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Some simple proofs of Lima’s two-term dilogarithm identity

SEÁN M. STEWART

Abstract. Recently, Lima found a remarkable two-term dilogarithm identity whose
proof was based on a hyperbolic form of a proof for the Basel problem given by
Beukers, Kolk, and Calabi. A number of simple proofs for this identity that make use
of known functional relations for the dilogarithm function are given and an application
of Lima’s identity to another two-term dilogarithm evaluation is presented.

1. Introduction

The dilogarithm function defined by Li2(x) :=
∑∞

n=1 x
n/n2 and valid for |x| 6 1 is

a classical function of mathematical physics. Introduced by Leibniz in 1696 [8, p. 351]
and thoroughly discussed by Euler some seventy years later [5, pp. 124–126], it has
subsequently been well studied in the literature (for further historical details concern-
ing the function see, for example, [12]). The canonical integral representation for the
dilogarithm is

Li2(x) = −
∫ x

0

log(1− t)

t
dt, x 6 1, (1)

an integral that cannot be expressed in terms of elementary functions. Only at a handful
of values is the dilogarithm known to reduce to simpler constants. These occur for the
eight arguments: 0, 12 ,±1,−ϕ,± 1

ϕ
, and 1

ϕ2 [9, pp. 4, 6–7]. Here ϕ := (1+
√
5)/2 denotes

the golden ratio.
Despite the paucity of special values found for the dilogarithm function it satisfies a

multitude of functional relations. Some of these functional relations which we will have
a need for are [9, p. 6, Eq. (1.15); p. 5, Eq. (1.11); p. 5, Eq. (1.12); p. 4, Eq. (1.7)]:

Li2(x) + Li2(−x) =
1

2
Li2(x

2), −1 6 x 6 1 (duplication formula) (2)

Li2(x) + Li2(1− x) =
π2

6
− log(x) log(1− x), 0 < x < 1 (3)

(Euler’s reflexion formula)

Li2(1− x) + Li2

(

1− 1

x

)

= −1

2
log2(x), x > 0 (Landen’s identity) (4)

Li2(−x) + Li2

(

−1

x

)

= −π2

6
− 1

2
log2(x), 0 < x 6 1 (inversion formula) (5)

Euler’s reflexion formula, Landen’s identity, and the inversion formula are examples of
two-term dilogarithm identities. Replacing x with 1− x in Landen’s identity results in
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the following alternative form

Li2(x) + Li2

(

x

x− 1

)

= −1

2
log2(1− x), x < 1. (6)

while substituting x = 1
2 into Euler’s reflexion formula leads to the special value

Li2

(

1

2

)

=
π2

12
− 1

2
log2(2). (7)

Many other functional relations for the dilogarithm can be found. Here the reader is
encouraged to consult the works of Kirillov [7] and Gordon and McIntosh [6].

The dilogarithm function today can be found in a wide variety of applications ranging
from algebraicK-theory [13], Euler sums [16, 14], to conformal field theory [3]. For those
unacquainted with the function it is best summed up in the words of Don Zagier who
writes [17, p. 6]:

. . . the dilogarithm is one of the simplest non-elementary functions one
can imagine. It is also one of the strangest. It occurs not quite often
enough, and in not quite an important enough way, to be included in
the Valhalla of the great transcendental functions . . . [A]nd yet it occurs
too often, and in far too varied contexts, to be dismissed as a mere
curiosity. . . . Almost all of its appearances in mathematics, and almost
all the formulas relating to it, have something of the fantastical in them,
as if this function alone among all others possessed a sense of humor.

New results found for the function therefore remain important. One such result was
recently given by Lima who gave the remarkable two-term dilogarithm identity [10, Eq.
(11)]

Li2

(√
2− 1

)

− Li2

(

1−
√
2
)

=
π2

8
− 1

2
log2

(√
2 + 1

)

. (8)

It was obtained by evaluating an integral that stemmed from a double integral used
in a proof for the Basel problem given by Beukers, Kolk, and Calabi [2] where a non-
trivial trigonometric change of variables is used, except with the trigonometric change
of variables changed to its analogous hyperbolic form. What makes Lima’s identity
so interesting is that it is thought to not follow trivially from any previously known
two-term dilogarithm identities [4].

Recently Campbell gave a new proof for Lima’s identity using a series transformation
obtained via Legendre polynomial expansions [4]. In this note we give three separate
simple proofs for this same result. The first follows from the three functional relations
(2) to (4), the second from a four-term dilogarithm functional relation, while the third
from the evaluation of a definite integral in two different ways. As one application of
Lima’s identity, we will use it to show that

Li2

(

−
√
2
)

+ Li2

(

−1−
√
2
)

= −5π2

24
− 1

2
log

(

1 +
√
2
)

log
(

2 + 2
√
2
)

. (9)

Other non-trivial two-term dilogarithm identities due to Ramanujan can be found
listed in [1, pp. 324–325] and still others are given by Loxton in [11]. Here by non-
trivial we mean those two-term dilogarithm identities that do not directly follow on
substituting for some value of x into one of the two-term functional relations for the
dilogarithm function.

2. Simple proofs of Lima’s identity using functional relations

The two proofs we give here for Lima’s identity make use of various functional rela-
tions for the dilogarithm function.
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2.1. Using Landen’s identity, Euler’s reflexion formula, and the duplication

formula. For the first of the proofs we give for Lima’s identity we proceed by employing
Landen’s identity. For the first dilogarithm term appearing in (8) we have

Li2

(√
2− 1

)

= Li2

(

1− (2−
√
2)
)

= −Li2

(

1− 1

2−
√
2

)

− 1

2
log2

(

2−
√
2
)

= −Li2

(

− 1√
2

)

− 1

2
log2

(

2

2 +
√
2

)

= −Li2

(

− 1√
2

)

− 1

2

(

log(2)− log(2 +
√
2)
)2

.

Noting that log(2 +
√
2) = 1

2 log(2) + log(1 +
√
2), then

Li2

(√
2− 1

)

= −Li2

(

− 1√
2

)

− 1

2

(

1

2
log(2)− log(1 +

√
2)

)2

= −Li2

(

− 1√
2

)

− 1

8
log2(2) +

1

2
log(2) log

(

1 +
√
2
)

− 1

2
log2

(

1 +
√
2
)

.

(10)

And for the second dilogarithm term appearing in (8), applying Landen’s identity fol-
lowed by Euler’s reflexion formula one obtains

Li2

(

1−
√
2
)

= −Li2

(

1− 1√
2

)

− 1

2
log2

(√
2
)

= −
[

π2

6
− log

(

1√
2

)

log

(

1− 1√
2

)

− Li2

(

1√
2

)]

− 1

8
log2(2)

= Li2

(

1√
2

)

− π2

6
+

1

2
log(2) log(2 +

√
2)− 1

8
log2(2)

= Li2

(

1√
2

)

− π2

6
+

1

2
log(2) log(1 +

√
2) +

1

8
log2(2), (11)

where again the result log(2 +
√
2) = 1

2 log(2) + log(1 +
√
2) has been used. Taking the

difference between (10) and (11) we see that

Li2

(√
2− 1

)

− Li2

(

1−
√
2
)

=
π2

6
− 1

2
log2(1 +

√
2)− 1

4
log2(2)

−
[

Li2

(

1√
2

)

+ Li2

(

− 1√
2

)]

. (12)

A value for the dilogarithm term appearing within the square brackets on the right of
the equality in (12) can be found from the duplication formula. Setting x = 1√

2
in (2)

we see that

Li2

(

1√
2

)

+ Li2

(

− 1√
2

)

=
1

2
Li2

(

1

2

)

=
π2

24
− 1

4
log2(2),

where the result given in (7) has been used. Thus (12) reduces to (8) and completes
the first of our proofs for Lima’s identity.

2.2. Using a four-term dilogarithm functional relation. We first give a four-term
functional relation involving dilogarithms.

Theorem 2.1. For −1 6 x 6 1 the following four-term functional relation involving

dilogarithms holds:

Li2

(

1− x

1 + x

)

− Li2

(

−1− x

1 + x

)

=
π2

4
+ Li2(−x)− Li2(x) + log(x) log

(

1 + x

1− x

)

. (13)
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Proof. In view of (1) it is immediate that d
dx

Li2(x) = − log(1− x)/x. Consider

d

dx

[

Li2

(

1− x

1 + x

)

− Li2

(

−1− x

1 + x

)]

=
2

1− x2
log

(

2x

1 + x

)

− 2

1− x2
log

(

2

1 + x

)

=
2

1− x2
log(x).

Integrating the above expression with respect to x gives

Li2

(

1− x

1 + x

)

−Li2

(

−1− x

1 + x

)

= 2

∫

log(x)

1− x2
dx =

∫

log(x)

1− x
dx+

∫

log(x)

1 + x
dx+C, (14)

after a partial fraction decomposition has been employed. Here C is an arbitrary con-
stant of integration. Making the change of variable of t 7→ 1− t in (1) we see that the
first integral appearing in (14) is

∫

log(t)

1− t
dt = Li2(1− t), (15)

where, for convenience, we have dropped the arbitrary constant of integration. For the
second integral appearing in (14), integrating by parts followed by a change of variable
of t 7→ −t leads to

∫

log(t)

1 + t
dt = log(t) log(1 + t) + Li2(−t), (16)

where once more for convenience the arbitrary constant of integration has been dropped.
Thus (14) becomes

Li2

(

1− x

1 + x

)

− Li2

(

−1− x

1 + x

)

= Li2(1− x) + Li2(−x) + log(x) log(1 + x) + C. (17)

To find the constant C, we set x = 0. Doing so we find

C = −Li2(−1) =
π2

12
.

Here the value for Li2(−1) is found on setting x = 1 in the inversion formula of (5).
Substituting the value found for C into (17), after applying Euler’s reflexion formula to
the term Li2(1− x) the desired result then follows. �

Remark 2.2. The identity given by (13) is not new. It is listed, for example, online at
The Wolfram Functions Site [15].

If one sets x =
√
2− 1 in (13), as

1− x

1 + x
= x =

√
2− 1,

one finds

Li2

(√
2− 1

)

− Li2

(

1−
√
2
)

=
π2

4
+ Li2

(

1−
√
2
)

− Li2

(√
2− 1

)

− log2
(√

2− 1
)

,

or

Li2

(√
2− 1

)

− Li2

(

1−
√
2
)

=
π2

8
− 1

2
log2

(√
2− 1

)

=
π2

8
− 1

2
log2

(

1 +
√
2
)

,

since log(
√
2 − 1) = − log(1 +

√
2) and completes the second of our proofs for Lima’s

identity.
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3. An application

As an application we now give a two-term dilogarithm identity that makes use of
Lima’s identity. This is identity (9). To prove this result, setting x = −

√
2 in identity

(6) yields

Li2(−
√
2) = −Li2(2−

√
2)− 1

2
log2(1 +

√
2). (18)

Applying Euler’s reflexion formula to the Li2(2−
√
2) term produces

Li2(2−
√
2) = Li2

(

1− (
√
2− 1)

)

=
π2

6
− Li2(

√
2− 1)− log(

√
2− 1) log(2−

√
2)

=
π2

6
− Li2(

√
2− 1) +

1

2
log(2) log(1 +

√
2)− log2(1 +

√
2),

since log(2−
√
2) = 1

2 log(2)+ log(
√
2− 1) and log(

√
2− 1) = − log(1+

√
2). Thus (18)

becomes

Li2(−
√
2) = −π2

6
− 1

2
log(2) log(1 +

√
2) +

1

2
log2(1 +

√
2) + Li2(

√
2− 1). (19)

Next, setting x = 1 +
√
2 in the inversion formula yields

Li2(−1−
√
2) = −Li2(1−

√
2)− π2

6
− 1

2
log2(1 +

√
2). (20)

Adding (19) and (20) gives

Li2(−
√
2)+Li2(−1−

√
2) = Li2(

√
2−1)−Li2(1−

√
2)− π2

3
− 1

2
log(2) log(1+

√
2). (21)

On substituting Lima’s identity into (21) the two-term dilogarithm identity given in (9)
immediately follows.

While the result given in (21) is interesting in its own right, it is important for another
reason. If a method that is independent of Lima’s identity can be found which gives
the value for the dilogarithm sum appearing to the left of the equality in (21), it will
give a third proof for Lima’s identity. This will now be shown using a definite integral
that is evaluated in two different ways.

The definite integral we consider is

J =

∫ 1

0

arcsinh(x)

x
√
1 + x2

dx.

Substituting x = sinh(t) followed by substituting t = log(u) we find

J =

∫ log(1+
√
2)

0

t

sinh(t)
dt = 2

∫ 1+
√
2

1

log(u)

u2 − 1
du,

or

J = −
∫ 1+

√
2

1

log(u)

1− u
du−

∫ 1+
√
2

1

log(u)

1 + u
du,

after a partial fraction decomposition has been made. The first of the integrals to the
right of the equality is (15), the second is (16). Thus

J = −Li2(1− u)
∣

∣

∣

1+
√
2

1
−
[

log(u) log(1 + u) + Li2(−u)
]1+

√
2

1

= −π2

12
− 1

2
log(2) log(1 +

√
2)− log2(1 +

√
2)− Li2(−

√
2)− Li2(−1−

√
2).
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Evaluating the definite integral for J a second time but in a different way, noting
that for x > 0

∫

dx

x
√
1 + x2

= − arccoth(
√

1 + x2) = − arctanh

(

1√
1 + x2

)

= − arcsinh

(

1

x

)

,

where, for convenience, the various arbitrary constants of integration have been dropped,
integrating by parts we have

J = − arcsinh(x) arcsinh

(

1

x

)∣

∣

∣

∣

1

0

+

∫ 1

0

arcsinh
(

1
x

)

√
1 + x2

dx = − log2(1+
√
2)+

∫ 1

0

arcsinh
(

1
x

)

√
1 + x2

dx.

Here the result arcsinh(1) = log(1 +
√
2) has been used. Enforcing a substitution of

x 7→ 1
x
produces

J = − log2(1 +
√
2) +

∫ ∞

1

arcsinh(x)

x
√
1 + x2

dx = − log2(1 +
√
2) +

∫ ∞

0

arcsinh(x)

x
√
1 + x2

dx− J,

or

J = −1

2
log2(1 +

√
2) +

1

2

∫ ∞

0

arcsinh(x)

x
√
1 + x2

dx = −1

2
log2(1 +

√
2) + I.

A value for the remaining integral I can be readily found. Substituting x = sinh(u)
gives

I =
1

2

∫ ∞

0

u

sinh(u)
du =

∫ ∞

0

ue−u

1− e−2u
du,

where the definition for the hyperbolic sine function in terms of exponentials has been
used. Expanding the denominator as an infinite geometric series one has

I =

∞
∑

n=0

∫ ∞

0
ue−(2n+1)u du.

The interchange that has been made here between the integration sign and the sum-
mation is permissible due to the posititivity of all terms involved. Integrating by parts
we find

I =
∞
∑

n=0

1

(2n+ 1)2
=

∞
∑

n=1

1

n2
−

∞
∑

n=1

1

(2n)2
=

(

1− 1

4

) ∞
∑

n=1

1

n2
=

3

4
· π

2

6
=

π2

8
.

Here the well-known result for the Basel problem of
∑∞

n=1
1
n2 = π2

6 has been used. The
absolute convergence of the series allows for the rearrangement of its terms.

Returning to the integral J , we find

J =
π2

8
− 1

2
log2(1 +

√
2).

Equating the two values found for J leads to the result given in (9), which when sub-
stituted into (21) leads to Lima’s identity, thereby providing our third proof for this
remarkable result.
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