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Weighted Sylvester sums on the Frobenius set

TAKAO KOMATSU AND YUAN ZHANG

Abstract. Let a and b be relatively prime positive integers. In this paper the
weighted sum

∑
n∈NR(a,b) λ

n−1nm is given explicitly or in terms of the Apostol-

Bernoulli numbers, where m is a nonnegative integer, and NR(a, b) denotes the set of
positive integers nonrepresentable in terms of a and b.

1. Introduction

The Frobenius Problem is to determine the largest positive integer that is NOT repre-
sentable as a nonnegative integer combination of given positive integers that are coprime
(see [13] for general references).

Given positive integers a1, . . . , am with gcd(a1, . . . , am) = 1, it is well-known that for
all sufficiently large n the equation

a1x1 + · · ·+ amxm = n (1)

has a solution with nonnegative integers x1, . . . , xm.
The Frobenius number F (a1, . . . , am) is the LARGEST integer n such that (1) has

no solution in nonnegative integers. For m = 2, we have

F (a, b) = (a− 1)(b− 1)− 1

(Sylvester (1884) [17]). For m ≥ 3, exact determination of the Frobenius number is
difficult. The Frobenius number cannot be given by closed formulas of a certain type
(Curtis (1990) [6]), the problem of determining F (a1, . . . , am) is NP-hard under Turing
reduction (see, e.g., Ramı́rez Alfonśın [13]). Nevertheless, the Frobenius numbers for
some special cases are calculated (e.g., [12, 14, 16]). One convenient formula is by
Johnson [9]. An analytic approach to the Frobenius number can be seen in [4, 10].
Some formulae for the Frobenius number in three variables can be seen in [19].

For given a and b with gcd(a, b) = 1, let NR(a, b) denote the set of nonnegative
integers nonrepresentable in term of a and b, namely the set of all those nonnegative
integers n which cannot be expressed in the form n = ax + by, where x and y are
nonnegative integers.

There are many kinds of problem related to the Frobenius problem. The problems of
the number of solutions (e.g., [18]), and the sum of integer powers of the gaps values in
numerical semigroups (e.g., [5, 8, 7]) are popular. Another famous problems is about
the so-called Sylvester sums

∑

n∈NR(a,b) n
m, where m is a nonnegative integer (see, e.g.,

[20] and references therein). Recently in [3], a more general case is considered, involving
the largest integer, the number of integers and the sum of integers whose number of
representation is exactly equal to a given number k, and is tackled using similar power
sums.
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In this paper, we consider the weighted sum

S(λ)
m (a, b) :=

∑

n∈NR(a,b)

λn−1nm (λ 6= 0) .

Sylvester [17] showed that S
(1)
0 (a, b) = (a − 1)(b − 1)/2, and Brown and Shuie showed

[5] that

S
(1)
1 (a, b) =

1

12
(a− 1)(b− 1)(2ab− a− b− 1) .

Rødseth [15] obtained a general formula for S
(1)
m in terms of Bernoulli numbers and

deduced

S
(1)
2 (a, b) =

1

12
(a− 1)(b− 1)ab(ab− a− b) .

Tuenter [20] also investigated S
(1)
m by taking a different approach. He established re-

lations between Sylvester sums and the power sums over the natural numbers. Wang
and Wang [21] considered the alternating Sylvester sums

Tm(a, b) =
∑

n∈NR(a,b)

(−1)nnm

by using Bernoulli and Euler numbers.

The purpose of this paper is to give an explicit expression for S
(λ)
m (a, b). For m = 1,

we can give the following formula.

Theorem 1.1. For λ 6= 0 with λa 6= 1 and λb 6= 1,

S
(λ)
1 (a, b) =

1

(λ− 1)2
+

abλab−1

(λa − 1)(λb − 1)
− (λab − 1)

(

(a+ b)λa+b − aλa − bλb
)

λ(λa − 1)2(λb − 1)2
.

We also give a general expression for S
(λ)
m (a, b) in terms of the Apostol-Bernoulli

numbers. The alternating Sylvester sums in [21] can be also expressed as Tm(a, b) =

−S
(−1)
m (a, b).
The main new results (Theorems 4.1 and 4.3 below) cover all values of m and λ, and

express S
(λ
m (a, b) in terms of the Apostol-Bernoulli numbers. In case m = 1 and λa 6= 1

the expressions reduce to those given explicitly in Theorem 1.1.

2. An explicit expression for m = 1

As in [5], define

f(x) =
ab−a−b
∑

n=0

(

1− r(n)
)

xn ,

where r(n) denotes the number of representations of n in the form n = sa+ tb, where
s and t are nonnegative integers. Since r(n) = 0 or 1 for 0 ≤ n ≤ ab− 1, we have

f ′(λ) =
ab−a−b
∑

n=1

n
(

1− r(n)
)

λn−1 =
∑

1≤n≤ab−a−b

r(n)=0

nλn−1

=
∑

n∈NR(a,b)

λn−1n = S
(λ)
1 (a, b) .

We use the following fact from [5].
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Lemma 2.1.

f(x) =
g(x)

h(x)
,

where

g(x) =
b−1
∑

k=1

xak − xk

x− 1
and h(x) =

b−1
∑

k=0

xk .

Suppose that λ 6= 1 6= λa. Then

h(λ) =
λb − 1

λ− 1

and

h′(λ) =
b−1
∑

k=0

kλk−1 =
bλb−1

λ− 1
− λb − 1

(λ− 1)2
.

Also, we have

g(λ) =
(λab − 1)(λ− 1)− (λa − 1)(λb − 1)

(λa − 1)(λ− 1)2

and

g′(λ) =
(ab+ 1)λab − abλab−1 − (a+ b)λa+b+1 + aλa−1 + bλb−1 − 1

(λa − 1)(λ− 1)2

− aλa−1

λa − 1
g(λ)− 2

λ− 1
g(λ) .

Hence, we finally get

S
(λ)
1 (a, b) = f ′(λ) =

g′(λ)h(λ)− g(λ)h′(λ)
(

h(λ)
)2

=
1

(λ− 1)2
+

abλab−1

(λa − 1)(λb − 1)
− (λab − 1)

(

(a+ b)λa+b − aλa − bλb
)

λ(λa − 1)2(λb − 1)2
.

In particular, for λ = 2, we have the following.

Corollary 2.2.

∑

n∈NR(a,b)

2n−1n = 1 +
ab2ab−1

(2a − 1)(2b − 1)

− (2ab − 1)
(

(a+ b)2a+b − 2aa− 2bb
)

2(2a − 1)2(2b − 1)2
.

For example, for a = 3 and b = 17,

S
(2)
1 (3, 17) = 20 · 1 + 21 · 2 + 23 · 4 + 24 · 5 + 26 · 7 + 27 · 8 + 29 · 10

+ 210 · 11 + 212 · 13 + 213 · 14 + 215 · 16 + 218 · 19 + 221 · 22
+ 224 · 25 + 227 · 28 + 230 · 31

= 37515351605 .

From Theorem 1.1 (or the above Corollary),

S
(2)
1 (3, 17) =

1

(2− 1)2
+

3 · 17 · 23·17−1

(23 − 1)(217 − 1)

− (23·17 − 1)
(

(3 + 17)23+17 − 3 · 23 − 17 · 217
)

2(23 − 1)2(217 − 1)2
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= 37515351605 .

Similarly, by replacing 2 by another value, we can obtain that

S
(5)
1 (3, 17) = 900879734470832437423896 ,

S
(1/2)
1 (3, 17) =

8822132865

1073741824
,

S
(−1)
1 (3, 17) = 408 ,

S
(−5/3)
1 (3, 17) =

760508529478902941119864

205891132094649
,

S
(±

√
2)

1 (3, 17) = 34250061± 6965604
√
2 .

3. Weighted sums of higher power

Since

f ′′(x) =
g′′(x)

h(x)
− 2g′(x)h′(x) + h(x)′′(x)

(

h(x)
)2 +

2g(x)
(

h′(x)
)2

(

h(x)
)3

=
ab−a−b
∑

n=2

n(n− 1)
(

1− r(n)
)

xn−2 ,

we get

xf ′′(x) + f ′(x) =
ab−a−b
∑

n=0

n2
(

1− r(n)
)

xn−1 .

Hence,

S
(λ)
2 (a, b) = λf ′′(λ) + f ′(λ) .

For simplicity, put X1 = (a+b)λa+b−aλa−bλb and X2 = (a+b)2λa+b−a2λa−b2λb.
Since

f ′(λ) =
1

(λ− 1)2
+

abλab−1

(λa − 1)(λb − 1)
− (λab − 1)X1

λ(λa − 1)2(λb − 1)2
,

we get

f ′′(λ) = − 2

(λ− 1)3
+

ab(ab− 1)λab−2

(λa − 1)(λb − 1)
− 2abλab−2X1

(λa − 1)2(λb − 1)2

− (λab − 1)(X2 −X1)

λ2(λa − 1)2(λb − 1)2
+

2(λab − 1)X1

λ3(λa − 1)3(λb − 1)3
.

Therefore, we obtain

S
(λ)
2 (a, b) = − λ+ 1

(λ− 1)2
+

a2b2λab−1

(λa − 1)(λb − 1)
− 2abλabX1 + (λab − 1)X2

λ(λa − 1)2(λb − 1)2

+
2(λab − 1)X1

λ2(λa − 1)3(λb − 1)3
.

Similarly, we see that

S
(λ)
3 (a, b) = λ2f ′′′(λ) + 3λf ′′(λ) + f ′(λ) ,

S
(λ)
4 (a, b) = λ3f (4)(λ) + 6λ2f ′′′(λ) + 7λf ′′(λ) + f ′(λ) ,

S
(λ)
5 (a, b) = λ4f (5)(λ) + 10λ3f (4)(λ) + 25λ2f ′′′(λ) + 15λf ′′(λ) + f ′(λ) .
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4. Apostol-Bernoulli numbers

Though one may obtain explicit expressions of S
(λ)
m (a, b) for small positive integers

m, it is harder to obtain the formulas for large m. In this section, using the so-

called Apostol-Bernoulli numbers, we give an expression of S
(λ)
m (a, b) for general positive

integral m.
The Apostol-Bernoulli polynomials Bn(x, λ) are defined by the generating function

[1, p.165, (3.1)]:

zexz

λez − 1
=

∞
∑

n=0

Bn(x, λ)
zn

n!
(|z + log λ| < 2π) . (2)

When λ = 1 in (2), Bn(x) = Bn(x, 1) are the classical Bernoulli numbers. When x = 0
in (2), Bn(λ) = Bn(0, λ) are Apostol-Bernoulli numbers [11, Definition 1.2], defined by

z

λez − 1
=

∞
∑

n=0

Bn(λ)
zn

n!
(|z + log λ| < 2π) . (3)

They seem to be also called λ-Bernoulli numbers. When λ = 1, the generating function
of the left-hand side in (3) is exactly the same as that of the classical Bernoulli numbers
Bn. But it does not imply that Bn(1) = Bn on the right-hand side though quite a few
authors misunderstand. In fact, as seen in [1, p.165], the first several values are given
by

B0(λ) = 0, B1(λ) =
1

λ− 1
, B2(λ) = − 2λ

(λ− 1)2
, B3(λ) =

3λ(λ+ 1)

(λ− 1)3
,

B4(λ) = −4λ(λ2 + 4λ+ 1)

(λ− 1)4
, B5(λ) =

5λ(λ3 + 11λ2 + 11λ+ 1)

(λ− 1)5
.

But,

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
, . . . .

For λ 6= 1, Apostol-Bernoulli polynomials Bn(x, λ) can be expressed explicitly by

Bn(x, λ) =
∑

k=1

k

(

n

k

) k−1
∑

j=0

(−1)jλj(λ− 1)−j−1j!

{

k − 1

j

}

xn−k (n ≥ 0) (4)

[11, Remark 2.6], where the Stirling numbers of the second kind
{

n
k

}

are given by

{n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn .

When x = 0 in (4), Apostol-Bernoulli numbers Bn(λ) have an explicit expression in
terms of the Stirling numbers of the second kind [1, p.166, (3.7)],[11, p.510, (3)]1.

Bn(λ) = n

n−1
∑

j=0

(−1)jλj(λ− 1)−j−1j!

{

n− 1

j

}

(n ≥ 0) (5)

We use a similar approach to Rødseth in [15]. Let n, r and s be integers with

r ≡ n (mod a) (0 ≤ r < a), bs ≡ r (mod a) (0 ≤ s < a) .

Notice that

n ∈ NR(a, b) ⇐⇒ ∃t ∈ Z (1 ≤ t ≤ ⌊bs/a⌋), n = −at+ bs

1In both references, the sum begins from j = 1. However, the value for n = 1 does not match the
correct one B1(λ) = 1/(λ− 1).
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⇐⇒ ∃k ∈ Z (0 ≤ k ≤ (bs− r)/a− 1), n = ak + r .

Note that the case λ = 1 is discussed in [15]. Since

S(λ)
m (a, b) =

a−1
∑

r=0

bs−r
a

−1
∑

k=0

λak+r−1(ak + r)m ,

for λ 6= 1, we have

∞
∑

m=0

S(λ)
m (a, b)

zm

m!
=

1

λ

a−1
∑

r=0

bs−r
a

−1
∑

k=0

(λez)ak+r

=
1

λ

1

(λez)a − 1

(

a−1
∑

r=0

(λez)bs −
a−1
∑

r=0

(λez)r

)

=
1

λ

1

(λez)a − 1

(

a−1
∑

s=0

(λez)bs −
a−1
∑

r=0

(λez)r

)

=
1

λ

az

(λez)a − 1

bz

(λez)b − 1

(λez)ab − 1

abz2
− 1

λ

1

λez − 1
. (6)

Assume that λa 6= 1 and λb 6= 1. The second term (without sign) of the right-hand side
is equal to

1

λ

1

λez − 1
=

1

λz

∞
∑

m=0

Bm(λ)
zm

m!

=
1

λ

∞
∑

m=0

Bm(λ)

m

zm−1

(m− 1)!

=
1

λ

∞
∑

m=0

Bm+1(λ)

m+ 1

zm

m!
(B0(λ) = 0) .

The first term is divided into two parts. One part (without sign) is given as

1

λ

1

abz2
az

(λez)a − 1

bz

(λez)b − 1

=
1

λ

1

abz2

( ∞
∑

i=0

Bi(λ
a)ai

zi

i!

)





∞
∑

j=0

Bj(λ
b)bi

zj

j!





=
1

λ

∞
∑

m=0

m
∑

i=0

(

m

i

)

ai−1bm−i−1Bi(λ
a)Bm−i(λ

b)
zm−2

m!

=
1

λ

∞
∑

m=0

1

(m+ 1)(m+ 2)

m+2
∑

i=0

(

m+ 2

i

)

ai−1bm−i+1Bi(λ
a)Bm−i+2(λ

b)
zm

m!
.

Another part is given as

λab−1

abz2
az

(λez)a − 1

bz

(λez)b − 1
eabz

= λab−1

( ∞
∑

k=0

akbk
zk

k!

)
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×
( ∞
∑

ℓ=0

1

(ℓ+ 1)(ℓ+ 2)

ℓ+2
∑

i=0

(

ℓ+ 2

i

)

ai−1bℓ−i+1Bi(λ
a)Bℓ−i+2(λ

b)
zℓ

ℓ!

)

= λab−1
∞
∑

m=0

m
∑

ℓ=0

(

m

ℓ

)

1

(ℓ+ 1)(ℓ+ 2)

×
ℓ+2
∑

i=0

(

ℓ+ 2

i

)

am−ℓ+i−1bm−i+1Bi(λ
a)Bℓ−i+2(λ

b)
zm

m!
.

Comparing the coefficients on both sides of (6), we get the following expression.

Theorem 4.1. For λ 6= 0 with λa 6= 1 and λb 6= 1, and a nonnegative integer m,

S(λ)
m (a, b) = λab−1

m
∑

ℓ=0

ℓ+2
∑

i=0

(

ℓ+ 2

i

)(

m

ℓ

)

am−ℓ+i−1bm−i+1

(ℓ+ 1)(ℓ+ 2)
Bi(λ

a)Bℓ−i+2(λ
b)

− 1

(m+ 1)(m+ 2)λ

m+2
∑

i=0

(

m+ 2

i

)

ai−1bm−i+1Bi(λ
a)Bm−i+2(λ

b)

− Bm+1(λ)

(m+ 1)λ
.

Remark 4.2. When m = 1 in the expression of Theorem 4.1, that of Theorem 1.1 is
obtained.

If λa = 1 or λb = 1 in (6), without loss of generality, we can assume that λa = 1 and
λb 6= 1. Because gcd(a, b) = 1, λa = λb = 1 is impossible for λ 6= 1. Then, the first
term of the right-hand side of (6) is equal to

1

λ

az

eaz − 1

bz

λbebz − 1

eabz − 1

abz2

=
1

λz

( ∞
∑

k=0

akbk

k + 1

zk

k!

)( ∞
∑

i=0

Bia
i z

i

i!

)





∞
∑

j=0

Bj(λ
b)bj

zj

j!





=
1

λz

( ∞
∑

k=0

akbk

k + 1

zk

k!

)( ∞
∑

ℓ=0

ℓ
∑

i=0

(

ℓ

i

)

aibℓ−iBiBℓ−i(λ
b)
zℓ

ℓ!

)

=
1

λz

∞
∑

m=0

m
∑

ℓ=0

ℓ
∑

i=0

(

m

ℓ

)(

ℓ

i

)

am−l+ibm−i

m− ℓ+ 1
BiBℓ−i(λ

b)
zm

m!

=
1

λ

∞
∑

m=0

m+1
∑

ℓ=0

ℓ
∑

i=0

(

m+ 1

ℓ

)(

ℓ

i

)

am−l+i+1bm−i+1

(m− ℓ+ 2)(m+ 1)
BiBℓ−i(λ

b)
zm

m!
.

Comparing the coefficients on both sides of (6), we get the following expression.

Theorem 4.3. For λ 6= 0 with λa = 1 and λb 6= 1, and a nonnegative integer m,

S(λ)
m (a, b) =

m+1
∑

ℓ=0

ℓ
∑

i=0

(

m+ 1

ℓ

)(

ℓ

i

)

am−l+i+1bm−i+1

(m− ℓ+ 2)(m+ 1)λ
BiBℓ−i(λ

b)

− Bm+1(λ)

(m+ 1)λ
.
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Remark 4.4. When λ = −1 in Theorem 4.1 or Theorem 4.3, formulas for Sylvester
sums (5.11)–(5.14) in [21] are obtained. For, when a is odd, Bn((−1)a) = −nEn−1(0)/2
(n ≥ 0), where En(x) are Euler polynomials defined by

2exz

ez + 1
=

∞
∑

n=0

En(x)
zn

n!
(|z| < π) .

In particular, when λ = −1 and m = 1, 2 in Theorem 4.3, we have the following
formulas. The first relation is not included in the formula in Theorem 1.1.

Corollary 4.5. When a is even and b is odd,

S
(−1)
1 (a, b) =

b(ab− a− b) + 1

4
,

S
(−1)
2 (a, b) =

ab(b− 1)(2ab− a− 3b)

12
.

For example, for a = 4 and b = 11, we get

S
(−1)
1 (4, 11)

= (−1)0 · 1 + (−1)1 · 2 + (−1)2 · 3 + (−1)4 · 5 + (−1)5 · 6 + (−1)6 · 7
+ (−1)8 · 9 + (−1)9 · 10 + (−1)12 · 13 + (−1)13 · 14 + (−1)16 · 17
+ (−1)17 · 18 + (−1)20 · 21 + (−1)24 · 25 + (−1)28 · 29

= 80 .

From Corollary 4.5, we also get

S
(−1)
1 (4, 11) =

11(4 · 11− 4− 11) + 1

4
= 80 .

Similarly, S
(−1)
2 (4, 11) = 1870.
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