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The integral double Burnside ring of the symmetric group S3

NORA KRAUSS

ABSTRACT. The double Burnside R-algebra Br(G,G) of a finite group G with co-
efficients in a commutative ring R has been introduced by S. Bouc. It is R-linearly
generated by finite (G, G)-bisets, modulo a relation identifying disjoint union and
sum. Its multiplication is induced by the tensor product. In his thesis at NUI Gal-
way, B. Masterson described Bq(S3, S3) as a subalgebra of Q®*®. We give a variant of
this description and continue to describe Br(Ss, S3) for R € {Z,Z (), F2,Z3), F3} via
congruences as suborders of certain R-orders respectively via path algebras over R.

1. INTRODUCTION

1.1. Groups. Groups describe symmetries of objects. That is to say, any mathematical
object X has a symmetry group, called automorphism group Aut(X), consisting of

isomorphisms from X to X. For instance, for a natural number n, the set {1,2,...,n}
has as automorphism group the symmetric group Aut({1,2,...,n}) = S,,. This group
consists of all bijections from {1,2,...,n} to itself. For example, we obtain

so= {(123)(273) Ga1)(32)(231) (12
= {id,(1,2),(1,3),(2,3), (1,2,3),(1,3,2)} .

In the first row, ( clz i i) is the map sending 1 — a, 2 — b, 3+ c.

123

31 2) = (1, 3,2), the latter

In the second row, we have used the cycle notation, e.g. (

. N
meaning | 3.
T

(.

We multiply by composition, e.g. (1,2) e (1,3) = (1,2, 3).
By a theorem of Cayley, any finite group is isomorphic to a subgroup of S,, for some n.

1.2. The Biset category and biset functors. Suppose given finite groups H and G.
An (H,G)-biset X is a finite set X together with a multiplication with elements of H
on the left and a multiplication with elements of G on the right that commute with
each other, i.e.
(h-z)-g=h-(x-g)="h-z-g

forhe H g€ G and z € X.

As a first example, M; := Sz is a (Sg,S3)-biset via multiplication in S3. So for
heSy={id,(1,2)},g€Ssand z € My welet h-z-g:=hexeg.

As a second example, consider the cyclic group Cs = {id, (1,2, 3),(1,3,2)} and the
group isomorphism « : C3 — C3, z — x?. Then the set My := Cs is a (Cs, C3)-biset,
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on the left via multiplication, on the right via application of o and then multiplication.
E.g.

(1,2,3)-(1,3,2) - (1,3,2) = (1,2,3)e(1,3,2) ea((1,3,2))
= (1,2,3)¢(1,3,2)¢(1,2,3) = (1,2,3).

Suppose given a commutative ring R. S. Bouc introduced the biset category Bisetp,
see [5, §3.1], see also the historical comments in [5, §1.4]. As objects, the category
Bisetr has finite groups. The R-module of morphisms between two finite groups H
and G is given by the double Burnside R-module Bisetr(H,G) = Br(H,G), which is

R-linearly generated by finite (H, G)-bisets, modulo a relation identifying disjoint union

M
and sum. In particular, each (H,G)-biset M yields a morphism H u) G in Bisetg.

Composition of morphisms in Bisetg is given by a tensor product operation on bisets

that is similar to the tensor product of bimodules. Given an (H,G)-biset M and an

(G, K)-biset N, we write M x N for their tensor product, which is an (H, K)-biset. So
G

in Bisetr, we have the commutative triangle

[MxN]

H K

The category Bisetyp may roughly be imagined by a picture like this.
So S4

1 \ S 9 —— ...

Cs / Ay

Here, A, is the alternating group on 4 elements. Fach biset yields an arrow, and so
does each R-linear combination of bisets. Of course, there are many more objects in
Bisetp — each finite group is an object there — and many more arrows between them
that are not in our picture.

1.3. Biset functors. Let X and ) be classes of finite groups closed under forming
subgroups, factor groups and extensions. Following Bouc [3, §3.4.1], we say that an
(H,G)-biset M is (X,Y)-free if for each m € M the left stabilizer of m in H is in X
and the right stabilizer of m in G is in )). We have the subcategory Bisetg’y of Bisetp:

As objects, it has finite groups. The R-module of morphisms in Bisetg’y between two
finite groups H and G is given by the submodule of Br(H, G) generated by the images
of (X,))-free (H,G)-bisets, cf. [3, Lemme 4].

Certain classical theories may now be formulated as contravariant functors from
Bisetg’y to the category of R-modules, called biset functors over R.

Consider a prime number p. Let X be the class of all finite groups. Let ) be the
class of finite groups whose orders are not divisible by p. Then e.g. the (Sg,S3)-biset
M; and the (Cs, C3)-biset My from §1.2 yield morphisms in Bisetg’y.

Suppose given an object of Bisetg’y, i.e. a finite group G. Let

Fp:Z/pZZ{Oaap_l} )
where we agree to calculate modulo p. An F-representation of G is a finite dimen-

sional Fp-vectorspace V', together with a left multiplication with elements of G. Such a
representation is called simple if it does not have a nontrivial subrepresentation. Each
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representation has a sequence of subrepresentations with simple steps, called composi-
tion factors.

Let Repy, (G) be the free abelian group on the set of isoclasses of simple representa-
tions. Each Fy-representation V' of G yields an element [V] in Repg (G), namely the
formal sum of its composition factors. Given finite groups H and G and an (H, G)-biset
M, we obtain the map

Repg,, ([M])
Repg,(G) ——— Repp, (H )
[V] = [FPM F®G V] ’

using the usual tensor product over rings.

These constructions furnish a contravariant Z-linear functor Repg,, from Bisetg’y to
the category of Z-modules, i.e. to the category of abelian groups. In particular, using
the bisets My and M» from §1.2, we obtain the maps

Repy, ([M1])
R

Repy, (S3) Repg, (S2)
V] > [restriction of V' to So]
and "
Repg,, ([Mz2])
Repr, (Cs) ———— Repg, (Cs)
V] — [twist of V with a] .

Note that, if p < n, even the simple F,-representations of S,, are not entirely known:
One knows a construction, due to James [9], but one does not know their F,-dimensions.
Biset functors do not directly aim to solve this problem, but at any rate they are a tool
to work with these representations.

1.4. Globally-defined Mackey functors. There is an equivalence of categories be-
tween the category of biset functors over R and the category of globally-defined Mackey
functors Mackg’y [6, §8]. Here, a globally-defined Mackey functor, with respect to
X and Y, maps groups to R-modules and each group morphism « covariantly to an
R-module morphism «,, provided kern(«) € ), and contravariantly to a*, provided
kern(a) € X. It is required that these morphisms satisfy a list of compatibilities,
amongst which a Mackey formula, see e.g. [6, §8]. By that equivalence, these require-
ments on a Mackey functor can now be viewed as properties that result from being a
contravariant functor from Bisetg’y to R-Mod.

1.5. Further examples. We list two examples of biset functors, [6, §8].

o Let X = {1} and let ) consist of all finite groups. Let n > 0. Consider the
biset functor Biset/zv’y — Z-Mod that maps a finite group G to the algebraic
K-theory K, (ZG) of ZG.

e Let X consist of all finite groups and let ) = {1}. Let n > 0. Consider the

biset functor Biset;f’y — R-Mod that maps a finite group G to the cohomology
H"(G, R) of G with trivial coefficients.

For some more examples, see [6, §8]. The example of the classical Burnside ring, de-
pending on a group G, is also explained in [4, §6.1].

1.6. The double Burnside algebra. Suppose given a finite group G, i.e an object
of Bisetg. Its endomorphism ring Br(G,G) in the category Bisetr is called double
Burnside algebra of G.

The isomorphism classes of finite transitive (G, G)-bisets form an R-linear basis of
Br(G,G). In particular, if we choose a system Lg ¢ of representatives for the conjugacy
classes of subgroups of G x G, we have the R-linear basis ([(G x G)/U] : U € Laxa)-
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If G is cyclic and if R is a field in which |G| and ¢(|G]) are invertible, where ¢ denotes
Euler’s totient function, then the double Burnside algebra Br(G, G) is semisimple. This
is shown in [7, Theorem 8.11, Remark 8.12(a)].

In case of G = S3, we have 22 conjugacy classes of subgroups of Sg x S3 and thus
rkr(BRr(S3,53)) = 22. The double Burnside Q-algebra Bq(Ss,S3) has been described
by B. Masterson [1, §8] and then by B. Masterson and G. Pfeiffer [2, §7]. We describe
Bq(S3,S3) independently, using a direct Magma-supported calculation [10], with the
aim of being able to pass from Bq(Ss, S3) to Bz(Ss,S3) in the sequel.

In order to do that, we first restate some preliminaries on bisets and the double
Burnside ring in §2 and construct a Z-linear basis of Bz(S3,S3) in §3.

In §4 we tackle the problem that the double Burnside Q-algebra Bq(Ss,S3) is not
semisimple [5, Proposition 6.1.5], thus not isomorphic to a direct product of matrix
rings. As a substitute, we use a suitable isomorphic copy A of Bq(Ss,S3). We obtain
this copy using a Peirce decomposition of Bq(S3, S3). In addition, we give a description
of Bq(S3,S3) as path algebra modulo relations.

The next step, in §5, is to pass from Bq(S3, S3) to Bz(S3,S3). We find a Z-order Az
inside A such that Az contains an isomorphic copy of Bz (Ss, S3), which we describe via
congruences, cf. Proposition 5, Theorem 8.

Bq(Ss, 83) — jl
BZ(S?” Sg) injective AZ

We calculate a path algebra for BZ<2)(83,83), cf. Proposition 11. We deduce that
Br,(S3,S3) is Morita equivalent to the path algebra

T ~ ~ ~ ~ ~ ~
N 5 /\ T2T1 5, T273 , T2T7,

é4 / 7-4 7:1 3 7:4 7:3 ’ 7-4 7:7 ) )
~ o~ ~ ~ -2 ~ o~
™7 o, TT73 ., T7 —T1T2

T .
2 eg\v/eE)ij

\ A

T1 \/

T3

cf. Corollary 12.
We calculate a path algebra for Bz(3)(83,83), cf. Proposition 15. We deduce that
Br,(S3,S3) is Morita equivalent to the path algebra

F3 | ¢ [(TaT3, TaT1, ToT1, T2T3) ,

\/\/

cf. Corollary 16.

2. PRELIMINARIES ON BISETS AND THE DOUBLE BURNSIDE ALGEBRA

Bisets. Recall that an (G, G)-biset X is a finite set X together with a left G and a
right G-action that commute with each other, i.e. (h-z)-g=h-(x-g)=:h-x-g for
h,g € Gand z € X.

Every (G, G)-biset X can be regarded as a left (G x G)-set by setting (h, g)z := hxg~!
for (h,g) € G x G and x € X. Likewise, every left (G x G)-set Y can be regarded as
an (G, G)-biset by setting h -y -g := (h,g )y for h,g € G and y € Y. We freely use
this identification.
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Tensor product. Let M be an (G, G)-biset and let N be a (G, G)-biset. The cartesian
product M x N is a (G, G)-biset via h(m,n)p = (hm,np) for h,p € G and (m,n) €
M x N. Tt becomes a left G-set via g(m,n) = (mg~!, gn) for g € G and (m,n) € M x N.
We call the set of G-orbits on M x N the tensor product M é N of M and N. This

also is an (G, G)-biset. The G-orbit of the element (m,n) € M x N is denoted by

mxn € M x N. Moreover, let L be a (G, G)-biset. Then M x (N x L) = (M x N) x L,
G G ¢ G ¢ 'a

m x (nx£)— (mxn)x{as (G,G)-bisets.
G G G G

Double Burnside R-algebra. We denote by Br(G, G) the double Burnside R-algebra
of G. Recall that BR(G, G) is the R-module freely generated by the isomorphism classes
of finite (G, G)-bisets, modulo the relations [MUN] = [M]+[N] for (G, G)-bisets M, N.
Multiplication is defined by [M] g [N] = [M x N] for (G,G)-bisets M, N. An R-linear

G
basis of Br(G,G) is given by ([(G x G)/U] : U € Lgxa), where we choose a system
Laxa of representatives for the conjugacy classes of subgroups of G x G. Moreover,
Iy, = Gl
Abbreviation. In case of G = S3, we often abbreviate B := Bgr(S3, S3).

3. Z-LINEAR BASIS OF Bz(Ss,S3)

The following calculations were done using the computer algebra system Magma [10].
The group Ss has the subgroups

Vo :={id}, Vi :=((1,2)), Vo :=((1,3)), V3 :=((2,3)), Va1 :=((1,2,3)), V5 :=Ss .
The set {Vy, Vi, Vi, V5} is a system of representatives for the conjugacy classes of
subgroups of S3. In S3, we write a := (1,2), b := (1,2,3) and 1 :=id. So V; = (a),
Vi = (b) and V5 = (a, b).

A system of representatives for the conjugacy classes of subgroups of Sg x S3 is given

Upo = Vox Vo = {(1L1)}, U = Vax Vi = ((b1),(1,a),

Uip = VixVy = ((a,1)), Uiy = VixVy = ((a,1),(1,0)),

U0,1 = WxWV = <(17a)>a Uz = <(ava)v(ba1)>7

A() = (o), AV = {(a,a). (b, b)),

Uo = VaxVy = ((b1)), Upa = Vax Vi = ((b1),(1,b)),

Upa = Vox Vi = ((Lb), Us = VixVs = {(a1),(La),(1b),

A(V4) = <(b’b)>a U5,l = Vsx VWV = <(av 1)’(bv 1),(1,&»,

Uin = VixVi = ((@l),(La), Uy = VaxVs = {(b1), (L a),(1,b),

U5,0 = VsxVp = <(CL, 1)7(67 1)>7 U5,4 = VexVy = <(a7 1)’(b7 1)’(17b)>7

Ups = Vox Vs = ((La),(Lb), Us = {(a,a), (b, 1), (1,b)),

Us = <(a7a)7(17b)>7 U5,5 = Vs x Vs = <(a7 1))(170’)7([)71)7(176))'
Let H@j = [(83 X Sg)/Ul"j] for i,j € {0,1,4,5}, H, = [(Sg X S3)/US} for s € [6, 8]

and HtA :=[(S3 x S3)/A(W)] for t € {1,4,5}.
So we obtain the Z-linear basis

A A
(Hoo,H1,0,Ho, HT, Hao, Ho s, Hi, Hy 1, Hs 0, Ho 5, He,

H =
Hyq, Hyg, He, H®  Hyy, Hy 5, Hs 1, Hy s, Hs 4, Hg, Hs 5)

of Bz(S3,S3). Of course, H is also a Q-linear basis of Bq(Ss, S3).

4. BQ(Sg, Sg)



84

KRAUSS

4.1. Peirce decomposition of Bq(S3,S3). Using Magma [10] we obtain an orthogonal
decomposition of 1p,, into the following idempotents of Bq = Bq(Ss, S3)-

e = —%Ho,o +Hip+ %Hz;,o

g = 3Hoo—2Hio— 5Ho1 — Hyo+2H11 + Hy

h = —i5Hoo+ 35Ho1+ $Hio— $Hoa+ $Hys — Han
g9 = —Hoo+ Hio+ Ho1+ HP —2H;
es = —3Hoo+ $Hio+ Hou+ $HY —3Hyy
g4 = iHgo—H{ —Li1HQ+HE

Write €1 := e+ g+ h. In Remark 1 and Remark 3, we shall see that these idempotents
are primitive. In a next step, we fix Q-linear bases of the Peirce components.

Peirce Q-linear basis
component
eBge |e= —%Ho,o + Hyo+ %H4,0
eBqyg |beg:=3Hoo— Hio— $Ho1 — $Hao+ Hi1 + 2 Hyo
eBoh  |ben:=—gHoo+ fHio+ 3Hoy + §Hao— 3Hou — Hiy — §Hyy + SHi g+ 2Hay
gBqe |bge:=—3Hoo+2H1 0+ Hyp
9Bqg |9=35Hoo—2H10— 3Ho1 — Hao+2H11 + Hy,
gBqh |bgn:=—%Hoo+ iHi1o+ 3Ho1 + $Hao — Hou —2H11 — Hyy + 3Hy 4+ 2 Hyy
hBqe |bpe:=—%Hoo+ Hao
hBqg |bng:= 3Hoo— +Ho1 — Hao+ Han
hBqh |h=—3%Hoo+ $Ho1+ $Hao— $Houa+ 2Hya — Hyn
eBqes |bee, :=—3Hoo+ $Hi0+ $Hoa + §Hao+ sHou — $H11 — $Hos — 2 Han
— tHi4— §Hys+ $Hi5+ $Has
9Bqes |bge, :=—3Hoo+ sHio+ 2Ho1 + $Hao+ $Hoa — Hiy — 2Hos — 2 Han
—IHi4— tHys+ His+ 1Hys
hBqeés |bue, == —15Hoo+ §Hoq + $Hao+ 15Hoa — ¢Hos — $Hay — 1Hia+ $Has
e2Bqea |ea=—Hoo+ Hio+ Ho1+ HE —2H; 1
e2BqQes |beyey = —3Hoo+ 3Hi0+ sHoy + 5HE + $Hoa — Hin — $Hos — $He — s Hig
+ Hy5
esBqes |es=—2Hoo+ $Huo+ tHoa+ 1HY —3Hyy
eaBqe |beyei=gHoo— $Hio— §Hio+ 3Hsp
e4BQg |beyg:=—5Hoo+ sHio+ §Hoy + §Hao — $Hi1 — $Hs o — $Hyy + $Hs o
eaBqh  |beyn = 59;Hoo — 15H1,0 — §Hoa — 3;Hao0 + sHoa + $Hi1 + 15 Hs o
+$Hyy — YHiy — sHya — $Hs1 + 1 Hs 4
eaBqea |bey e, 1= —%Ho,o + %HLO + %H(),l + %HlA + %Hzx,o —Hy1— %H&o - %H4,1
— $H7 + Hs
eaBqes |ea=31Hoo— HP — JHY + HY,

;o1 1 1 1 1 1 1 1
bzyen = 37H00 — 13H1,0 — 15Hoa — 53 Ha0 — 53Hoa + gHi + 5Hs0 + 15Hos
1 1 1 1 1 1 1 1
+ 5Han + gHia+ g Haa — 5Hi 5 — §Hsn — 5Has — 5 Hs4+ 5Hs 5
" 1 3 3 1r7A 1 1 3 3
bl ey = 7Hoo — $Hi0— $Hon + $HT — 7Hao — 7Houa+ 5H11 + $Hs0
sea T A 1 1 1 1 1 2 1
3 1 3 3 1 1 3 3
+ 3Hos — gHe + $Han + 3Hia — 3H7 + Hau — 5H1 5 — 5Hs
3 3 1 3
—4Has — $Hs4+ 3 Hs + 5H55
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Remark 1. The idempotents e, g, h, €2, €3 are primitive, as eBqe = Q, gBqg = Q,
hBqh=Q, e2Bge2 = Q and e3Bqe3 = Q.

We have the following multiplication table for the basis elements of Bq = Bq(S3, S3).

() | € beg b |boe | 9 |bon |bhe | bug | B |bocy |boey [Brey | € | Doyey  |€3| by |Bep |Beuh |Besen | €4 |Bopey | B
e | e by ben| 0| 0L O[O 0] 0 [bel 0|00 0 ofo ool o]o]o]o0
beg | 0| 0 [ 0 [ e |bog|bea| 0 [0 0] 0 [bel o]0 0 ofofofolofo]o]o
b | 0| 0 [ 0 [ 0] 0|0 [ e [boglbr| 0] 0 |boeyl 0 0 ofoflololofo]o]|o0
boe |boe| g [ 0] 0L O [0 0 [0 |be| 0|00 0 ofoflofolofo]o]o0
g L0 0|0 [byel g [ba| 0] 0] 0| 0 |Be!l 0] 0 0 ofoflolofofo]o]|o0
boa | 0| 0| 0 [ 0| 0|0 byl g b| 0|0 [bel| 0 0 ofofofofofo]o]o0
bre |bre | brg| B [ O] 0L 0[O0 [0 [0 [be| 0|00 0 ofofololo]o]o]|o0
big | 0| 0 | 0 [Baelbag| h | 0] 0| 0| 0 |bae| 0|0 0 ofofololo]o]o]o0
Bolo | 0|00 0/[0 [buelbig|h| 0|0 [buey| 0 0 ofofoloofo]o]o0
bee | O | 0|0 [0 o ofofofofo]o o]0 0 000 |0 0] 0 [be| 00
S T A T T A A 0 000|000 |be| 00
bieg | O] 00 0fofofololo|ofo]o0]o0 0 00 |0 0] 0 [bey| 00
s [0 0{o oo ofo[o]o[ 0] 00 ]|eal| byy [0fO]0]0[O0]0|[0]0
O T T T A A R 0 000 | 0| 0] 0 [byyl 00
s lojolofofofofolofolofo]o0]o0 0 slofofo]o]ololo
bere |bege | beyg [ besn | 0 | 0 L O [0 [0 [0 [t 0|0 [0 0 ofoflofolo]o]o]|o0
by | 0| 0| 0 [buyebepg b O [ 0 [ 0| 0 bl | 0 |0 0 ofofofolo]o]o]|o0
b | 0 [ 0 L0 [ 0| 0| 0 [beyelboyglbegn| 0 [ 0 [B.p| 0 0 ofofofolo]o]o]|o0
by | O [ O | 0 [0 L OO O[ 0] 0] 0| 0| 0 |[hoye|the—12[0[ 0000 |0]0]0
g fojofofofofofolofolofo]o0]o0 0 0 |Bepe | beyg | beg | begen | €2 [Bhyey [P,
A T T A T A 0 00 |0 0]0 [t 00
oo ofolofolofojofo]o o]0 0 00 00| 0 [t 00

We see that 3 is even a central element.

Lemma 2. Consider Q[n,&]/(n*,n&, &%) = Q[7,€], where & := & + (n*,n€, &%) and
7 =10+ (%1€, €%).
We have the Q-algebra isomorphism

p: Q& — eiBqes
7 = b
E N b,/547€4
€4,E4

Proof. Since 4B ey = qlea, b, o,, b, o,) is commutative and (0., _,)* =0, (b7, _,)* =

0andb., b7 . =0, the map u is a well-defined Q-algebra morphism.

€4,64€4,E4 2
As the Q-linear basis (1,7, &) is mapped to the Q-linear basis (4, b
bijective.

/
€4,E4) TE€4,€4

b? ), it is
]

Remark 3. The ring Q[7,&] is local. In particular, e4 is a primitive idempotent of Bq.

Proof. We have U(Q[n,£]) = Q[n, &\ (@,€), as for u := a + by + c£ the inverse is given
by u'=a"' —a"2by — a:zcg for a,b,c € Q, with a # 0. Thus the nonunits of Q7 ¢]
form an ideal and so Q[7,¢] is a local ring. O

To standardize notation, we aim to construct a Q-algebra A := € A, ; such that
i?j

A BQ(Sg, S3).
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In a first step to do so, we choose Q-vector spaces A;; and Q-linear isomorphisms
Yij: Aij = eiBqej fori,j € [1,4]. We define the tuple of Q-vector spaces

(Al,l ) A172 ) A1,3 ) A1,4 ) (Q3X3 ) 0 ) 0 ) Q3><1 )
Agr, Ao, Az, Ays, 0, Q, 0, Q,
Asy1, Az, Assz, Asza, = 0, 0, Q, 0,

A4,1 s A4,2 ; A4,3 ) A4,4) Q1X3 ) Q ) 0 ’ Q[ﬁaa) ;

cf. Lemma 2.

We have v, = 0 for (s,t) € {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,4),(4,3) }.
Let

~

71 A — e1Bqer

L1 Ti2 T13 r1,1€ + 7"1,2be,g + r1,3be,h
ro1 T22 T23 e 7“2,1bg,e + 72,29 + 742,3bg,h ’
rs1 T32 733 + 731bpe + T32bng + T330
1,4 : A1y = e1Bqges

Uy ulbe,€4

uo = + Ugbg7€4

u3 + usbpe,
Y2,2 : A272 — €2 BQ £9 V2,4 : A274 — €2 BQ 4
) )
u = ue U > Ubey ey
73,3 : A3z — e3Bqes

Y

u UE3
V4,1 : A471 — €4BQ€1

)
(Ul V2 Ug) = U1b54,e +U2b54,g + U3b54,h

V4,2 . A4’2 i> €4 BQ €9
U = ubey e ’
L.2 ~
Y44 = W A4,4 — €4 BQ €4
a+bn+cE — agy +bbL, _ + b’

€4,€4 €4,€4°

Let 8 : Bq x Bq — Bq be the multiplication map on Bq. Write

.. ._ pgfiBaek . . . .
ﬁz,],k = ’8|€z‘BQ€jX€jBQ€k .6ZBQ€J X & BQ&k —>51BQ5k .

Now, we construct Q-bilinear multiplication maps «; j, for 4, j, k € [1,4] such that the
following quadrangle of maps commutes.

Qi g,k

Aij X Ajg Ak
Yi,j X’Yj,kl 'Yi,kl
Bi gk
e;Bqej X ejBqer d g;Bq ek

Le. we set ; j 1 == qfl_kl o fBi ik o (Vij % k). This leads to
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r (i,k) is contained in
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{(1,2),(1,3),(2,1),(
o111 "
1,14 :
14,1 =
1,44
222
224
242
244
03,33
04.1,1
41,4
04,22

=0

c A1
1 Ao
1 Ao o
=0

. A274
: A373
. A471
. A471
. A472

x Aga — Ar g, (u,
X A272 — A272, (u,
x Ay g — Asy, (u,

X A474 — A274, u,

x Az 3z — As3, (u,

X AQ}Q — A472,

)

2,3),(3,
A11><A11—>A11, (X,
A11><A14—>A14, (X, )*—)XU

1),(3,2),(3,4), (4,3)}
Y)— XY

a+ b+ cf) — ua
V) = U
V) = U

+ b7 + c€) — ua

a
V) = U

X A171 — A471, U,X) — vX

)
v)
)

. A472
. A474
. A474

04,24
0441
04,42
04,44

X Ao g — Ay,
X A471 — A471, a+bn+c§, ) = av
X A472 — A472, (a +b77 +C§, ) = av
cAgax Agg — Aga, (a+ b7+ cE, a+ b+ )

(
(
(
X A174 — A474, Ev,u
(u
(

where a, b, ¢, a, b,é € Q

u,v) = uv(€ — 127)

(a+ b7+ c€) - (a+ brj+ é€)

For convenience, we fix a notation similar to matrices and matrix multiplication.

Notation 4. Suppose given r € Z>q.

We write

D M

i,J€[L,r]

Proposition 5. Let

A

_ | Az
e @ A |
ijel1,d] A

Define the multiplication

A X
(laigliy

M 1 M o
Ms 1 M o
Mnl MT,Z

Suppose given R-modules M; ; for i,j € [1,r].

Ml,’r‘
M2,T

MT,T
Accordingly, elements of this direct sum are written as matrices with entries in the
respective summands, i.e. in the form [m; j]; ; with m; ; € M; ; fori,j € [1,r].

0 0 Q3><1
Q 0 Q

0 Q 0
Q 0 Q¢

A1p A1z Aig Q33
Agp Azz Agg _ 0
Azs A3z Azy 0
Ao Asz Asa Q3
A — A
lagdse) = [ 2 @irg(air, r])] iJ

re(l,4]

We obtain a Q-algebra isomorphism

[ai5]ijen )

/N Bq(Ss,S3)

H
,5€[1,4]

Z 'Yi,j(ai,j) :

4.2. Bq(S3,S3) as path algebra modulo relations. We aim to write
BQ = BQ(S37S3) = A ;

up to Morita equivalence, as a path algebra modulo relations.
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We denote by e; ; € A1 = Q3*3 the elements that have a single non-zero entry 1 at
position (4, j). We have a1, := v e) = e1,1 € QY3 C A v lg) = €29 € Q33 C A,
v l(e) = e33 € Q33 C A and ayy, := v !(e) for k € [2,4], cf. Proposition 5.

We have Aaj 1 = Aeyo as A-modules, using multiplication with ej o from the right
from Aai; to Aeys and multiplication with ep; from the right from Aeso to Aaq ;.
Note that e;2e21 = a1,1 and eg 1 e 2 = ez 9. Similarly Aa;; = Aess.

Therefore, A is Morita equivalent to

A= ( Z a;i)A( Z ai;) = @ ai;Aajj = @ i iAija;j -

i€[1,4] i€[1,4] ijel1,4] i,j€[1,4]

Write A;,j = ai,iAi,jajJ = Ai,j fori,j € [2,4].

Q
Identify A7, :=Q = ( 8

o O o

0

_ _ ()3x3
0 ) =ai1A101,1 € A = Q7.
0

Q
Identify All,4 = Q = < 0 ) = a171A174a4’4 Q A174 = QSXl.
0
Identify Aﬁu =Q=(Q 0 0)=ag4A41a11 C Ag; = Q3. Let All,j = 0 and
ALy =0 for j € [2,3].
We have the Q-linear basis of A’

100 0 00 0 0 00 0 0
00 0 0 010 0 00 0 0

00 00 0l ™ T oo o0 ol ™ T o010
(0 0 0 0] 0 0 0 0] 00 0 0]
[0 0 0 0] [0 0 0 1] [0 0 0 0]
00 0 0 00 0 0 00 0 0

“EZ 0 0 0 ol ™ T oo 0 ol ™ T o0 0 o0
(0 0 0 1] 0 0 0 0] 10 0 0]
[0 0 0 0] [0 0 0 0] [0 0 0 0]
00 0 1 000 0], 00 0 0

20 0 0 ol ™ T o0 0 ol ™ T o0 0 o0
(0 0 0 0] (0 1 0 0] 000 0 7
[0 0 0 0]

, |0 0 0 0

“aT 0 0 0 0
0 0 0 &)
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We have the following multiplication table for the basis elements.

() |a1,1]a1,4]a22 as 4 az3|as1|asz|asa|ay | ay,
G1,1a1,1 01,4 0O/ 0]0|0]0]|O0
aral 0100 0 0100 faalo]o
aza| 0| 0 azs|  asa olololo]olo
azal 01 0|0 01010 lazal o]0
ass| 0] 0] 0 0 ass| 0 | 0] 0]o0]0
as1|as, aQLA 0 oOoj0|]0]0]O0]O
asa| 0 | 0 |aso|aj,—12a,| O | 0O | O | O | O | O
asa| 0 | 0 | O 0 |a41|as2|aa4 ail,4 aZA
digl 0] 0]0 000 aolo
disJololo oo |ola,olo

We have a) , = as1-a14 and @)y = as2 - a24 + 12a4 ;1 - a1 4 . Hence, as a Q-algebra
;.
A’ is generated by a1,1,022,033,044,01,4,04,1,024,042 -

g s
X . _ ~ N ~ LT ~
Consider the quiver ¥ := | a33 a2,2 4,4 a1
S— N~ T
9 p

We have a surjective Q-algebra morphism ¢ : Q¥ — A’ by sending
a1 = a1, G2 > a2 , G33 > a3z , Q44 > Ga4
p = a1 , T = aa , Y = asp , 0 > azy
We establish the following multiplication trees, where we underline the elements that
are not in a Q-linear relation with previously underlined elements.

A1, g A4~ A1404,1 = 0 a2 aaa 024~ (24042 = 0
a4,2\L a4,1\L
ay4a42 =0 azsa41 =0
a4.4
a4y \ a4
" 12 , B aq,1 /\ , _
(a4 — 120} 4)as1 =0 agp Aa) 041014 — > @ 4041 =0
az 4
aq,1 a4,2\L
/
4,202 4 ay 4042 =0

a4,2\L

(‘IZA —12aj 4)as2 =0

The multiplication tree of the idempotent a3z 3 consists only of the element ag 3.
So the kernel of ¢ contains the elements:
™ , od , prp , Vop,
™ , op , prd , Vol .
Let I be the ideal in Q¥ generated by those elements. So I C kern(y). Therefore, ¢
induces a surjective Q-algebra morphism from QW /I to A" .
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Note that Q¥/I is Q-linearly generated by
N:={agsg+I1,a0+lasa+1, 011+ Lo+, n+1,9+1,p+1,90+1, pr+1},

cf. the underlined elements above. To see that, note that a product £ of k generators
may be written as a product in N of k' generators and a product of k” generators,
where k = k' + k" and where £’ is chosen maximal. We call k" the excess of . If k¥’ > 1
then, using the trees above, we may write £ as an Q-linear combination of products of
generators that have excess < k” — 1. In the present case, we even have £ = 0.

Moreover, note that |N] =10 = dimgq(A4’).

Since we have a surjective Q-algebra morphism from QU/I to A’, this dimension
argument shows this morphism to be bijective. In particular, I = kern(y).

We may reduce this list to obtain kern(y) = (7p, 0¥, 79, op).

So we obtain the

Proposition 6. Recall that I = (mwp, 00,7, 0p). We have the isomorphism of Q-algebras

g K

TN VS
A =S Q| asgs a22 (4.4 aiy | /1=Q¥/I
N— ~_ 7
9 4

aijl (~Z171 + 1

aso C~L272 +1

azz +— agzz+1

as4 C~L474 +1

agq1 +— p+1

ayjqg = T +1

aq2 9+ 1

a4y +— O+ I.

In particular, Q¥ /I is Morita equivalent to A = Bq(Ss,S3).

5. THE DOUBLE BURNSIDE R-ALGEBRA Bp(Ss,S3) FOR
R €{Z,Z),F2,Z3),Fs}

5.1. Bz(Ss3,S3) via congruences. Recall that
A= A =B
‘ @ irj 7) Q>
i,j€[1,4]

cf. Proposition 5. In the Q-algebra A, we define the Z-order

Azin Azji2 Azi3 Azaa zZz3>3 0 0 zZ3!
Ay — Azp1 Azpz Azoz Azosa| | 0 Z 0 Z cA
z2 AZ,3,1 AZ,3,2 AZ,3,3 AZ73’4 a 0 0 Z 0 T )
Azan Azar Azasz Azaa Z>3 7 0 Zn¢

In fact, Az is a subring of A, as a; jx(Az,;; X Az i) € Az, for i,j,k € [1,4].

Remark 7. As A = Bq is not semisimple, there are no maximal Z-orders in A, [8,
§10]. So Az is not a canonical choice of a Z-order in A, but it nonetheless enables us
to describe A inside Az via congruences.
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Consider the following elements of U(A).

[0 —2
6 6
0 0
L= 10 o0
0 0
0 0

We define the injective ring morphism é : By — A, y — :U:,:l -x;l xy

0000
4000
1000
0100
0010
0001

To

OO OO O

SO O N+~ O

SO O = OO
SO, OO O
O OO OO
_ o oo oo
OO OO O

1

OO OO~ O

SO O = OO

SO = OO O

O OO OO
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_ o O = OO

A N y)zr-woas

The conjugating element x1 was constructed such that the its image lies in Az. The
elements x9, 3 serve the purpose of simplifying the congruences of §(Bz).

Theorem 8. The image §(Bgz) in Az is given by

(

A :=0(Bz) =

s1,181251,3 0 0 t1
52,1 52,2 52,3 8 8 ? Ty =40
53,1 53,2 53,3 3 . =, 0
00 0 u 0 v SAzomo T
0 0 0 0 w 0 B y =, 0
| x1 22 w3y 0 21+ 20m + 23 | t =, 0
to =0
t3 =0
v =9 0
T =3 0
9 =3 0
T3 =3 0
Z9 =3 0
In particular, we have Bz = Bz(S3,S3) = A as rings.
More symbolically written, we have
Z Z Z 0 0 (2
Z Z Z 0 0 (2
Z Z Z 0 0 (2
0 0 0 Z 0 (2 )
/_2\
0 0 0 0 Z 0
ﬁ
(12) (12) (12) (20 0 Z +(12)5 +(4)¢

Proof. We identify Z??*! and Az along the isomorphism

t
<81,1,82,1,83,1,81,2,82,2753,2781,3782,3783,&) —

Ty, $27$37Uay7w7t17t27t37va 21,22, %23

s1,1 S1,2 8130 0
82,1 S22 823 0 0

53,1 32 833 0 0
0 0 0 w0
0 0 0 Ow

(31
to
t3
v
0

|z w2 w3y 0 21+ 27 4 23€ |

2w — 221 =8 %2 =4 23 E4O
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Let M be the representation matrix of d, with respect to the bases
H = (Ho,0.Ho,1,H1,0,H{ Ho,Hyo,H{ \Hy 1, Ho5,Hs 0, Hr Hy 4, Hyy He HE Hy 4,
Hs1,Hy5,Hs 4,Hs 5,Hg,Hs 5) of Bz and the standard basis of Ag.

We obtain that M =

0 0 15 -3 0 20 8 6 0 25 7 9 8 -3 1 12 10 3 15 4 3 5
0 0 —18 0 0 —24 0O -9 0 —-30 —12 -6 —12 0 o -8 —-15 -3 —-10 -4 —-4 -5
0 0 126 —6 0 168 12 60 O 210 78 48 80 —6 0 64 100 21 80 28 26 35
-5 -2 —60 9 -3 —-55—-23 —24—-1 -85 —16 —36 —22 10 0 —-33 —-34 —12 —-51 —11 -5 —17
6 3 72 3 2 66 2 36 1 102 33 24 33 1 1 22 51 12 34 11 11 17
—42 —20-504 2—16 —462—46—-240—7 —714—-208—-192—-220 15 0—176—-340 —84—-272 —77 —65-—119
0 0 —10 2 O -10 -4 -4 0 —-15 -3 -6 —4 2 o -6 -6 -2 -9 -2 -1 =3
0 0 12 0 0 12 0 6 0 18 6 4 6 0 0 4 9 2 6 2 2 3
0 0 —84 4 0 —84 —6 —40 0 —126 —38 —32 —40 4 1 —32 —60 —14 —48 —14 —12 —21
0 0—756 36 0—1008—-72—-360 0—1260—468 —288 —480 72 0—384—-600—108 —480—144—120—180
252 120 3024 —12 96 2772 276 1440 36 4284 1248 1152 1320 —228 0 1056 2040 432 1632 396 252 612
0 0 504-—24 0 504 36 240 O 756 228 192 240 —48 0 192 360 72 288 72 48 108
0 0 0 1 0 0 0 00 0 1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0o -2 0 0 0 0 0 0 -2 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 —10 2 0O —-10 -4 -4 0 —-10 -4 -6 -4 2 o -6 -4 -2 -6 -2 -2 =2
0 0 12 0 0 12 0 6 0 12 6 4 6 0 0 4 6 2 4 2 2 2
0 0 —84 4 0 —84 —6 —40 0 —84 —40 —32 —40 4 0 —32 —40 —14 —32 —14 —14 —14
0 0 0 0 0 0 0 0 0 0o -2 0 0 0 0 0 0 0 0 0o -2 0
0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 504—24 0 504 36 240 O 504 240 192 240 —48 0 192 240 72 192 72 24 72
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
Let
511 s12 s13 0 0 41
s21 S22 s23 0 0 to
N | S31 S32 833 0 O 13 cA
0 0 0 wu 0 v Z
0 0 0 0 w 0
| r1 2 w3 oy 0 21+ 290+ 238 |
identified with \ € Z22*1,
We have A € A
& 3 g € Z2*! such that A = Mg
& 3 qeZ® such that M~1-\=g¢q
& 24M1 .\ € 24722%1
and this is equivalent to
51,1
821
53,1
0000000002000 00 0 0 0 0 000 :
0000000000200 00 0O 0O O O 00O 53,3
0000000000020 00 0 0 0 0 000 1
0000000000000120 0 0 0 0 000 T2
0000000000000 06 0 0 0 01810 T3
0000000000000 0012 0 0 0 000 u € 247111
0000000000000 00 012 0 0 00 0 y
0000000000000 00 O 012 0 000 w
0000000000000 00 0 O 012 000 t
0000000000000 00 0 O 0 0O 020 to
0000000000000 00 O O O O 0O0G6 ts
v
21
22
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and hence equivalent to

'2w—221 =8 22 =4 23 =4 0
I =4 0
X9 =4 0
I3 =4 0
Yy = 0
t1 =2 0
to =2 0
t3 =2 0
[ =9 0
T =3 0
xTo =3 0
T3 =3 0

L z9 =3 0

5.2. Localisation at 2: Bz(2>(83,83) via congruences. Write R := Z(Q). In the
Q-algebra A, cf. Proposition 5, we have the R-order

AR,l,l AR’LQ AR7173 AR7174 R3><3 0 0 R3X1
Ap = Ar21 Ar22 Aras Ar2a | _ | 0 R 0 R c A
e Ar31 Ars2 Arss ARgsa 0 0 R O | T )
ArRa41 Ara2 ArRa3 ARau R R 0 R[]

Corollary 9. We have

( _51:1 s12613 0 0 b 2 — 221 =g 29 =423 =40

S2.1 822 $23 0 0 12 r1 =40
s31 832833 0 0 t3 cAdp: T2 =40
0 0 0 u 0 v vs =y 0
L 71 22 w3y 0 21+ 22 + 238 | th =20
to =0
t3 =0

v =92 0 )

In particular, we have Bg = Br(Ss3,S3) = A(9) as R-algebras.
More symbolically written, we have

R R R 0 0 (2
R R R 0 0 (2
R R R 0 0 (2

Ap) =
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Remark 10. We claim that 1A(2) = e;+ea+tez+estes is an orthogonal decomposition
into primitive idempotents, where

100000 000000 000000
000000 010000 000000
000000 000000 001000

€1 = €y = €3 !
000000 000000 000000
000000 000000 000000
(00000 0] (00000 0] 000000
(00000 0] (00000 0]

000000 000000
000000 000000

€4 = €5 =
000100 000000
000000 000010
(00000 0] (00000 1]

KRAUSS

Proof. We have e; A(Q) e1 2 R, e A(Q) €9
follows that eq, eq, e3,e4 are primitive.
As R-algebras, we have

= R, €3 A(Q) ez = R and €4 A(Q) eq = R. SO, it

e5 A(g)e5 = {(w, zl—i—zQﬁ+zgg) € RX R[7,&] : 2w — 221 =g 29 =4 23 540} =T

C R x R[7,&] .

To show that es is primitive, we show that I' is local.
We have the R-linear basis (b1, be, b3, by) of ', where

by = (]-a 1)7 by = (Oa 2+4ﬁ)7

bs = (0, 87 ), by = (0, 46) .

We claim that the Jacobson radical of I' is given by J :=
I'/J = F9 and that T is local.

R(2b1, b2, b3, by), that

In fact, the multiplication table for the basis elements is given by

() | b1 b2 by | b4
by | b1 b b3 by
by | by | 2by + b3 | 2b3 | 2Dy
bs | b3 2b3 0 0
by | by 204 0[O0

This shows that J is an ideal. Moreover, J is topologically nilpotent as

J3 = R<8b1,4b2,2b3,4b4> - 285 A(Q) €5 .

Since I'/J = F4, the claim follows.
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5.3. BZ(2)<83, S3) and B, (S3,S3) as path algebras modulo relations. Write

R :=Z,). We aim to write A(y), up to Morita equivalence, as path algebra modulo rela-
tions. The R-algebra A (y) is Morita equivalent to A’(2) = (e3+es+e5)A(g)(e3 +es+e5)
since A(g) e1 = A(g) e = A9 e3 using multiplication with elements of A () with a single
nonzero entry 1 in the upper (3 x 3)-corner.

We have the R-linear basis of A’(Q) consisting of

(00000 O] (00000 O] (00000 O]
000000 000000 000000
e3:001000 e4:000000 e5=000000
0000O0O0]" 000100 00000O0]"
000000 000000 000010
000000 000000 000001
(00000 O] (00000 O] (00000 O]
000000 000000 000000
Tl_zoooooo 72_:000002 73_:000000
‘ 00000O0O]| 2" 00000O0O]| 3" 0000O0O0]"
000000 000000 000000
(00400 0] (00000 0] (00020 0]
(00000 0] (00000 0]
000000 00000 O
74_:000000 S 00000 O
' 000002/ 00000 0]
000000 00000 O
(00000 0] (00000 87|
[0 0000 0] o 0000 0 ]
00000 O 00000 O
TG:oooooo _._ 00000 0
00000 O} 00000 O
00000 O 00000 O
00000 4 (00000 2447

We have 175 = 179 and 74 = 7374 + 671 79. Hence, as an R-algebra A’(Q) is generated
by es, eq, €5, T1, T2, T3, T4, T7.

Consider the quiver ¥ := | €3 &5 3%7 &4

/

We have a surjective R—alg;:bra morphism ¢ : RV — /i(2) by sending

égr—>e3,é4r—>e4,é5r—>e5,ﬁv—>7’1,
7~'QP—>T2,7~'3P—>T3,7~'4i—>T4,7~'7'—>7’7

We establish the following multiplication trees, where we underline the elements that
are not in an R-linear relation with previous elements.
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€3 T2 2 Ty 7211 =0 €4 T4 T4 T1 nm =0
VN VN
7 7
973 =0 ToT7 = 2Ty 473 =0 TAT7 = 274
T2 =21 + 1T
I
1
TiTL = 271 T > TIT3 = 273
I
€5
/ - \
1
T3 T > T2 > T1T273 = 0

) .

T3T4 —>7_3 7’37’47’3:0 7’17’27’7:27'17'2 7'17'27’120

i
7 T34 = 0

T3TATy = 27374

So, the kernel of ¢ contains the elements:

ToT1 ) TAT1 , T1ToT1 , T3T4T1 , T7T1 — 271,
ToT3 ) TAT3 , T1T2T3 ; T3T4T3 ; T7T3 — 273,
ToTr — 2T, T4T7 — 274 , T1ToTy — 2T\Te , 737477 — 27374 7~'72 — 277 — T1To .

Let I be the ideal generated by these elements. So I C kern(y). Therefore, ¢ induces a

surjective R-algebra morphism from R¥/I to A’(Q) . We may reduce the list of generators

to obtain
I = (RoF1, aT1, TrT1 — 271, ToTs, TaTs, T — 273, Tofr — 2%, uTy — 274, 77 — 277 — 1) .
Note that R¥/I is R-linearly generated by

N:: {é3+17é4+17é5+la7~—1+Ia7~—2+Ia7~_3+-[77:4+I,7:7+I77:37~—4+Ia7~—17:2+I},

cf. the underlined elements above. To see that, note that a product & of k generators
may be written as a product in V of &’ generators and a product of k" generators, where
k = k' + k" and where k' is choosen maximal. We call k" the excess of £&. If k¥’ > 1
then, using the trees above, we may write £ as an R-linear combination of products of
generators that have excess < k" — 1. Moreover, note that |N| =10 = rkR(Azz)).

Since we have a surjective R-algebra morphism from RV/I to A’(2), this rank argu-

ment shows this morphism to be bijective. In particular, I = kern(yp).
So, we obtain the

ToT1 ; ToT3 ; ToT7 — 2Ty,
Proposition 11. Recall that I = TAT1 , TATS , ToT7 — 274,
T — 271, Ty73 — 2Ty %72 — 2T — T T

We have the isomorphism of Zs)-algebras
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AQQ) — R | &3 é53’?7 €4 /[

e, — &+1 foricl3,5]
7 — T+1 forje1,7]\{5,6} .

Recall that Bz<2> (S3,S3) is Morita equivalent to A’(Q) .

Corollary 12. As Fy-algebras, we have

T4
T ~ ~ ~ ~ ~ ~
o /\\ T2T1 5 T2T3 T2T7,

Ag)/2M(5) = Fa | & é53?7 & | /| T . T3, TaTr,

\ ~ o~ ~ o~ ~2 ~ o~
\%/ \/ T, TiTy o, Tp — T

Recall that By, (Ss,S3) is Morita equivalent to A’(z)/QA’(Q).

5.4. Localisation at 3: BZ<3>(S3,83) via congruences. Write B = Z3). In the
Q-algebra A, cf. Proposition 5, we have the R-order

Ari1 Ari2 Ariz ARrja R¥>3 0 0 R¥!
Ap = Ar21 Ar22 Aras Ar2a| _ | 0 R 0 R cA
" | Ar3yn Arz2 Arzs Arza 0 o R 0 |77
Ar41 Ara2 Ara3z ARau R R 0 R[7¢]
Corollary 13. We have
(([s11512513 0 0 t i )
5§21 52,2523 0 0 to T 530
. 53,1 53,2 53,3 0 0 t3 . I2 530
A = 00 0 u 0 v €Ar: oS4
00 0 0 w o 29 =30
| x1 22 w3y 0 21+ 20m + 23 | J
In particular, we have Br = Bg(S3,S3) = A(3) as R-algebras.
More symbolically written, we have
R R R 0 0 R 1
R R R 0 0 R
R R R 0 0 R
A =
0 0 0 R 0 R
0 0 0 0 R 0
3 B (B R 0 R +(3)7 +RE]
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Remark 14. We claim that lA(3> =e; +ey+e3+eq+es5+eg is an orthogonal decom-

position into primitive idempotents, where

€1 :

e4 :

SO OO O

OO OO OO

OO OO OO

OO OO OO

OO OO OO

OO OO OO

OO OO OO

OO, OO O

OO OO OO

OO OO OO

OO OO OO

OO OO OO

€o

€5

SO OO OO

OO OO OO

SO OO+ O

OO OO OO

OO OO OO

OO OO OO

KRAUSS

OO OO OO

OO OO OO

OO OO OO

O OO OO

OO OO OO

OO OO OO

€3

€6

SO OO OO

SO OO OO

SO OO OO

OO OO OO

[Nl ol

SO OO OO

SO OO OO

OO OO OO

OO OO OO

OO OO OO

OO OO OO

— o oo oo

Proof. We have es A(3)es = R for s € [1,5]. Therefore it follows that ej, es, e3, ey, e5 are
primitive.
To show that that eg is primitive, we claim that the ring eg A(3)es = R[7, €] is local.
We have U(R[7,€]) = R[7,€]\ (3,7,€) . In fact, for u := a+ b7 + c€ with a € R\ (3)
and b, ¢ € R, the inverse is given by «™' = a~! — a72bi — a~ ¢ as

wut =aat + (a0 +a )+ (—a e +aT g =1

Thus the nonunits of R[7,£] form an ideal and so R[7, €] is a local ring. This proves
the claim. O

5.5. Bz(g)(Sg, S3) and By, (S3,S3) as path algebras modulo relations. Write R :=
Z(3). We aim to write A(3), up to Morita equivalence, as path algebra modulo relations.
The R-algebra A3y is Morita equivalent to A23) = (e3 +eq+e5+eg)A3)(e3+eq+e5+eg)
since A(3)e1 = A(z) ez = A(3) e3 using multiplication with elements of A(3) with a single
nonzero entry 1 in the upper (3 x3)-corner. We have the R-linear basis of A’(g) consisting
of
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We have 75 = 1y and 74 = 1374 + 47172 . Hence, as an R-algebra A'(g) is generated by

€3,€4,€5,€6,71,72,73,7T4 -

T2 T4
. . B B /-\ B /_\ B .
Consider the quiver ¥ := | &5 €3 €g €4 | . We have a surjec-
\_’/ \~/
T1 T3

/

tive R-algebra morphism ¢ : RV — A(3) by sending

égi—>63,é4He4,é5i—>e5,é6i—>66,
%1*—)71,%2*—)7’2,%3*—)7’3,71*—)7’4

We establish the following multiplication trees, where we underline the elements that
are not in an R-linear relation with previous elements.
The multiplication tree of the idempotent e; consists only of the element e5.

4 ——F—> T4 T3 =0 @ —FF T ST =0

" ~

411 = 0 ToT3 = 0
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€6
T3
1
T2
33 =0 73 1 T1TY > TIT2T1 = 0
T3 T3
T3T4 717273 = 0
Tli
31471 =0

So the kernel of ¢ contains the elements:
TaT1, TAT3, T2Ti, ToT3, T3T4T3, T2T3, T3T4Ti, T1T2T3, T1T2T1 -

Let I be the ideal generated by these elements. So, I C kern(yp). Therefore, ¢
induces a surjective R-algebra morphism from R¥/I to A’(3) We may reduce the list
of generators to obtain I = (7473, T4T1, ToT1, ToT3).

Note that R¥/I is R-linearly generated by

N = {é3+[,é4+],é5+],éﬁ + 1.7 +I,7~'2+I,7~'3+I,7~'4+I,7~'37~'4+[,7~'17~'2+I},
cf. the underlined elements above. To see that, note that a product £ of k generators
may be written as a product in N of k’ generators and a product of &” generators,

where k = k' + k” and where k" is choosen maximal. If k¥ > 1 then, using the trees
above, we have £ = 0. Moreover, note that |N| =10 = rkR(A’(3)).

Since we have an surjective algebra morphism from RW¥/I to A’(g), this rank argument

shows this morphism to be bijective. In particular, I = kern(y).
So, we obtain the

PI’OpOSitiOIl 15. Recall that I = (7:4%3, 7~'27~'17 7:47:1, 7~'27~'3).
We have the isomorphisms of R-algebras

/\/\
\/\/

e émlffome[s,ts]
i +— T+ 1 foriell,4]

Recall that Bz, (Ss,S3) is Morita equivalent to A’(3).

Corollary 16. As F3-algebras, we have

/\/\

A/(3)/3/\/(3) =F; | & [(TaT3, TaTi, ToT1, ToT3) .

\/v

Recall that By, (Ss,S3) is Morita equivalent to A’(g)/?)A’(g) .
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