (Q2, id) ∼= Z/8Z× Z/2Z× Z/2Z,

where Z, R and C are the integers, real numbers and complex numbers, as usual, H is
Hamilton’s quaternion algebra, Q2 is the field of 2-adic numbers, denotes conjugation,
̂ denotes the exchange involution, and ∼= denotes isomorphism.

If R is commutative, the tensor product of R-modules induces a multiplication that
turns W ε(R, σ) into a ring. If 2 is invertible in R various simplifications can be made.

If R = F is a field, ε = 1 and σ = idF we obtain the Witt ring W (F ) := W 1(F, idF )
of classes of symmetric bilinear forms on finite-dimensional F -vector spaces. If the
characteristic of F is different from 2, any symmetric bilinear form b : V × V → F on a
finite-dimensional F -vector space V can be uniquely identified with a quadratic form qb
over F via qb(x) := b(x, x) and vice versa via bq(x, y) :=

1
2(q(x+ y)− q(x)− q(y)). Let

us consider a quadratic form q : V → F where dimF V = n. After choosing an F -basis
(e1, . . . , en) of V we can represent q by the symmetric matrix (bq(ei, ej)) ∈ Mn(F ). A
different choice of basis yields a congruent matrix. If q1 and q2 are quadratic forms over
F such that their associated matrices are congruent, then q1 and q2 are isometric, and
we write q1 ≃ q2. It is a standard result that if the characteristic of F is different from
2, one can find a basis of V that is orthogonal with respect to bq, i.e., such that the
matrix of q is a diagonal matrix diag(a1, . . . , an). We then write q ≃ 〈a1, . . . , an〉 and
note that

〈a1, . . . , an〉 = 〈a1〉 ⊥ · · · ⊥ 〈an〉.
The quadratic form 〈a1, . . . , an〉 is nonsingular if and only if det diag(a1, . . . , an) 6= 0 if
and only if a1, . . . , an are nonzero. Furthermore, 〈a1, . . . , an〉 is isotropic over F if the
quadratic polynomial

∑n
i=1 aix

2
i has a nontrivial zero over F . Arbitrary permutations

of the entries of 〈a1, . . . , an〉, as well as multiplication of the entries by nonzero squares,
give rise to isometric forms. For example, every ai that is a nonzero square in F can
be replaced by 1. In particular, we can view the nonzero entries ai as elements of the
square class group F×/F×2.

Using diagonal notation, the sum and product in W (F ) are induced by

〈a1, . . . , an〉 ⊥ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉
and

〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 = 〈a1b1, a1b2, . . . , aibj , . . . , anbm〉,
respectively. Hyperbolic forms are finite orthogonal sums of the hyperbolic plane
〈1,−1〉. They coincide with the metabolic forms in characteristic not 2, and so they are
identified with the zero element of W (F ). The identity element of W (F ) is the class of
the form 〈1〉. If q is a quadratic form over F , we denote its class in W (F ) by [q]. For
example,

0 = [〈1,−1〉] = [〈2,−2〉], 1 = [〈1〉], 2 = [〈1, 1〉].
For later use, let’s look at a more elaborate example:
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Example 2.1. Consider the field of rational numbers F = Q and let q = [〈2, 3〉] ∈
W (F ). Then:

q2 = [〈2, 3〉 ⊗ 〈2, 3〉] = [〈4, 6, 6, 9〉] = [〈1, 6, 6, 1〉],
22 = [〈1, 1〉 ⊗ 〈1, 1〉] = [〈1, 1, 1, 1〉],

q2 − 22 = [〈1, 6, 6, 1〉 ⊥ 〈−1,−1,−1,−1〉] = [〈6, 6,−1,−1〉],
q(q2 − 22) = [〈2, 3〉 ⊗ 〈6, 6,−1,−1〉] = [〈12, 12,−2,−2, 18, 18,−3,−3〉]

= [〈3, 3,−2,−2, 2, 2,−3,−3〉] = [〈2,−2〉 ⊥ 〈2,−2〉 ⊥ 〈3,−3〉 ⊥ 〈3,−3〉] = 0.

The study of Witt rings of fields started with Witt’s seminal paper from 1937 and
received a major boost by Pfister in the 1960s. The resulting algebraic theory of qua-

dratic forms has been a fruitful research area from its inception, with deep connections
to many other areas in mathematics. The standard references are the books by Lam
[23], Scharlau [56] and Knus [21]. The monograph [12] focusses on the modern geomet-
ric theory of quadratic forms. For more on the history of quadratic forms I refer the
reader to [57].

Let K be a field of characteristic 6= 2. A finite-dimensional K-algebra A is called
central simple over K if A has no non-trivial two-sided ideals and the centre of A is K.
Let σ be an involution on A and let F = {a ∈ K | σ(a) = a} be the fixed field of σ.
The pair (A, σ) is called a central simple F -algebra with involution (in this terminology
we emphasize F rather than K even though Z(A) = K). If F = K, then σ is said to
be of the first kind. Otherwise σ is said to be of the second kind (or unitary), and we
must have [K : F ] = 2. In this case, it is customary to allow the possibility that K is
not a quadratic extension field of F , but a double-field isomorphic to F ×F . When this
happens, A is not simple, but a product of two simple F -algebras that are mapped to
each other by σ. The motivation for allowing this possibility is that it can occur after
scalar extension. For ease of exposition I will ignore this situation and assume that the
centre of A is a field. The standard reference is The Book of Involutions [22], which
also contains many notes with historical pointers.

Real square matrices with transposition (Mn(R), t) and complex square matrices with
conjugate transposition (Mn(C), ∗) are easy examples of central simple R-algebras with
involution of the first, and second kind, respectively. Hamilton’s quaternion algebra
with quaternion conjugation (H, ) is a central simple R-algebra with involution of the
first kind.

If (D,ϑ) is a central simple F -algebra with involution where D is a division algebra
and if h : V ×V → D is a nonsingular ε-hermitian form over (D,ϑ), where V is a finite-
dimensional right D-vector space, then (EndD(V ), adh) is a central simple F -algebra
with involution of the same kind as ϑ. Here adh, the adjoint involution of h, is defined
by the property

h(x, f(y)) = h(adh(f)(x), y), ∀x, y ∈ V, ∀f ∈ EndD(V ).

In fact, all central simple F -algebras with involution are of this form for some D, unique
up to isomorphism, and some h, determined up to multiplication by a scalar in F×.
For example, (Mn(R), t) ∼= (EndR(R

n), adh), where h = n × 〈1〉 := 〈1, . . . , 1〉 (n copies
of 1).

Because of this correspondence between involutions and ε-hermitian forms, central
simple algebras with involution can be thought of as generalizations of quadratic forms.
However, quadratic forms also show up in other ways. Important examples are obtained
via the K-linear reduced trace map TrdA : A → K, which is defined as follows: let Ω
be a splitting field of A, i.e., A ⊗K Ω ∼= Mn(Ω) (such a field always exist, cf. [22,
Theorem (1.1)]). Then for a ∈ A, TrdA(a) is the trace of the matrix of the image of a
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under scalar extension to Ω. One can show that TrdA(a) ∈ K and is independent of
the choice of Ω. The trace form of A is the symmetric bilinear form

TA : A×A → K, (x, y) 7→ TrdA(xy).

The associated quadratic form x 7→ TA(x, x) = TrdA(x
2) is usually also denoted by TA.

The involution trace form of (A, σ),

T(A,σ) : A×A → K, (x, y) 7→ TrdA(σ(x)y),

is symmetric bilinear over F = K if σ is of the first kind and hermitian over (K,σ|K)
if σ is of the second kind. The forms TA and T(A,σ) are both nonsingular.

2.2. Exact sequences of Witt groups. In many situations, Witt groups cannot be
computed explicitly but can be related to other Witt groups via exact sequences. Let
F be a field of characteristic not 2 and let F (

√
a) be a quadratic field extension of F .

Denote the map induced by
√
a 7→ −√

a on the field F (
√
a) by as usual. Milnor and

Husemoller showed that there is an exact sequence

0 W (F (
√
a), ) W (F ) W (F (

√
a)),π ρ

(2.1)

where π is induced by the trace TrF (
√
a)/F and ρ is induced by base change to F (

√
a),

cf. [51, Appendix 2].
Let b ∈ F be nonzero and letD denote the generalized quaternion algebra (a, b)F , i.e.,

the F -algebra generated by symbols i and j that satisfy i2 = a, j2 = b and ij = −ji.
We assume that D is a division algebra and denote the map induced by i 7→ −i, j 7→ −j
by as well since we can identify F (

√
a) with a subfield of D in the obvious way. For

example, if F = R and a = b = −1, then D = H and F (
√
a) = C.

In the spirit of (2.1) David proved that the sequence

0 → W (D, ) → W (F (
√
a), ) → W−1(D, ) → W (F (

√
a)) (2.2)

is exact in his 1979 paper [26]. (For ease of exposition I will not describe the maps
that occur in this exact sequence and those in the remainder of this section. They are
similar to the maps π and ρ in (2.1).) In [3, Appendix 2] this sequence was generalized
by Parimala, Sridharan and Suresh to the exact sequence

W ε(A, σ) → W ε(Ã, σ1) → W−ε(A, σ) → W ε(Ã, σ2), (2.3)

where (A, σ) is a central simple F -algebra with involution, Ã is the centralizer of a skew-
symmetric unit λ in A with the property that F (λ) is a quadratic extension of F , σ1 =
σ|A, and σ2 = Int(µ−1) ◦ σ1 for a skew-symmetric unit µ in A that anti-commutes with
λ, where Int denotes inner automorphism. (Note that not all central simple algebras
with involution contain such elements λ and µ.) The “key exact sequence” (2.3) was
used by Bayer-Fluckiger and Parimala in their proof of Serre’s Conjecture II for classical
groups, cf. [4, 5].

In [31] David extended the sequences (2.1) and (2.2) further to the right, resulting
in the exact sequences

0 → W (F (
√
a), ) → W (F ) → W (F (

√
a)) → W (F ) → W (F (

√
a), ) → 0 (2.4)

and

0 → W (D, ) → W (F (
√
a), ) → W−1(D, ) → W (F (

√
a))

→ W−1(D, ) → W (F (
√
a), ) → W (D, ) → 0.

(2.5)

Anybody looking at the exact sequences (2.4) and (2.5) will surely not be able to resist
folding them into exact polygons. In fact, it turns out that these sequences are special
cases of an exact octagon involving Witt groups of Clifford algebras, as David showed
in [34]: Let C denote the Clifford algebra C(q) of a nonsingular quadratic form q over
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F , and let C ′ := C(q ⊥ 〈a〉) where a ∈ F is nonzero. The algebra C carries the two
natural involutions σ1 and σ−1, where σ±1(x) = ±x for all x ∈ V , where V is the
finite-dimensional F -vector space on which q is defined. The following octagon is exact:

W (C, σ−1) W (C ′, σ−1)

W (C ′, σ1) W−1(C, σ1)

W (C, σ1) W−1(C ′, σ1)

W−1(C ′, σ−1) W−1(C, σ−1)

.

In [33], David obtained equivariant versions (i.e., the forms are invariant under the
action of a finite group) of (2.4) and (2.5), rolled up into exact octagons. These are
related to work of Ranicki on L-groups, cf. [55].

Figure 2.1. Andrew Ranicki (1948–2018) on the occasion of David’s
retirement conference in 2009. Photograph: S. McGarraghy.

Inspired by (2.4), Grenier-Boley and Mahmoudi extended (2.3) further to the right
and obtained the exact octagon

W ε(A, σ) W ε(Ã, σ1)

W−ε(Ã, σ2) W−ε(A, σ)

W ε(A, σ) W ε(Ã, σ2)

W ε(Ã, σ1) W−ε(A, σ)

,

which remains valid in the equivariant case. As an application they proved that if (A, σ)
is a central simple algebra with involution of the first kind over F , then W (F ) is finite if
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and only if both W ε(A, σ) and W−ε(A, σ) are finite, generalizing a similar observation
of David’s for quaternion algebras, cf. [31].

The exact sequences of Lewis, Grenier-Boley and Mahmoudi, and Parimala, Srid-
haran and Suresh were further generalized to Witt groups of Azumaya algebras with
involution by First in his impressive 2022 paper [14], which also contains a wealth of in-
formation about Azumaya algebras with involution and several important applications.

2.3. Annihilating polynomials. In Example 2.1 we saw that the element q = [〈2, 3〉] ∈
W (Q) is a root of the polynomial p(x) = x(x2 − 22), which is then said to be an anni-
hilating polynomial of q. In his 1987 paper [38], David proved:

Theorem 2.2. Let F be a field of characteristic not 2. Let ϕ be any quadratic form of

dimension n over F , and let q = [ϕ] ∈ W (F ). Then pn(q) = 0 in W (F ), where pn(x)
is the monic integer polynomial defined by

pn(x) :=

{
x(x2 − 22)(x2 − 42) · · · (x2 − n2) if n is even

(x2 − 12)(x2 − 32) · · · (x2 − n2) if n is odd
.

In other words, the theorem says that Witt rings of fields of characteristic not 2 are
integral rings. This had been known for a long time, but David’s result provided the first
examples of polynomials that annihilated particular classed of quadratic forms. There
are several proofs of Theorem 2.2, but the slickest is due to Leung. It goes via induction
on n, using the recurrence relation pn(x) = (x+ n)pn−1(x− 1), cf. [38, Comment 1].

As an application of Theorem 2.2 David obtained the standard structural properties
of Witt rings, the main ones being: they have no odd torsion, no odd-dimensional
zero divisors and no nontrivial idempotents; their prime ideals are determined by the
orderings of the underlying field. Proofs of these facts are mostly omitted from [38],
but can be found in David’s 1989 paper [40]. For a description of subsequent work on
annihilating polynomials by David and others up to 2000, I refer to David’s survey [43].
David’s doctoral students Seán McGarraghy and Stefan De Wannemacker (1971–2013)
also worked on this topic, cf. [10], [11], [49], [48].

2.4. Levels of division algebras. A field F is called real if −1 cannot be written as
a sum of squares of elements of F (real fields are sometimes called formally real fields,
but this practice is slowly disappearing). Note that the characteristic of F must thus
be zero. By the Artin-Schreier theorem (see for example [23, VIII, Theorem 1.10]), F
is real if and only if F has at least one ordering.

If −1 can be written as a sum of squares in F , this begs the question how many
squares are needed. The level s(F ) of a non-real field F is defined to be the smallest
integer n such that −1 is a sum of n squares in F . The level of a real field is defined to
be ∞. In 1932 van der Waerden posed the following problem, cf. [58]:

Wenn in einem Körper die Zahl −1 Summe von 3 Quadraten ist, so

auch von 2 Quadraten; wenn von 5, 6 oder 7, so auch von 4; wenn von

15 oder weniger, so auch von 8.

In other words, he asked if 1, 2, 4 and 8 are the only possible values of the level ≤ 15. In
1934, H. Kneser proved that this is indeed the case, and that in addition all multiples of
16, except those of the form 28hg+16h, could occur, cf.[20, Satz 2]. The fields Q(

√
−1),

Q(
√
−2) and Q(

√
−7) have level 1, 2 and 4, respectively. Also, at the time, algebraic

number fields were known to have level 1, 2, 4 or ∞, but there were no known fields of
finite level > 4. It was not until 1963 that the complete solution was given by Pfister.
He showed that the level of a field is either ∞ or a 2-power, and that every 2-power
occurs as the level of some field, cf. [52].
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The notion of level also makes sense for unitary rings that are not necessarily com-
mutative, but Pfister’s 2-power result no longer holds in general. For example, the ring
Z/4Z has level 3. A result of note is the topological proof of Dai, Lam and Peng of the
fact that for any given positive integer n, the integral domain

R[x1, . . . , xn]

(1 + x21 + · · ·+ x2n)

has level n, cf. [9].
For noncommutative rings several generalizations of the level have also been investi-

gated. For example, the sublevel s(R) of a ring R is the smallest positive integer n such
that 0 can be written as a sum of n+ 1 squares in R, and is ∞ if 0 cannot be written
as a sum of squares.

In their 1985 paper [24] Leep, Shapiro and Wadsworth investigated sums of squares
in central simple algebras. Recall that these are matrix algebras with entries in divi-
sion algebras, finite-dimensional over their centre (assumed to be of characteristic not
2). They observed that by a result of Griffin and Krusemeyer (namely that if R is a
commutative ring with 2 ∈ R× and n ≥ 2, then every element of Mn(R) is a sum of 3
squares [16]) it suffices to consider division algebras D. They showed that s(D) < ∞
if and only if s(D) < ∞ if and only if each element of D is a sum of squares in D,
cf. [24, Theorem D]. (Note that if D is actually a field, then this result is an easy
exercise.) In their investigations the trace form TD played a central role. David settled
their Conjecture 3.6 and proved:

Theorem 2.3 ([35]). 0 is a nontrivial sum of squares in D if and only if the trace form

TD is weakly isotropic.

David had a particular interest in levels of quaternion division algebras. In 1989 he
proved:

Theorem 2.4 ([39, Propositions 2 and 3]).

(1) There exist quaternion division algebras of level 2k + 1 for all k ≥ 1.
(2) There exist quaternion division algebras of level 2k for all k ≥ 0.

The proof consists of constructing explicit families of quaternion division algebras
whose levels are these prescribed values. For example, consider the rational function
field K = R(x, y, z), the Laurent series field F = K((t)), and let a = x2 + y2 + z2. Then
D = (a, t)F is a division algebra of level 3, cf. [39, Proposition 1].

In light of Theorem 2.4, it is natural to ask a) whether values other than 2k and
2k + 1 can occur as the level of a quaternion division algebra, and b) if so, what these
values are. In 2008, Hoffmann answered question a) in the affirmative. He proved that
there are infinitely many quaternion division level values not of the form 2k or 2k + 1,
cf. [17]. Note that this result did not yield any explicit new values. Indeed, question
b) still seems to be an open problem.

In [36] David wondered if for a quaternion division algebra D the level and sublevel
are always related as follows: s(D) = s(D) or s(D) = 1+ s(D). Hoffmann showed that
this is indeed the case, cf. [18]. In fact, Hoffmann came up with the idea of the proof
at the retirement conference in honour of David in 2009, where he gave a survey talk
on levels and sublevels of rings.

For more information on levels, I refer to David’s 1987 survey [37] in issue 19 of this
Bulletin and the updated version [42] from 2001, as well as Hoffmann’s more recent
survey [19].

2.5. Signatures of involutions. Let F be a real field and let P be an ordering of F .
We can think of P as the set of nonnegative elements of F with respect to some total
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order relation. For example, Q and R each have a unique ordering, C has no orderings,
Q(

√
2) has two orderings (P1 where

√
2 is positive, and P2 where −

√
2 is positive),

R(t) has infinitely many orderings, and R((t)) has two orderings (one where t is positive
and one where −t is positive). The set of orderings of F is denoted XF and called the
space of orderings of F (as it is a topological space). Let q : V → F be a nonsingular
quadratic form over F . The (Sylvester) signature of q at P is the integer

sgnP q := #{ai ∈ P} −#{ai ∈ −P}.
For example, if F = Q(

√
2) and q ≃ 〈1,

√
2〉, then

sgnP1
q = 2− 0 = 2 and sgnP2

q = 1− 1 = 0.

The total signature of q is the map

sgn q : XF → Z, P 7→ sgnP q.

The total signature yields a characterization of the torsion elements of the Witt ring:
[q] ∈ Wtors(F ) if and only if sgnP q = 0 for all P ∈ XF . If F is a nonreal field, then
W (F ) = Wtors(F ), i.e., every element of W (F ) is torsion. Furthermore, for either type
of field the torsion order is 2-primary. In other words, [q] is torsion of and only if there
exists a positive integer ℓ such that 2ℓ × q is a hyperbolic form (we also say that q is
weakly hyperbolic). These fundamental results were established by Pfister in [53], and
are referred to as Pfister’s local-global principle. See also [23, VIII,§3].

Let (A, σ) be a central simple F -algebra with involution, let K = Z(A) and let
P ∈ XF (ordering are always considered on the fixed field F of σ). The involution σ
is said to be positive at P if the involution trace form T(A,σ) is positive definite. This
notion goes back to Weil [59]. A more fine-grained measure of positivity is given by the
signature of σ at P ,

sgnP σ :=
√
sgnP T(A,σ),

introduced by David and Jean-Pierre Tignol for involutions of the first kind, cf. [46],
and by Quéguiner for involutions of the second kind, cf. [54]. This definition extends
the concept of signatures from quadratic forms to involutions. In the split case (A, σ) =
(EndF (V ), adq) the signatures of the quadratic form q and its adjoint involution adq
satisfy sgnP adq = | sgnP q|. Such a relationship holds more generally for signatures
of hermitian forms over central simple F -algebras with involution and their adjoint
involutions. The details are too technical to be discussed here. The interested reader
may consult [1].

The involution σ is said to be hyperbolic if there exists an element e ∈ A such
that e2 = e and σ(e) = 1 − e. Hyperbolic involutions were introduced in [6]. If
(A, σ) ∼= (EndD(V ), adh), then σ is hyperbolic if and only if h is hyperbolic. The
involution σ is weakly hyperbolic if there exists a positive integer n such that the
involution ∗ ⊗ σ on Mn(K) ⊗K A ∼= Mn(A) is hyperbolic, where ∗ denotes conjugate
transposition. In 2003, David and I extended Pfister’s local-global principle to central
simple algebras with involution and to hermitian forms over such algebras, cf. [47]. See
also [7].

2.6. Classification of involutions. Let F be a field of characteristic 6= 2, let V be a
vector space of dimension n over F and let q : V → F be a nonsingular quadratic form
on V . Assume that q ≃ 〈a1, . . . , an〉. To q we can associate its dimension, dim(q) = n,
its determinant d(q) = a1 · · · an · F×2 ∈ F×/F×2, and its Hasse invariant s(q) = class
of

∏
i<j(ai, aj)F in the Brauer group Br(F ) (whose elements can be identified with the

isomorphism classes of F -central division algebras, cf. [23, IV]) with the convention
that s(q) = 1 if n = 1. If F is in addition a real field, then q has an associated total
signature sgn q, as we have seen above.
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The dimension, determinant, Hasse invariant and total signature are called the “clas-
sical” invariants of quadratic form theory. They are isometry class invariants (and thus
independent of the chosen diagonalization of q). In other words, if q1 and q2 are iso-
metric, then they have the same classical invariants. The converse is false in general,
but true under certain conditions on the third power of the fundamental ideal I(F ) of
even-dimensional forms in the Witt ring W (F ). Indeed, in their seminal 1974 paper
[13], Elman and Lam showed that if I3(F ) = 0, then quadratic forms are classified
up to isometry by dim, d and s, and if I3(F ) is torsion-free, then quadratic forms are
classified up to isometry by dim, d, s and sgn.

In their 1998 paper [4] Bayer-Fluckiger and Parimala extended these classification
results to isometry classes of hermitian forms over central simple algebras with involu-
tion for suitable generalizations of the classical invariants, under the assumption that
I3(F (

√
−1)) = 0 (see [5]) and an additional assumption on F when the involution is

unitary.
In 1999, David and Tignol [46] obtained similar classification results for conjugacy

classes of involutions on a given central simple algebra, again for suitable generalizations
of the classical invariants (including signatures of involutions as described in the pre-
vious section) and under certain assumptions on I3(F ) (keeping [5] in mind since they
use the results of [4]) and F . (Two involutions σ and σ′ on a central simple algebra A
are conjugate if and only if (A, σ) and (A, σ′) are isomorphic as central simple algebras
with involution.)

2.7. Sesquilinear Morita theory. Let R be a commutative ring, and let (A, σ) be
an R-algebra with involution. Let P be a faithful finitely generated projective right
A-module and let h0 : P × P → A be a nonsingular ε0-hermitian form over (A, σ).
Hermitian Morita theory asserts that the categories of (nonsingular) ε-hermitian forms
over (EndA(P ), adh0

) and of (nonsingular) εε0-hermitian forms over (A, σ) are equiv-
alent. Furthermore, orthogonal sums and hyperbolic spaces are preserved under this
correspondence, cf. [21, I,§9].

Restricting to central simple algebras with involution (over fields of characteristic
not 2), the usefulness of hermitian Morita theory is immediately clear since questions
about ε-hermitian forms can be reduced to forms over division algebras with involution,
which is an advantage since in this situation—except in the case of skew-symmetric
bilinear forms over fields—nonsingular forms are diagonalizable, cf. [32], and thus more
amenable to computation.

The main result of [8] is a generalization of hermitian Morita theory on two levels:
anti-automorphisms that are not assumed to be of order 2 and sesquilinear forms are
considered instead of involutions and ε-hermitian forms, respectively. This 2013 paper,
a collaboration with Anne Cortella, is David’s final one.
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