The integral double Burnside ring of the symmetric group S_3

NORA KRAUSS

ABSTRACT. The double Burnside R-algebra $B_R(G,G)$ of a finite group G with coefficients in a commutative ring R has been introduced by S. Bouc. It is R-linearly generated by finite (G,G)-bisets, modulo a relation identifying disjoint union and sum. Its multiplication is induced by the tensor product. In his thesis at NUI Galway, B. Masterson described $B_Q(S_3,S_3)$ as a subalgebra of $\mathbf{Q}^{8\times 8}$. We give a variant of this description and continue to describe $B_R(S_3,S_3)$ for $R \in \{\mathbf{Z},\mathbf{Z}_{(2)},\mathbf{F}_2,\mathbf{Z}_{(3)},\mathbf{F}_3\}$ via congruences as suborders of certain R-orders respectively via path algebras over R.

1. Introduction

1.1. **Groups.** Groups describe symmetries of objects. That is to say, any mathematical object X has a symmetry group, called automorphism group $\operatorname{Aut}(X)$, consisting of isomorphisms from X to X. For instance, for a natural number n, the set $\{1, 2, \ldots, n\}$ has as automorphism group the symmetric group $\operatorname{Aut}(\{1, 2, \ldots, n\}) = S_n$. This group consists of all bijections from $\{1, 2, \ldots, n\}$ to itself. For example, we obtain

$$S_{3} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

$$= \left\{ id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2) \right\}.$$

In the first row, $\begin{pmatrix} 1 & 2 & 3 \\ a & b & c \end{pmatrix}$ is the map sending $1 \mapsto a, \ 2 \mapsto b, \ 3 \mapsto c$.

In the second row, we have used the cycle notation, e.g. $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1, 3, 2)$, the latter meaning $1 \stackrel{\frown}{\longrightarrow} 3$.

We multiply by composition, e.g. $(1,2) \bullet (1,3) = (1,2,3)$.

By a theorem of Cayley, any finite group is isomorphic to a subgroup of S_n for some n.

1.2. The Biset category and biset functors. Suppose given finite groups H and G. An (H,G)-biset X is a finite set X together with a multiplication with elements of H on the left and a multiplication with elements of G on the right that commute with each other, i.e.

$$(h \cdot x) \cdot g = h \cdot (x \cdot g) =: h \cdot x \cdot g$$

for $h \in H$, $g \in G$ and $x \in X$.

As a first example, $M_1 := S_3$ is a (S_2, S_3) -biset via multiplication in S_3 . So for $h \in S_2 = \{id, (1, 2)\}, g \in S_3$ and $x \in M_1$ we let $h \cdot x \cdot g := h \bullet x \bullet g$.

As a second example, consider the cyclic group $C_3 = \{id, (1,2,3), (1,3,2)\}$ and the group isomorphism $\alpha: C_3 \to C_3$, $x \mapsto x^2$. Then the set $M_2 := C_3$ is a (C_3, C_3) -biset,

 $^{2020\} Mathematics\ Subject\ Classification.\ 19A22.$

Key words and phrases. double Burnside ring, symmetric group, path algebra.

Received on 3-9-2020; revised 15-10-2020.

on the left via multiplication, on the right via application of α and then multiplication. E.g.

$$\begin{array}{rcl} (1,2,3) \cdot (1,3,2) \cdot (1,3,2) & = & (1,2,3) \bullet (1,3,2) \bullet \alpha((1,3,2)) \\ & = & (1,2,3) \bullet (1,3,2) \bullet (1,2,3) \end{array} \quad = \quad (1,2,3) \; .$$

Suppose given a commutative ring R. S. Bouc introduced the biset category Biset_R, see [5, §3.1], see also the historical comments in [5, §1.4]. As objects, the category $Biset_R$ has finite groups. The R-module of morphisms between two finite groups Hand G is given by the double Burnside R-module $\operatorname{Biset}_R(H,G) = \operatorname{B}_R(H,G)$, which is R-linearly generated by finite (H, G)-bisets, modulo a relation identifying disjoint union and sum. In particular, each (H,G)-biset M yields a morphism $H \xrightarrow{[M]} G$ in Biset_R. Composition of morphisms in $Biset_R$ is given by a tensor product operation on bisets that is similar to the tensor product of bimodules. Given an (H,G)-biset M and an (G,K)-biset N, we write $M\underset{G}{\times}N$ for their tensor product, which is an (H,K)-biset. So in Biset_R , we have the commutative triangle

The category $Biset_R$ may roughly be imagined by a picture like this.

Here, A₄ is the alternating group on 4 elements. Each biset yields an arrow, and so does each R-linear combination of bisets. Of course, there are many more objects in $Biset_R$ – each finite group is an object there – and many more arrows between them that are not in our picture.

1.3. Biset functors. Let \mathcal{X} and \mathcal{Y} be classes of finite groups closed under forming subgroups, factor groups and extensions. Following Bouc [3, §3.4.1], we say that an (H,G)-biset M is $(\mathcal{X},\mathcal{Y})$ -free if for each $m \in M$ the left stabilizer of m in H is in \mathcal{X} and the right stabilizer of m in G is in \mathcal{Y} . We have the subcategory $\operatorname{Biset}_{R}^{\mathcal{X},\mathcal{Y}}$ of Biset_{R} : As objects, it has finite groups. The R-module of morphisms in $\operatorname{Biset}_{R}^{\mathcal{X},\mathcal{Y}}$ between two finite groups H and G is given by the submodule of $B_R(H,G)$ generated by the images of $(\mathcal{X}, \mathcal{Y})$ -free (H, G)-bisets, cf. [3, Lemme 4].

Certain classical theories may now be formulated as contravariant functors from $\operatorname{Biset}_R^{\mathcal{X},\mathcal{Y}}$ to the category of R-modules, called *biset functors* over R.

Consider a prime number p. Let \mathcal{X} be the class of all finite groups. Let \mathcal{Y} be the class of finite groups whose orders are not divisible by p. Then e.g. the (S_2, S_3) -biset M_1 and the (C_3, C_3) -biset M_2 from §1.2 yield morphisms in Biset $_{\mathbf{Z}}^{\mathcal{X}, \mathcal{Y}}$. Suppose given an object of Biset $_{\mathbf{Z}}^{\mathcal{X}, \mathcal{Y}}$, i.e. a finite group G. Let

$$\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z} = \{0, \dots, p-1\} ,$$

where we agree to calculate modulo p. An \mathbf{F}_p -representation of G is a finite dimensional \mathbf{F}_p -vectorspace V, together with a left multiplication with elements of G. Such a representation is called simple if it does not have a nontrivial subrepresentation. Each representation has a sequence of subrepresentations with simple steps, called composition factors.

Let $\operatorname{Rep}_{\mathbf{F}_p}(G)$ be the free abelian group on the set of isoclasses of simple representations. Each \mathbf{F}_p -representation V of G yields an element [V] in $\operatorname{Rep}_{\mathbf{F}_p}(G)$, namely the formal sum of its composition factors. Given finite groups H and G and an (H, G)-biset M, we obtain the map

$$\operatorname{Rep}_{\mathbf{F}_p}(G) \xrightarrow{\operatorname{Rep}_{\mathbf{F}_p}([M])} \operatorname{Rep}_{\mathbf{F}_p}(H) \\ [V] \mapsto [\mathbf{F}_p M \underset{\mathbf{F}_p G}{\otimes} V] ,$$

using the usual tensor product over rings.

These constructions furnish a contravariant **Z**-linear functor $\operatorname{Rep}_{\mathbf{F}_p}$ from $\operatorname{Biset}_{\mathbf{Z}}^{\mathcal{X},\mathcal{Y}}$ to the category of **Z**-modules, i.e. to the category of abelian groups. In particular, using the bisets M_1 and M_2 from §1.2, we obtain the maps

$$\operatorname{Rep}_{\mathbf{F}_p}(S_3) \xrightarrow{\operatorname{Rep}_{\mathbf{F}_p}([M_1])} \operatorname{Rep}_{\mathbf{F}_p}(S_2) \\
[V] \mapsto [\text{restriction of } V \text{ to } S_2]$$

and

$$\operatorname{Rep}_{\mathbf{F}_p}(\mathbf{C}_3) \xrightarrow{\operatorname{Rep}_{\mathbf{F}_p}([M_2])} \operatorname{Rep}_{\mathbf{F}_p}(\mathbf{C}_3) \\
[V] \mapsto [\text{twist of } V \text{ with } \alpha] .$$

Note that, if $p \leq n$, even the simple \mathbf{F}_p -representations of S_n are not entirely known: One knows a construction, due to James [9], but one does not know their \mathbf{F}_p -dimensions. Biset functors do not directly aim to solve this problem, but at any rate they are a tool to work with these representations.

- 1.4. Globally-defined Mackey functors. There is an equivalence of categories between the category of biset functors over R and the category of globally-defined Mackey functors $\operatorname{Mack}_R^{\mathcal{X},\mathcal{Y}}$ [6, §8]. Here, a globally-defined Mackey functor, with respect to \mathcal{X} and \mathcal{Y} , maps groups to R-modules and each group morphism α covariantly to an R-module morphism α_{\star} , provided $\operatorname{kern}(\alpha) \in \mathcal{Y}$, and contravariantly to α^{\star} , provided $\operatorname{kern}(\alpha) \in \mathcal{X}$. It is required that these morphisms satisfy a list of compatibilities, amongst which a Mackey formula, see e.g. [6, §8]. By that equivalence, these requirements on a Mackey functor can now be viewed as properties that result from being a contravariant functor from Biset_R^{\mathcal{X},\mathcal{Y}} to R-Mod.
- 1.5. Further examples. We list two examples of biset functors, [6, §8].
 - Let $\mathcal{X} = \{1\}$ and let \mathcal{Y} consist of all finite groups. Let $n \geq 0$. Consider the biset functor $\operatorname{Biset}_{\mathbf{Z}}^{\mathcal{X},\mathcal{Y}} \to \mathbf{Z}$ -Mod that maps a finite group G to the algebraic K-theory $\operatorname{K}_n(\mathbf{Z}G)$ of $\mathbf{Z}G$.
 - Let \mathcal{X} consist of all finite groups and let $\mathcal{Y} = \{1\}$. Let $n \geq 0$. Consider the biset functor $\operatorname{Biset}_R^{\mathcal{X},\mathcal{Y}} \to R$ -Mod that maps a finite group G to the cohomology $\operatorname{H}^n(G,R)$ of G with trivial coefficients.

For some more examples, see $[6, \S 8]$. The example of the classical Burnside ring, depending on a group G, is also explained in $[4, \S 6.1]$.

1.6. The double Burnside algebra. Suppose given a finite group G, i.e an object of Biset_R. Its endomorphism ring $B_R(G,G)$ in the category Biset_R is called *double Burnside algebra* of G.

The isomorphism classes of finite transitive (G, G)-bisets form an R-linear basis of $B_R(G, G)$. In particular, if we choose a system $\mathcal{L}_{G\times G}$ of representatives for the conjugacy classes of subgroups of $G\times G$, we have the R-linear basis $([(G\times G)/U]:U\in\mathcal{L}_{G\times G})$.

If G is cyclic and if R is a field in which |G| and $\varphi(|G|)$ are invertible, where φ denotes Euler's totient function, then the double Burnside algebra $B_R(G, G)$ is semisimple. This is shown in [7, Theorem 8.11, Remark 8.12(a)].

In case of $G = S_3$, we have 22 conjugacy classes of subgroups of $S_3 \times S_3$ and thus $\operatorname{rk}_R(B_R(S_3, S_3)) = 22$. The double Burnside **Q**-algebra $B_{\mathbf{Q}}(S_3, S_3)$ has been described by B. Masterson [1, §8] and then by B. Masterson and G. Pfeiffer [2, §7]. We describe $B_{\mathbf{Q}}(S_3, S_3)$ independently, using a direct Magma-supported calculation [10], with the aim of being able to pass from $B_{\mathbf{Q}}(S_3, S_3)$ to $B_{\mathbf{Z}}(S_3, S_3)$ in the sequel.

In order to do that, we first restate some preliminaries on bisets and the double Burnside ring in $\S 2$ and construct a **Z**-linear basis of $B_{\mathbf{Z}}(S_3, S_3)$ in $\S 3$.

In §4 we tackle the problem that the double Burnside **Q**-algebra $B_{\mathbf{Q}}(S_3, S_3)$ is not semisimple [5, Proposition 6.1.5], thus not isomorphic to a direct product of matrix rings. As a substitute, we use a suitable isomorphic copy A of $B_{\mathbf{Q}}(S_3, S_3)$. We obtain this copy using a Peirce decomposition of $B_{\mathbf{Q}}(S_3, S_3)$. In addition, we give a description of $B_{\mathbf{Q}}(S_3, S_3)$ as path algebra modulo relations.

The next step, in §5, is to pass from $B_{\mathbf{Q}}(S_3, S_3)$ to $B_{\mathbf{Z}}(S_3, S_3)$. We find a **Z**-order $A_{\mathbf{Z}}$ inside A such that $A_{\mathbf{Z}}$ contains an isomorphic copy of $B_{\mathbf{Z}}(S_3, S_3)$, which we describe via congruences, cf. Proposition 5, Theorem 8.

$$B_{\mathbf{Q}}(S_3, S_3) \xrightarrow{\sim} A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B_{\mathbf{Z}}(S_3, S_3) \xrightarrow{\text{injective}} A_{\mathbf{Z}}$$

We calculate a path algebra for $B_{\mathbf{Z}_{(2)}}(S_3, S_3)$, cf. Proposition 11. We deduce that $B_{\mathbf{F}_2}(S_3, S_3)$ is Morita equivalent to the path algebra

cf. Corollary 12.

We calculate a path algebra for $B_{\mathbf{Z}_{(3)}}(S_3, S_3)$, cf. Proposition 15. We deduce that $B_{\mathbf{F}_3}(S_3, S_3)$ is Morita equivalent to the path algebra

cf. Corollary 16.

2. Preliminaries on bisets and the double Burnside algebra

Bisets. Recall that an (G,G)-biset X is a finite set X together with a left G and a right G-action that commute with each other, i.e. $(h \cdot x) \cdot g = h \cdot (x \cdot g) =: h \cdot x \cdot g$ for $h,g \in G$ and $x \in X$.

Every (G, G)-biset X can be regarded as a left $(G \times G)$ -set by setting $(h, g)x := hxg^{-1}$ for $(h, g) \in G \times G$ and $x \in X$. Likewise, every left $(G \times G)$ -set Y can be regarded as an (G, G)-biset by setting $h \cdot y \cdot g := (h, g^{-1})y$ for $h, g \in G$ and $y \in Y$. We freely use this identification.

Tensor product. Let M be an (G,G)-biset and let N be a (G,G)-biset. The cartesian product $M\times N$ is a (G,G)-biset via h(m,n)p=(hm,np) for $h,p\in G$ and $(m,n)\in M\times N$. It becomes a left G-set via $g(m,n)=(mg^{-1},gn)$ for $g\in G$ and $(m,n)\in M\times N$. We call the set of G-orbits on $M\times N$ the tensor product $M\times N$ of M and N. This also is an (G,G)-biset. The G-orbit of the element $(m,n)\in M\times N$ is denoted by $m\times n\in M\times N$. Moreover, let L be a (G,G)-biset. Then $M\times (N\times L)\xrightarrow{\sim} (M\times N)\times L$, G and G becomes G as G becomes G as G becomes G and G becomes G becomes G becomes G becomes G and G becomes G and G becomes G by G and G becomes G be

Double Burnside R-algebra. We denote by $B_R(G,G)$ the double Burnside R-algebra of G. Recall that $B_R(G,G)$ is the R-module freely generated by the isomorphism classes of finite (G,G)-bisets, modulo the relations $[M \sqcup N] = [M] + [N]$ for (G,G)-bisets M,N. Multiplication is defined by $[M] \cdot [N] = [M \times N]$ for (G,G)-bisets M,N. An R-linear basis of $B_R(G,G)$ is given by $([(G \times G)/U] : U \in \mathcal{L}_{G \times G})$, where we choose a system $\mathcal{L}_{G \times G}$ of representatives for the conjugacy classes of subgroups of $G \times G$. Moreover, $1_{\mathbf{B}_{\mathbf{Z}}(G,G)} = [G]$.

Abbreviation. In case of $G = S_3$, we often abbreviate $B_R := B_R(S_3, S_3)$.

3. **Z**-Linear basis of $B_{\mathbf{Z}}(S_3, S_3)$

The following calculations were done using the computer algebra system Magma [10]. The group S_3 has the subgroups

$$V_0 := \{id\}, V_1 := \langle (1,2) \rangle, V_2 := \langle (1,3) \rangle, V_3 := \langle (2,3) \rangle, V_4 := \langle (1,2,3) \rangle, V_5 := S_3$$

The set $\{V_0, V_1, V_4, V_5\}$ is a system of representatives for the conjugacy classes of subgroups of S₃. In S₃, we write a := (1,2), b := (1,2,3) and 1 := id. So $V_1 = \langle a \rangle$, $V_4 = \langle b \rangle$ and $V_5 = \langle a, b \rangle$.

A system of representatives for the conjugacy classes of subgroups of $S_3 \times S_3$ is given by

Let $H_{i,j} := [(S_3 \times S_3)/U_{i,j}]$ for $i, j \in \{0, 1, 4, 5\}$, $H_s := [(S_3 \times S_3)/U_s]$ for $s \in [6, 8]$ and $H_t^{\Delta} := [(S_3 \times S_3)/\Delta(V_t)]$ for $t \in \{1, 4, 5\}$.

So we obtain the **Z**-linear basis

$$\mathcal{H} := \begin{array}{c} (H_{0,0}, H_{1,0}, H_{0,1}, H_1^{\Delta}, H_{4,0}, H_{0,4}, H_4^{\Delta}, H_{1,1}, H_{5,0}, H_{0,5}, H_6, \\ H_{4,1}, H_{1,4}, H_7, H_5^{\Delta}, H_{4,4}, H_{1,5}, H_{5,1}, H_{4,5}, H_{5,4}, H_8, H_{5,5}) \end{array}$$

of $B_{\mathbf{Z}}(S_3, S_3)$. Of course, \mathcal{H} is also a **Q**-linear basis of $B_{\mathbf{Q}}(S_3, S_3)$.

4.1. **Peirce decomposition of** $B_{\mathbf{Q}}(S_3, S_3)$. Using Magma [10] we obtain an orthogonal decomposition of $1_{\mathbf{B}_{\mathbf{Q}}}$ into the following idempotents of $B_{\mathbf{Q}} = B_{\mathbf{Q}}(S_3, S_3)$.

$$\begin{array}{rcl} e & := & -\frac{1}{2}H_{0,0} + H_{1,0} + \frac{1}{2}H_{4,0} \\ g & := & \frac{4}{3}H_{0,0} - 2H_{1,0} - \frac{4}{3}H_{0,1} - H_{4,0} + 2H_{1,1} + H_{4,1} \\ h & := & -\frac{1}{12}H_{0,0} + \frac{1}{3}H_{0,1} + \frac{1}{4}H_{4,0} - \frac{1}{4}H_{0,4} + \frac{3}{4}H_{4,4} - H_{4,1} \\ \varepsilon_2 & := & -H_{0,0} + H_{1,0} + H_{0,1} + H_1^{\Delta} - 2H_{1,1} \\ \varepsilon_3 & := & -\frac{1}{4}H_{0,0} + \frac{1}{4}H_{4,0} + \frac{1}{4}H_{0,4} + \frac{1}{2}H_4^{\Delta} - \frac{3}{4}H_{4,4} \\ \varepsilon_4 & := & \frac{1}{2}H_{0,0} - H_1^{\Delta} - \frac{1}{2}H_4^{\Delta} + H_5^{\Delta} \end{array}$$

Write $\varepsilon_1 := e + g + h$. In Remark 1 and Remark 3, we shall see that these idempotents are primitive. In a next step, we fix **Q**-linear bases of the Peirce components.

Peirce	Q-linear basis
component	1.00
$e B_{\mathbf{Q}} e$	$e = -\frac{1}{2}H_{0,0} + H_{1,0} + \frac{1}{2}H_{4,0}$
$e\mathrm{B}_{\mathbf{Q}}g$	$b_{e,g} := \frac{1}{2}H_{0,0} - H_{1,0} - \frac{1}{2}H_{0,1} - \frac{1}{2}H_{4,0} + H_{1,1} + \frac{1}{2}H_{4,1}$
$e\mathbf{B}_{\mathbf{Q}}h$	$b_{e,h} := -\frac{1}{8}H_{0,0} + \frac{1}{4}H_{1,0} + \frac{1}{2}H_{0,1} + \frac{1}{8}H_{4,0} - \frac{3}{8}H_{0,4} - H_{1,1} - \frac{1}{2}H_{4,1} + \frac{3}{4}H_{1,4} + \frac{3}{8}H_{4,4}$
$g B_{\mathbf{Q}} e$	$b_{g,e} := -\frac{4}{3}H_{0,0} + 2H_{1,0} + H_{4,0}$
$g \mathbf{B}_{\mathbf{Q}} g$	$g = \frac{4}{3}H_{0,0} - 2H_{1,0} - \frac{4}{3}H_{0,1} - H_{4,0} + 2H_{1,1} + H_{4,1}$
$g \mathbf{B}_{\mathbf{Q}} h$	$b_{g,h} := -\frac{1}{3}H_{0,0} + \frac{1}{2}H_{1,0} + \frac{4}{3}H_{0,1} + \frac{1}{4}H_{4,0} - H_{0,4} - 2H_{1,1} - H_{4,1} + \frac{3}{2}H_{1,4} + \frac{3}{4}H_{4,4}$
$h B_{\mathbf{Q}} e$	$b_{h,e} := -\frac{1}{3}H_{0,0} + H_{4,0}$
$h \mathbf{B}_{\mathbf{Q}} g$	$b_{h,g} := \frac{1}{3}H_{0,0} - \frac{1}{3}H_{0,1} - H_{4,0} + H_{4,1}$
$h \mathbf{B}_{\mathbf{Q}} h$	$h = -\frac{1}{12}H_{0,0} + \frac{1}{3}H_{0,1} + \frac{1}{4}H_{4,0} - \frac{1}{4}H_{0,4} + \frac{3}{4}H_{4,4} - H_{4,1}$
$e\mathrm{B}_{\mathbf{Q}}\varepsilon_4$	$b_{e,\varepsilon_4} := -\frac{1}{8}H_{0,0} + \frac{1}{4}H_{1,0} + \frac{1}{4}H_{0,1} + \frac{1}{8}H_{4,0} + \frac{1}{8}H_{0,4} - \frac{1}{2}H_{1,1} - \frac{1}{4}H_{0,5} - \frac{1}{4}H_{4,1}$
	$-\frac{1}{4}H_{1,4} - \frac{1}{8}H_{4,4} + \frac{1}{2}H_{1,5} + \frac{1}{4}H_{4,5}$
$g \mathbf{B}_{\mathbf{Q}} \varepsilon_4$	$b_{g,\varepsilon_4} := -\frac{1}{3}H_{0,0} + \frac{1}{2}H_{1,0} + \frac{2}{3}H_{0,1} + \frac{1}{4}H_{4,0} + \frac{1}{3}H_{0,4} - H_{1,1} - \frac{2}{3}H_{0,5} - \frac{1}{2}H_{4,1}$
	$-\frac{1}{2}H_{1,4} - \frac{1}{4}H_{4,4} + H_{1,5} + \frac{1}{2}H_{4,5}$
$h \mathbf{B}_{\mathbf{Q}} \varepsilon_4$	$b_{h,\varepsilon_4} := -\frac{1}{12}H_{0,0} + \frac{1}{6}H_{0,1} + \frac{1}{4}H_{4,0} + \frac{1}{12}H_{0,4} - \frac{1}{6}H_{0,5} - \frac{1}{2}H_{4,1} - \frac{1}{4}H_{4,4} + \frac{1}{2}H_{4,5}$
$\varepsilon_2 \operatorname{B}_{\mathbf{Q}} \varepsilon_2$	$\varepsilon_2 = -H_{0,0} + H_{1,0} + H_{0,1} + H_1^{\Delta} - 2H_{1,1}$
$\varepsilon_2 \mathrm{B}_{\mathbf{Q}} \varepsilon_4$	$b_{\varepsilon_2,\varepsilon_4} := -\frac{1}{2}H_{0,0} + \frac{1}{2}H_{1,0} + \frac{1}{2}H_{0,1} + \frac{1}{2}H_1^{\Delta} + \frac{1}{2}H_{0,4} - H_{1,1} - \frac{1}{2}H_{0,5} - \frac{1}{2}H_6 - \frac{1}{2}H_{1,4}$
	$+ H_{1,5}$
$\varepsilon_3 \mathrm{B}_{\mathbf{Q}} \varepsilon_3$	$\varepsilon_3 = -\frac{1}{4}H_{0,0} + \frac{1}{4}H_{4,0} + \frac{1}{4}H_{0,4} + \frac{1}{2}H_4^{\Delta} - \frac{3}{4}H_{4,4}$
$\varepsilon_4 \mathrm{B}_{\mathbf{Q}} e$	$b_{\varepsilon_4,e} := \frac{1}{6}H_{0,0} - \frac{1}{3}H_{1,0} - \frac{1}{6}H_{4,0} + \frac{1}{3}H_{5,0}$
$\varepsilon_4 \mathrm{B}_{\mathbf{Q}} g$	$b_{\varepsilon_4,g} := -\frac{1}{6}H_{0,0} + \frac{1}{3}H_{1,0} + \frac{1}{6}H_{0,1} + \frac{1}{6}H_{4,0} - \frac{1}{3}H_{1,1} - \frac{1}{3}H_{5,0} - \frac{1}{6}H_{4,1} + \frac{1}{3}H_{5,1}$
$\varepsilon_4 \mathbf{B}_{\mathbf{Q}} h$	$b_{\varepsilon_4,h} := \frac{1}{24}H_{0,0} - \frac{1}{12}H_{1,0} - \frac{1}{6}H_{0,1} - \frac{1}{24}H_{4,0} + \frac{1}{8}H_{0,4} + \frac{1}{3}H_{1,1} + \frac{1}{12}H_{5,0}$
	$+\frac{1}{6}H_{4,1} - \frac{1}{4}H_{1,4} - \frac{1}{8}H_{4,4} - \frac{1}{3}H_{5,1} + \frac{1}{4}H_{5,4}$
$\varepsilon_4 \mathrm{B}_{\mathbf{Q}} \varepsilon_2$	$b_{\varepsilon_4,\varepsilon_2} := -\frac{1}{2}H_{0,0} + \frac{1}{2}H_{1,0} + \frac{1}{2}H_{0,1} + \frac{1}{2}H_1^{\Delta} + \frac{1}{2}H_{4,0} - H_{1,1} - \frac{1}{2}H_{5,0} - \frac{1}{2}H_{4,1}$
	$-rac{1}{2}H_7+H_{5,1}$
$\varepsilon_4 \mathrm{B}_{\mathbf{Q}} \varepsilon_4$	$\varepsilon_4 = \frac{1}{2}H_{0,0} - H_1^{\Delta} - \frac{1}{2}H_4^{\Delta} + H_5^{\Delta},$
	$b'_{\varepsilon_4,\varepsilon_4} := \frac{1}{24}H_{0,0} - \frac{1}{12}H_{1,0} - \frac{1}{12}H_{0,1} - \frac{1}{24}H_{4,0} - \frac{1}{24}H_{0,4} + \frac{1}{6}H_{1,1} + \frac{1}{12}H_{5,0} + \frac{1}{12}H_{0,5}$
	$+ \frac{1}{12}H_{4,1} + \frac{1}{12}H_{1,4} + \frac{1}{24}H_{4,4} - \frac{1}{6}H_{1,5} - \frac{1}{6}H_{5,1} - \frac{1}{12}H_{4,5} - \frac{1}{12}H_{5,4} + \frac{1}{6}H_{5,5} ,$
	$b_{\varepsilon_4,\varepsilon_4}^{\prime\prime} := \frac{1}{4}H_{0,0} - \frac{3}{4}H_{1,0} - \frac{3}{4}H_{0,1} + \frac{1}{4}H_1^{\Delta} - \frac{1}{4}H_{4,0} - \frac{1}{4}H_{0,4} + \frac{3}{2}H_{1,1} + \frac{3}{4}H_{5,0}$
	$+ \frac{3}{4}H_{0,5} - \frac{1}{4}H_6 + \frac{3}{4}H_{4,1} + \frac{3}{4}H_{1,4} - \frac{1}{4}H_7 + \frac{1}{4}H_{4,4} - \frac{3}{2}H_{1,5} - \frac{3}{2}H_{5,1}$
	$-\frac{3}{4}H_{4,5} - \frac{3}{4}H_{5,4} + \frac{1}{4}H_8 + \frac{3}{2}H_{5,5}$

Remark 1. The idempotents $e, g, h, \varepsilon_2, \varepsilon_3$ are primitive, as $e \, \mathbf{B}_{\mathbf{Q}} \, e \cong \mathbf{Q}, \, g \, \mathbf{B}_{\mathbf{Q}} \, g \cong \mathbf{Q}, \, h \, \mathbf{B}_{\mathbf{Q}} \, h \cong \mathbf{Q}, \, \varepsilon_2 \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_2 \cong \mathbf{Q} \, \text{and} \, \varepsilon_3 \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_3 \cong \mathbf{Q}.$

We have the following multiplication table for the basis elements of $B_{\mathbf{Q}} = B_{\mathbf{Q}}(S_3, S_3)$.

(\cdot)	e	$b_{e,g}$	$b_{e,h}$	$b_{g,e}$	g	$b_{g,h}$	$b_{h,e}$	$b_{h,g}$	h	b_{e,ε_4}	b_{g,ε_4}	b_{h,ε_4}	ε_2	$b_{\varepsilon_2,\varepsilon_4}$	ε_3	$b_{\varepsilon_4,e}$	$b_{\varepsilon_4,g}$	$b_{\varepsilon_4,h}$	$b_{\varepsilon_4,\varepsilon_2}$	ε_4	$b'_{\varepsilon_4,\varepsilon_4}$	$b_{\varepsilon_4,\varepsilon_4}^{\prime\prime}$
e	e	$b_{e,g}$	$b_{e,h}$	0	0	0	0	0	0	b_{e,ε_4}	0	0	0	0	0	0	0	0	0	0	0	0
$b_{e,g}$	0	0	0	e	$b_{e,g}$	$b_{e,h}$	0	0	0	0	b_{e,ε_4}	0	0	0	0	0	0	0	0	0	0	0
$b_{e,h}$	0	0	0	0	0	0	e	$b_{e,g}$	$b_{e,h}$	0	0	b_{e,ε_4}	0	0	0	0	0	0	0	0	0	0
$b_{g,e}$	$b_{g,e}$	g	$b_{g,h}$	0	0	0	0	0	0	b_{g,ε_4}	0	0	0	0	0	0	0	0	0	0	0	0
g	0	0	0	$b_{g,e}$	g	$b_{g,h}$	0	0	0	0	b_{g,ε_4}	0	0	0	0	0	0	0	0	0	0	0
$b_{g,h}$	0	0	0	0	0	0	$b_{g,e}$	g	$b_{g,h}$	0	0	b_{g,ε_4}	0	0	0	0	0	0	0	0	0	0
$b_{h,e}$	$b_{h,e}$	$b_{h,g}$	h	0	0	0	0	0	0	b_{h,ε_4}	0	0	0	0	0	0	0	0	0	0	0	0
$b_{h,g}$	0	0	0	$b_{h,e}$	$b_{h,g}$	h	0	0	0	0	b_{h,ε_4}	0	0	0	0	0	0	0	0	0	0	0
h	0	0	0	0	0	0	$b_{h,e}$	$b_{h,g}$	h	0	0	b_{h,ε_4}	0	0	0	0	0	0	0	0	0	0
b_{e,ε_4}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	b_{e,ε_4}	0	0
b_{g,ε_4}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	b_{g,ε_4}	0	0
b_{h,ε_4}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	b_{h,ε_4}	0	0
ε_2	0	0	0	0	0	0	0	0	0	0	0	0	ε_2	$b_{\varepsilon_2,\varepsilon_4}$	0	0	0	0	0	0	0	0
$b_{\varepsilon_2,\varepsilon_4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$b_{\varepsilon_2,\varepsilon_4}$	0	0
ε_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ε_3	0	0	0	0	0	0	0
$b_{\varepsilon_4,e}$	$b_{\varepsilon_4,e}$	$b_{\varepsilon_4,g}$	$b_{\varepsilon_4,h}$	0	0	0	0	0	0	$b'_{\varepsilon_4,\varepsilon_4}$	0	0	0	0	0	0	0	0	0	0	0	0
$b_{\varepsilon_4,g}$	0	0	0	$b_{\varepsilon_4,e}$	$b_{\varepsilon_4,g}$	$b_{\varepsilon_4,h}$	0	0	0	0	$b'_{\varepsilon_4,\varepsilon_4}$	0	0	0	0	0	0	0	0	0	0	0
$b_{\varepsilon_4,h}$	0	0	0	0	0	0	$b_{\varepsilon_4,e}$	$b_{\varepsilon_4,g}$	$b_{\varepsilon_4,h}$	0	0	$b'_{\varepsilon_4,\varepsilon_4}$	0	0	0	0	0	0	0	0	0	0
$b_{\varepsilon_4,\varepsilon_2}$	0	0	0	0	0	0	0	0	0	0	0	0	$b_{\varepsilon_4,\varepsilon_2}$	$b_{\varepsilon_4,\varepsilon_4}^{\prime\prime}-12b_{\varepsilon_4,\varepsilon_4}^{\prime}$	0	0	0	0	0	0	0	0
ε_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$b_{\varepsilon_4,e}$	$b_{\varepsilon_4,g}$	$b_{\varepsilon_4,h}$	$b_{\varepsilon_4,\varepsilon_2}$	ε_4	$b'_{\varepsilon_4,\varepsilon_4}$	$b_{\varepsilon_4,\varepsilon_4}^{\prime\prime}$
$b'_{\varepsilon_4,\varepsilon_4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$b'_{\varepsilon_4,\varepsilon_4}$	0	0
$b_{\varepsilon_4,\varepsilon_4}''$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$b_{\varepsilon_4,\varepsilon_4}^{\prime\prime}$	0	0

We see that ε_3 is even a central element.

Lemma 2. Consider $\mathbf{Q}[\eta, \xi]/(\eta^2, \eta \xi, \xi^2) = \mathbf{Q}[\overline{\eta}, \overline{\xi}]$, where $\overline{\xi} := \xi + (\eta^2, \eta \xi, \xi^2)$ and $\overline{\eta} := \eta + (\eta^2, \eta \xi, \xi^2)$.

We have the \mathbf{Q} -algebra isomorphism

$$\mu: \quad \mathbf{Q}[\overline{\eta}, \overline{\xi}] \quad \to \quad \varepsilon_4 \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_4 \\ \overline{\eta} \quad \mapsto \quad b'_{\varepsilon_4, \varepsilon_4} \\ \overline{\xi} \quad \mapsto \quad b''_{\varepsilon_4, \varepsilon_4} \, .$$

Proof. Since $\varepsilon_4 B_{\mathbf{Q}} \varepsilon_4 = {}_{\mathbf{Q}} \langle \varepsilon_4, b'_{\varepsilon_4, \varepsilon_4}, b''_{\varepsilon_4, \varepsilon_4} \rangle$ is commutative and $(b'_{\varepsilon_4, \varepsilon_4})^2 = 0$, $(b''_{\varepsilon_4, \varepsilon_4})^2 = 0$ and $b'_{\varepsilon_4, \varepsilon_4} b''_{\varepsilon_4, \varepsilon_4} = 0$, the map μ is a well-defined \mathbf{Q} -algebra morphism.

As the **Q**-linear basis $(1, \overline{\eta}, \overline{\xi})$ is mapped to the **Q**-linear basis $(\varepsilon_4, b'_{\varepsilon_4, \varepsilon_4}, b''_{\varepsilon_4, \varepsilon_4})$, it is bijective.

Remark 3. The ring $\mathbf{Q}[\overline{\eta}, \overline{\xi}]$ is local. In particular, ε_4 is a primitive idempotent of $B_{\mathbf{Q}}$.

Proof. We have $U(\mathbf{Q}[\overline{\eta}, \overline{\xi}]) = \mathbf{Q}[\overline{\eta}, \overline{\xi}] \setminus (\overline{\eta}, \overline{\xi})$, as for $u := a + b\overline{\eta} + c\overline{\xi}$ the inverse is given by $u^{-1} = a^{-1} - a^{-2}b\overline{\eta} - a^{-2}c\overline{\xi}$ for $a, b, c \in \mathbf{Q}$, with $a \neq 0$. Thus the nonunits of $\mathbf{Q}[\overline{\eta}, \overline{\xi}]$ form an ideal and so $\mathbf{Q}[\overline{\eta}, \overline{\xi}]$ is a local ring.

To standardize notation, we aim to construct a **Q**-algebra $A := \bigoplus_{i,j} A_{i,j}$ such that $A \cong B_{\mathbf{Q}}(S_3, S_3)$.

In a first step to do so, we choose **Q**-vector spaces $A_{i,j}$ and **Q**-linear isomorphisms $\gamma_{i,j}: A_{i,j} \xrightarrow{\sim} \varepsilon_i \operatorname{B}_{\mathbf{Q}} \varepsilon_j$ for $i, j \in [1, 4]$. We define the tuple of **Q**-vector spaces

cf. Lemma 2.

We have $\gamma_{s,t} = 0$ for $(s,t) \in \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,4), (4,3)\}.$ Let

$$\gamma_{1,1}: A_{1,1} \xrightarrow{\sim} \qquad \qquad \varepsilon_{1} \operatorname{B}_{\mathbf{Q}} \varepsilon_{1}
\begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} \\ r_{2,1} & r_{2,2} & r_{2,3} \\ r_{3,1} & r_{3,2} & r_{3,3} \end{pmatrix} \xrightarrow{\qquad} \begin{array}{c} r_{1,1}e & + & r_{1,2}b_{e,g} & + & r_{1,3}b_{e,h} \\ + & r_{2,1}b_{g,e} & + & r_{2,2}g & + & r_{2,3}b_{g,h} \\ + & r_{3,1}b_{h,e} & + & r_{3,2}b_{h,g} & + & r_{3,3}h \\ \\ \gamma_{1,4} & : & A_{1,4} \xrightarrow{\sim} \qquad \varepsilon_{1} \operatorname{B}_{\mathbf{Q}} \varepsilon_{4} \\ & \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} \xrightarrow{\qquad} \begin{array}{c} u_{1}b_{e,\varepsilon_{4}} \\ + & u_{2}b_{g,\varepsilon_{4}} \\ + & u_{3}b_{h,\varepsilon_{4}} \\ \end{array} ,$$

$$\gamma_{3,3} : A_{3,3} \xrightarrow{\sim} \varepsilon_{3} B_{\mathbf{Q}} \varepsilon_{3},
 u \mapsto u\varepsilon_{3},
\gamma_{4,1} : A_{4,1} \xrightarrow{\sim} \varepsilon_{4} B_{\mathbf{Q}} \varepsilon_{1}
 \left(v_{1} \ v_{2} \ v_{3}\right) \mapsto v_{1}b_{\varepsilon_{4},e} + v_{2}b_{\varepsilon_{4},g} + v_{3}b_{\varepsilon_{4},h},$$

$$\begin{array}{cccc} \gamma_{4,2} & : A_{4,2} & \xrightarrow{\sim} \varepsilon_4 \operatorname{B}_{\mathbf{Q}} \varepsilon_2 \\ & u & \mapsto & ub_{\varepsilon_4,\varepsilon_2} \end{array}, \\ \gamma_{4,4} & \stackrel{\operatorname{L.2}}{:=} \mu : A_{4,4} & \xrightarrow{\sim} & \varepsilon_4 \operatorname{B}_{\mathbf{Q}} \varepsilon_4 \\ & a + b\overline{\eta} + c\overline{\xi} & \mapsto & a\varepsilon_4 + bb'_{\varepsilon_4,\varepsilon_4} + cb''_{\varepsilon_4,\varepsilon_4}. \end{array}$$

Let $\beta: B_{\mathbf{Q}} \times B_{\mathbf{Q}} \to B_{\mathbf{Q}}$ be the multiplication map on $B_{\mathbf{Q}}$. Write

$$\beta_{i,j,k} := \beta|_{\varepsilon_i \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_j \times \varepsilon_j \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_k}^{\varepsilon_i \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_k} : \varepsilon_i \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_j \times \varepsilon_j \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_k \to \varepsilon_i \, \mathbf{B}_{\mathbf{Q}} \, \varepsilon_k \ .$$

Now, we construct **Q**-bilinear multiplication maps $\alpha_{i,j,k}$ for $i, j, k \in [1, 4]$ such that the following quadrangle of maps commutes.

$$A_{i,j} \times A_{j,k} \xrightarrow{\alpha_{i,j,k}} A_{i,k}$$

$$\uparrow_{i,j} \times \gamma_{j,k} \downarrow \qquad \qquad \uparrow_{i,k} \downarrow$$

$$\varepsilon_{i} B_{\mathbf{Q}} \varepsilon_{j} \times \varepsilon_{j} B_{\mathbf{Q}} \varepsilon_{k} \xrightarrow{\beta_{i,j,k}} \varepsilon_{i} B_{\mathbf{Q}} \varepsilon_{k}$$

I.e. we set $\alpha_{i,j,k} := \gamma_{i,k}^{-1} \circ \beta_{i,j,k} \circ (\gamma_{i,j} \times \gamma_{j,k})$. This leads to

•
$$\alpha_{i,j,k} = 0$$
 if (i,j) , (j,k) or (i,k) is contained in $\{(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,4),(4,3)\}$

•
$$\alpha_{1,1,1}: A_{1,1} \times A_{1,1} \to A_{1,1}, (X,Y) \mapsto XY$$

•
$$\alpha_{1,1,4}: A_{1,1} \times A_{1,4} \to A_{1,4}, (X,u) \mapsto Xu$$

• $\alpha_{1,4,1} = 0$

•
$$\alpha_{1,4,4}: A_{1,4} \times A_{4,4} \to A_{1,4}, (u, a + b\overline{\eta} + c\overline{\xi}) \mapsto ua$$

$$\bullet \ \alpha_{2,2,2}: A_{2,2} \times A_{2,2} \to A_{2,2}, \ (u,v) \mapsto uv$$

•
$$\alpha_{2,2,4}: A_{2,2} \times A_{2,4} \to A_{2,4}, (u,v) \mapsto uv$$

• $\alpha_{2,4,2} = 0$

•
$$\alpha_{2.4.4}: A_{2.4} \times A_{4.4} \to A_{2.4}, (u, a + b\overline{\eta} + c\overline{\xi}) \mapsto ua$$

•
$$\alpha_{3,3,3}: A_{3,3} \times A_{3,3} \to A_{3,3}, (u,v) \mapsto uv$$

•
$$\alpha_{4,1,1}: A_{4,1} \times A_{1,1} \to A_{4,1}, (v,X) \mapsto vX$$

•
$$\alpha_{4,1,4}: A_{4,1} \times A_{1,4} \to A_{4,4}, (v,u) \mapsto vu\overline{\eta}$$

•
$$\alpha_{4,2,2}: A_{4,2} \times A_{2,2} \to A_{4,2}, (u,v) \mapsto uv$$

•
$$\alpha_{4,2,4}: A_{4,2} \times A_{2,4} \to A_{4,4}, (u,v) \mapsto uv(\overline{\xi} - 12\overline{\eta})$$

•
$$\alpha_{4,4,1}: A_{4,4} \times A_{4,1} \to A_{4,1}, (a+b\overline{\eta}+c\overline{\xi},v) \mapsto av$$

•
$$\alpha_{4,4,2}: A_{4,4} \times A_{4,2} \to A_{4,2}, (a+b\overline{\eta}+c\overline{\xi},v) \mapsto av$$

•
$$\alpha_{4,4,4}: A_{4,4} \times A_{4,4} \to A_{4,4}, (a+b\overline{\eta}+c\overline{\xi}, \tilde{a}+\tilde{b}\overline{\eta}+\tilde{c}\overline{\xi}) \mapsto (a+b\overline{\eta}+c\overline{\xi}) \cdot (\tilde{a}+\tilde{b}\overline{\eta}+\tilde{c}\overline{\xi})$$

where $a, b, c, \tilde{a}, \tilde{b}, \tilde{c} \in \mathbf{Q}$

For convenience, we fix a notation similar to matrices and matrix multiplication.

Notation 4. Suppose given $r \in \mathbf{Z}_{\geq 0}$. Suppose given R-modules $M_{i,j}$ for $i, j \in [1, r]$. We write

$$\bigoplus_{i,j\in[1,r]} M_{i,j} =: \begin{bmatrix} M_{1,1} & M_{1,2} & \dots & M_{1,r} \\ M_{2,1} & M_{2,2} & \dots & M_{2,r} \\ \vdots & \vdots & \dots & \vdots \\ M_{r,1} & M_{r,2} & \dots & M_{r,r} \end{bmatrix}.$$

Accordingly, elements of this direct sum are written as matrices with entries in the respective summands, i.e. in the form $[m_{i,j}]_{i,j}$ with $m_{i,j} \in M_{i,j}$ for $i,j \in [1,r]$.

Proposition 5. Let

$$A := \bigoplus_{i,j \in [1,4]} A_{i,j} = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\ A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{3 \times 3} & 0 & 0 & \mathbf{Q}^{3 \times 1} \\ 0 & \mathbf{Q} & 0 & \mathbf{Q} \\ 0 & 0 & \mathbf{Q} & 0 \\ \mathbf{Q}^{1 \times 3} & \mathbf{Q} & 0 & \mathbf{Q}[\overline{\eta}, \overline{\xi}] \end{bmatrix}.$$

Define the multiplication

$$\begin{array}{cccc} A & \times & A & \rightarrow & A \\ ([a_{i,j}]_{i,j} & , & [a'_{s,t}]_{s,t}) & \mapsto & [\sum\limits_{r \in [1,4]} \alpha_{i,r,j}(a_{i,r}, a'_{r,j})]_{i,j} \end{array}.$$

We obtain a Q-algebra isomorphism

$$A \xrightarrow{\sim \gamma} B_{\mathbf{Q}}(S_3, S_3)$$

$$[a_{i,j}]_{i,j\in[1,4]} \qquad \mapsto \qquad \sum_{i,j\in[1,4]} \gamma_{i,j}(a_{i,j}) .$$

4.2. $B_{\mathbf{Q}}(S_3, S_3)$ as path algebra modulo relations. We aim to write

$$B_{\mathbf{Q}} = B_{\mathbf{Q}}(S_3, S_3) \cong A$$
,

up to Morita equivalence, as a path algebra modulo relations.

We denote by $e_{i,j} \in A_{1,1} = \mathbf{Q}^{3\times 3}$ the elements that have a single non-zero entry 1 at position (i,j). We have $a_{1,1} := \gamma^{-1}(e) = e_{1,1} \in \mathbf{Q}^{3\times 3} \subseteq A$, $\gamma^{-1}(g) = e_{2,2} \in \mathbf{Q}^{3\times 3} \subseteq A$, $\gamma^{-1}(e) = e_{3,3} \in \mathbf{Q}^{3\times 3} \subseteq A$ and $a_{k,k} := \gamma^{-1}(\varepsilon_k)$ for $k \in [2,4]$, cf. Proposition 5.

We have $Aa_{1,1} \cong Ae_{2,2}$ as A-modules, using multiplication with $e_{1,2}$ from the right from $Aa_{1,1}$ to $Ae_{2,2}$ and multiplication with $e_{2,1}$ from the right from $Ae_{2,2}$ to $Aa_{1,1}$. Note that $e_{1,2}e_{2,1} = a_{1,1}$ and $e_{2,1}e_{1,2} = e_{2,2}$. Similarly $Aa_{1,1} \cong Ae_{3,3}$.

Therefore, A is Morita equivalent to

$$A' := (\sum_{i \in [1,4]} a_{i,i}) A(\sum_{i \in [1,4]} a_{i,i}) = \bigoplus_{i,j \in [1,4]} a_{i,i} A a_{j,j} = \bigoplus_{i,j \in [1,4]} a_{i,i} A_{i,j} a_{j,j} .$$

Write
$$A'_{i,j} := a_{i,i}A_{i,j}a_{j,j} = A_{i,j}$$
 for $i, j \in [2,4]$.
Identify $A'_{1,1} := \mathbf{Q} = \begin{pmatrix} \mathbf{Q} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = a_{1,1}A_{1,1}a_{1,1} \subseteq A_{1,1} = \mathbf{Q}^{3\times3}$.
Identify $A'_{1,4} := \mathbf{Q} = \begin{pmatrix} \mathbf{Q} \\ 0 \\ 0 \end{pmatrix} = a_{1,1}A_{1,4}a_{4,4} \subseteq A_{1,4} = \mathbf{Q}^{3\times1}$.
Identify $A'_{4,1} := \mathbf{Q} = \begin{pmatrix} \mathbf{Q} & 0 & 0 \end{pmatrix} = a_{4,4}A_{4,1}a_{1,1} \subseteq A_{4,1} = \mathbf{Q}^{1\times3}$. Let $A'_{1,j} := 0$ and $A'_{j,1} := 0$ for $j \in [2,3]$.

We have the **Q**-linear basis of A'

We have the following multiplication table for the basis elements.

(\cdot)	$ a_{1,1} $	$a_{1,4}$	$a_{2,2}$	$a_{2,4}$	$a_{3,3}$	$a_{4,1}$	$a_{4,2}$	$a_{4,4}$	$a'_{4,4}$	$a_{4,4}''$
$a_{1,1}$	$a_{1,1}$	$a_{1,4}$	0	0	0	0	0	0	0	0
$a_{1,4}$	0	0	0	0	0	0	0	$a_{1,4}$	0	0
$a_{2,2}$	0	0	$a_{2,2}$	$a_{2,4}$	0	0	0	0	0	0
$a_{2,4}$	0	0	0	0	0	0	0	$a_{2,4}$	0	0
$a_{3,3}$	0	0	0	0	$a_{3,3}$	0	0	0	0	0
$a_{4,1}$	$a_{4,1}$	$a'_{4,4}$	0	0	0	0	0	0	0	0
$a_{4,2}$	0	0	$a_{4,2}$	$a_{4,4}'' - 12a_{4,4}'$	0	0	0	0	0	0
$a_{4,4}$	0	0	0	0	0	$a_{4,1}$	$a_{4,2}$	$a_{4,4}$	$a'_{4,4}$	$a_{4,4}''$
$a'_{4,4}$	0	0	0	0	0	0	0	$a'_{4,4}$	0	0
$a_{4,4}''$	0	0	0	0	0	0	0	$a_{4,4}''$	0	0

We have $a'_{4,4}=a_{4,1}\cdot a_{1,4}$ and $a''_{4,4}=a_{4,2}\cdot a_{2,4}+12a_{4,1}\cdot a_{1,4}$. Hence, as a **Q**-algebra A' is generated by $a_{1,1},a_{2,2},a_{2,3},a_{4,4},a_{1,4},a_{4,1},a_{2,4},a_{4,2}$.

Consider the quiver
$$\Psi := \begin{bmatrix} \tilde{a}_{3,3} & \tilde{a}_{2,2} & \tilde{a}_{4,4} & \tilde{a}_{1,1} & \tilde{a}_{2,1} & \tilde{a}_{2,2} & \tilde{a}_{3,1} & \tilde{a}_{1,1} \end{bmatrix}$$
.

We have a surjective **Q**-algebra morphism $\varphi : \mathbf{Q}\Psi \to A'$ by sending

We establish the following multiplication trees, where we underline the elements that are not in a \mathbf{Q} -linear relation with previously underlined elements.

$$\begin{array}{c|c} \underline{a_{1,1}} \xrightarrow{a_{1,4}} \xrightarrow{a_{1,4}} \xrightarrow{a_{4,1}} \Rightarrow a_{1,4} a_{4,1} = 0 & \underline{a_{2,2}} \xrightarrow{a_{2,4}} \Rightarrow \underline{a_{2,4}} \xrightarrow{a_{4,2}} \Rightarrow a_{2,4} a_{4,2} = 0 \\ a_{1,4} a_{4,2} \downarrow & a_{1,4} a_{4,2} = 0 & a_{2,4} a_{4,1} = 0 \end{array}$$

$$(a_{4,4}'' - 12a_{4,4}')a_{4,1} = 0$$

$$\begin{vmatrix} a_{4,2} \\ a_{4,1} \\ a_{4,2} \\ a_{4,2} \\ a_{4,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{4,1} \\ a_{4,1} \\ a_{4,2} \\ a_{4,2} \\ a_{4,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{4,1} \\ a_{4,1} \\ a_{4,2} \\ a_{4,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{4,1} \\ a_{4,2} \\ a_{4,2} \\ a_{4,2} \end{vmatrix}$$

$$(a_{4,4}'' - 12a_{4,4}')a_{4,2} = 0$$

The multiplication tree of the idempotent $a_{3,3}$ consists only of the element $a_{3,3}$. So the kernel of φ contains the elements:

Let I be the ideal in $\mathbf{Q}\Psi$ generated by those elements. So $I \subseteq \text{kern}(\varphi)$. Therefore, φ induces a surjective \mathbf{Q} -algebra morphism from $\mathbf{Q}\Psi/I$ to A'.

Note that $\mathbf{Q}\Psi/I$ is \mathbf{Q} -linearly generated by

$$\mathcal{N} := \{ \tilde{a}_{3,3} + I, \tilde{a}_{2,2} + I, \tilde{a}_{4,4} + I, \tilde{a}_{1,1} + I, \sigma + I, \pi + I, \vartheta + I, \rho + I, \vartheta \sigma + I, \rho \pi + I \},$$

cf. the underlined elements above. To see that, note that a product ξ of k generators may be written as a product in \mathcal{N} of k' generators and a product of k'' generators, where k = k' + k'' and where k' is chosen maximal. We call k'' the excess of ξ . If $k'' \geq 1$ then, using the trees above, we may write ξ as an **Q**-linear combination of products of generators that have excess $\leq k'' - 1$. In the present case, we even have $\xi = 0$.

Moreover, note that $|\mathcal{N}| = 10 = \dim_{\mathbf{Q}}(A')$.

Since we have a surjective **Q**-algebra morphism from $\mathbf{Q}\Psi/I$ to A', this dimension argument shows this morphism to be bijective. In particular, $I = \text{kern}(\varphi)$.

We may reduce this list to obtain $\operatorname{kern}(\varphi) = (\pi \rho, \sigma \vartheta, \pi \vartheta, \sigma \rho)$.

So we obtain the

Proposition 6. Recall that $I = (\pi \rho, \sigma \vartheta, \pi \vartheta, \sigma \rho)$. We have the isomorphism of **Q**-algebras

$$A' \overset{\sim}{\rightarrow} \mathbf{Q} \begin{bmatrix} \tilde{a}_{3,3} & \tilde{a}_{2,2} & \overset{\sigma}{\underbrace{\qquad}} \tilde{a}_{4,4} & \overset{\pi}{\underbrace{\qquad}} \tilde{a}_{1,1} \end{bmatrix} / I = \mathbf{Q}\Psi / I$$

$$a_{1,1} & \mapsto & \tilde{a}_{1,1} + I \\ a_{2,2} & \mapsto & \tilde{a}_{2,2} + I \\ a_{3,3} & \mapsto & \tilde{a}_{3,3} + I \\ a_{4,4} & \mapsto & \tilde{a}_{4,4} + I \\ a_{4,1} & \mapsto & \rho + I \\ a_{1,4} & \mapsto & \pi + I \\ a_{4,2} & \mapsto & \vartheta + I \\ a_{2,4} & \mapsto & \sigma + I .$$

In particular, $\mathbf{Q}\Psi/I$ is Morita equivalent to $A \cong B_{\mathbf{Q}}(S_3, S_3)$.

5. The double Burnside
$$R$$
-algebra $B_R(S_3,S_3)$ for $R \in \{\mathbf{Z},\mathbf{Z}_{(2)},\mathbf{F}_2,\mathbf{Z}_{(3)},\mathbf{F}_3\}$

5.1. $B_{\mathbf{Z}}(S_3, S_3)$ via congruences. Recall that

$$A = \bigoplus_{i,j \in [1,4]} A_{i,j} \xrightarrow{\sim}_{\gamma} \mathbf{B}_{\mathbf{Q}} ,$$

cf. Proposition 5. In the Q-algebra A, we define the **Z**-order

$$A_{\mathbf{Z}} := \begin{bmatrix} A_{\mathbf{Z},1,1} & A_{\mathbf{Z},1,2} & A_{\mathbf{Z},1,3} & A_{\mathbf{Z},1,4} \\ A_{\mathbf{Z},2,1} & A_{\mathbf{Z},2,2} & A_{\mathbf{Z},2,3} & A_{\mathbf{Z},2,4} \\ A_{\mathbf{Z},3,1} & A_{\mathbf{Z},3,2} & A_{\mathbf{Z},3,3} & A_{\mathbf{Z},3,4} \\ A_{\mathbf{Z},4,1} & A_{\mathbf{Z},4,2} & A_{\mathbf{Z},4,3} & A_{\mathbf{Z},4,4} \end{bmatrix} := \begin{bmatrix} \mathbf{Z}^{3\times3} & 0 & 0 & \mathbf{Z}^{3\times1} \\ 0 & \mathbf{Z} & 0 & \mathbf{Z} \\ 0 & 0 & \mathbf{Z} & 0 \\ \mathbf{Z}^{1\times3} & \mathbf{Z} & 0 & \mathbf{Z}[\overline{\eta}, \overline{\xi}] \end{bmatrix} \subseteq A.$$

In fact, $A_{\mathbf{Z}}$ is a subring of A, as $\alpha_{i,j,k}(A_{\mathbf{Z},i,j} \times A_{\mathbf{Z},j,k}) \subseteq A_{\mathbf{Z},i,k}$ for $i,j,k \in [1,4]$.

Remark 7. As $A \cong B_{\mathbf{Q}}$ is not semisimple, there are no maximal **Z**-orders in A, [8, §10]. So $A_{\mathbf{Z}}$ is not a canonical choice of a **Z**-order in A, but it nonetheless enables us to describe Λ inside $A_{\mathbf{Z}}$ via congruences.

Consider the following elements of U(A).

$$x_1 := \begin{bmatrix} 0 & -2 & 0 & 0 & 0 & 0 \\ 6 & 6 & -4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ x_2 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 7 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ x_3 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

We define the injective ring morphism $\delta: \mathbf{B}_{\mathbf{Z}} \to A, \ y \mapsto x_3^{-1} \cdot x_2^{-1} \cdot x_1^{-1} \cdot \gamma^{-1}(y) \cdot x_1 \cdot x_2 \cdot x_3$. The conjugating element x_1 was constructed such that the its image lies in $A_{\mathbf{Z}}$. The elements x_2 , x_3 serve the purpose of simplifying the congruences of $\delta(B_{\mathbf{Z}})$.

Theorem 8. The image
$$\delta(B_{\mathbf{Z}})$$
 in $A_{\mathbf{Z}}$ is given by
$$\begin{cases} s_{1,1} s_{1,2} s_{1,3} & 0 & 0 & t_1 \\ s_{2,1} s_{2,2} s_{2,3} & 0 & 0 & t_2 \\ s_{3,1} s_{3,2} s_{3,3} & 0 & 0 & t_3 \\ 0 & 0 & 0 & u & 0 & v \\ 0 & 0 & 0 & 0 & w & 0 \\ x_1 & x_2 & x_3 & y & 0 & z_1 + z_2 \overline{\eta} + z_3 \overline{\xi} \end{cases} = \begin{cases} 2w - 2z_1 \equiv_8 z_2 \equiv_4 z_3 \equiv_4 0 \\ x_1 & \equiv_4 0 \\ x_3 & \equiv_4 0 \\ y & \equiv_2 0 \\ t_1 & \equiv_2 0 \\ t_2 & \equiv_2 0 \\ t_3 & \equiv_2 0 \\ v & \equiv_2 0 \end{cases}$$

$$\lambda := \delta(B_{\mathbf{Z}}) = \begin{cases} s_{1,1} s_{1,2} s_{1,3} & 0 & 0 & t_1 \\ s_{2,1} s_{2,2} s_{2,3} & 0 & 0 & t_2 \\ s_{3,1} s_{3,2} s_{3,3} & 0 & 0 & t_3 \\ 0 & 0 & 0 & w & 0 \\ x_1 & x_2 & x_3 & y & 0 & z_1 + z_2 \overline{\eta} + z_3 \overline{\xi} \end{cases} = \begin{cases} 2w - 2z_1 \equiv_8 z_2 \equiv_4 z_3 \equiv_4 0 \\ x_1 & \equiv_4 0 \\ y & \equiv_2 0 \\ t_1 & \equiv_2 0 \\ t_2 & \equiv_2 0 \\ t_3 & \equiv_2 0 \\ v & \equiv_2 0 \end{cases}$$

$$v = z_2 0$$

$$x_1 = 3 0 \\ x_2 = 3 0 \\ x_3 = 3 0 \\ z_2 = 3 0 \end{cases}$$
In particular, we have $B_{\mathbf{Z}} = B_{\mathbf{Z}}(S_2, S_3) \cong \Lambda$ as rings.

In particular, we have $B_{\mathbf{Z}} = B_{\mathbf{Z}}(S_3, S_3) \cong \Lambda$ as rings.

More symbolically written, we have

$$\Lambda = \begin{bmatrix}
\mathbf{Z} & \mathbf{Z} & \mathbf{Z} & \mathbf{Z} & 0 & 0 & (2) \\
\mathbf{Z} & \mathbf{Z} & \mathbf{Z} & 0 & 0 & (2) \\
\mathbf{Z} & \mathbf{Z} & \mathbf{Z} & 0 & 0 & (2) \\
0 & 0 & 0 & \mathbf{Z} & 0 & (2) \\
0 & 0 & 0 & \mathbf{Z} & 0 & (2) \\
0 & 0 & 0 & \mathbf{Z} & 0 & \mathbf{Z} & 0
\end{bmatrix}$$

$$(12) \quad (12) \quad (12) \quad (2) \quad 0 \quad \mathbf{Z} \quad +(12)\overline{\eta} \quad +(4)\overline{\xi}$$

Proof. We identify $\mathbf{Z}^{22\times 1}$ and $A_{\mathbf{Z}}$ along the isomorphism

$$\begin{pmatrix} s_{1,1}, s_{2,1}, s_{3,1}, s_{1,2}, s_{2,2}, s_{3,2}, s_{1,3}, s_{2,3}, s_{3,3}, \\ x_1, x_2, x_3, u, y, w, t_1, t_2, t_3, v, z_1, z_2, z_3 \end{pmatrix}^{\mathsf{t}} \mapsto \begin{bmatrix} s_{1,1} \ s_{1,2} \ s_{1,3} \ 0 \ 0 \ t_2 \\ s_{2,1} \ s_{2,2} \ s_{2,3} \ 0 \ 0 \ t_2 \\ s_{3,1} \ s_{3,2} \ s_{3,3} \ 0 \ 0 \ t_3 \\ 0 \ 0 \ 0 \ u \ 0 \ v \\ 0 \ 0 \ 0 \ w \ 0 \\ x_1 \ x_2 \ x_3 \ y \ 0 \ z_1 + z_2 \overline{\eta} + z_3 \overline{\xi} \end{bmatrix}.$$

Let M be the representation matrix of δ , with respect to the bases $\tilde{\mathcal{H}} = (H_{0,0}, H_{0,1}, H_{1,0}, H_1^{\Delta}, H_{0,4}, H_{4,0}, H_4^{\Delta}, H_{1,1}, H_{0,5}, H_{5,0}, H_7, H_{1,4}, H_{4,1}, H_6, H_5^{\Delta}, H_{4,4}, H_{5,1}, H_{1,5}, H_{5,4}, H_{4,5}, H_8, H_{5,5})$ of $\mathbf{B}_{\mathbf{Z}}$ and the standard basis of $A_{\mathbf{Z}}$. We obtain that M =

Let

$$\lambda := \begin{bmatrix} s_{1,1} & s_{1,2} & s_{1,3} & 0 & 0 & t_1 \\ s_{2,1} & s_{2,2} & s_{2,3} & 0 & 0 & t_2 \\ s_{3,1} & s_{3,2} & s_{3,3} & 0 & 0 & t_3 \\ 0 & 0 & 0 & u & 0 & v \\ 0 & 0 & 0 & 0 & w & 0 \\ x_1 & x_2 & x_3 & y & 0 & z_1 + z_2\overline{\eta} + z_3\overline{\xi} \end{bmatrix} \in A_{\mathbf{Z}},$$

identified with $\lambda \in \mathbf{Z}^{22 \times 1}$.

We have $\lambda \in \Lambda$ $\Leftrightarrow \exists \ q \in \mathbf{Z}^{22 \times 1}$ such that $\lambda = Mq$ $\Leftrightarrow \exists \ q \in \mathbf{Z}^{22 \times 1}$ such that $M^{-1} \cdot \lambda = q$ $\Leftrightarrow 24M^{-1} \cdot \lambda \in 24\mathbf{Z}^{22 \times 1}$ and this is equivalent to

and hence equivalent to

$$\begin{cases}
2w - 2z_1 \equiv_8 z_2 \equiv_4 z_3 \equiv_4 0 \\
x_1 \equiv_4 0 \\
x_2 \equiv_4 0 \\
x_3 \equiv_4 0 \\
y \equiv_2 0 \\
t_1 \equiv_2 0 \\
t_2 \equiv_2 0 \\
t_3 \equiv_2 0 \\
v \equiv_2 0
\end{cases}$$

$$x_1 \equiv_3 0 \\
x_2 \equiv_3 0 \\
x_3 \equiv_3 0 \\
z_2 \equiv_3 0
\end{cases}$$

5.2. Localisation at 2: $B_{\mathbf{Z}_{(2)}}(S_3, S_3)$ via congruences. Write $R := \mathbf{Z}_{(2)}$. In the **Q**-algebra A, cf. Proposition 5, we have the R-order

$$A_R := \begin{bmatrix} A_{R,1,1} & A_{R,1,2} & A_{R,1,3} & A_{R,1,4} \\ A_{R,2,1} & A_{R,2,2} & A_{R,2,3} & A_{R,2,4} \\ A_{R,3,1} & A_{R,3,2} & A_{R,3,3} & A_{R,3,4} \\ A_{R,4,1} & A_{R,4,2} & A_{R,4,3} & A_{R,4,4} \end{bmatrix} := \begin{bmatrix} R^{3\times3} & 0 & 0 & R^{3\times1} \\ 0 & R & 0 & R \\ 0 & 0 & R & 0 \\ R^{1\times3} & R & 0 & R[\overline{\eta}, \overline{\xi}] \end{bmatrix} \subseteq A .$$

Corollary 9. We have

$$\Lambda_{(2)} = \left\{ \begin{bmatrix} s_{1,1} & s_{1,2} & s_{1,3} & 0 & 0 & t_1 \\ s_{2,1} & s_{2,2} & s_{2,3} & 0 & 0 & t_2 \\ s_{3,1} & s_{3,2} & s_{3,3} & 0 & 0 & t_3 \\ 0 & 0 & 0 & u & 0 & v \\ 0 & 0 & 0 & w & 0 \\ x_1 & x_2 & x_3 & y & 0 & z_1 + z_2 \overline{\eta} + z_3 \overline{\xi} \end{bmatrix} \right\} \underbrace{ \begin{array}{c} 2w - 2z_1 \equiv_8 z_2 \equiv_4 z_3 \equiv_4 0 \\ x_1 & \equiv_4 0 \\ x_2 & \equiv_4 0 \\ x_3 & \equiv_4 0 \\ y & \equiv_2 0 \\ t_1 & \equiv_2 0 \\ t_2 & \equiv_2 0 \\ t_3 & \equiv_2 0 \\ v & \equiv_2 0 \end{array} \right\} \subseteq A_R.$$

In particular, we have $B_R = B_R(S_3, S_3) \cong \Lambda_{(2)}$ as R-algebras.

More symbolically written, we have

$$\Lambda_{(2)} = \begin{bmatrix}
R & R & R & 0 & 0 & (2) \\
R & R & R & 0 & 0 & (2) \\
R & R & R & 0 & 0 & (2) \\
0 & 0 & 0 & R & 0 & (2) \\
0 & 0 & 0 & R & 0 & 0
\end{bmatrix}$$

$$(4) \quad (4) \quad (4) \quad (2) \quad 0 \quad R \quad +(4)\overline{\eta} \quad +(4)\overline{\xi}$$

Remark 10. We claim that $1_{\Lambda_{(2)}} = e_1 + e_2 + e_3 + e_4 + e_5$ is an orthogonal decomposition into primitive idempotents, where

Proof. We have $e_1 \Lambda_{(2)} e_1 \cong R$, $e_2 \Lambda_{(2)} e_2 \cong R$, $e_3 \Lambda_{(2)} e_3 \cong R$ and $e_4 \Lambda_{(2)} e_4 \cong R$. So, it follows that e_1, e_2, e_3, e_4 are primitive.

As R-algebras, we have

$$e_5 \Lambda_{(2)} e_5 \cong \left\{ \left(w, \ z_1 + z_2 \overline{\eta} + z_3 \overline{\xi} \right) \in R \times R[\overline{\eta}, \overline{\xi}] : 2w - 2z_1 \equiv_8 z_2 \equiv_4 z_3 \equiv_4 0 \right\} =: \Gamma$$

$$\subseteq R \times R[\overline{\eta}, \overline{\xi}] .$$

To show that e_5 is primitive, we show that Γ is local.

We have the R-linear basis (b_1, b_2, b_3, b_4) of Γ , where

$$b_1 = (1, 1), b_2 = (0, 2+4\overline{\eta}),$$

 $b_3 = (0, 8\overline{\eta}), b_4 = (0, 4\overline{\xi}).$

We *claim* that the Jacobson radical of Γ is given by $J:=_R\langle 2b_1,b_2,b_3,b_4\rangle$, that $\Gamma/J\cong \mathbf{F}_2$ and that Γ is local.

In fact, the multiplication table for the basis elements is given by

(\cdot)	b_1	b_2	b_3	b_4	
b_1	b_1	b_2	b_3	b_4	
b_2	b_2	$2b_2 + b_3$	$2b_3$	$2b_4$	•
b_3	b_3	$2b_3$	0	0	
$\overline{b_4}$	b_4	$2b_4$	0	0	

This shows that J is an ideal. Moreover, J is topologically nilpotent as

$$J^3 = {}_{R}\langle 8b_1, 4b_2, 2b_3, 4b_4 \rangle \subseteq 2 \, e_5 \, \Lambda_{(2)} \, e_5 \ .$$

Since $\Gamma/J \cong \mathbf{F}_2$, the *claim* follows.

5.3. $B_{\mathbf{Z}_{(2)}}(S_3, S_3)$ and $B_{\mathbf{F}_2}(S_3, S_3)$ as path algebras modulo relations. Write $R := \mathbf{Z}_{(2)}$. We aim to write $\Lambda_{(2)}$, up to Morita equivalence, as path algebra modulo relations. The R-algebra $\Lambda_{(2)}$ is Morita equivalent to $\Lambda'_{(2)} := (e_3 + e_4 + e_5)\Lambda_{(2)}(e_3 + e_4 + e_5)$ since $\Lambda_{(2)} e_1 \cong \Lambda_{(2)} e_2 \cong \Lambda_{(2)} e_3$ using multiplication with elements of $\Lambda_{(2)}$ with a single nonzero entry 1 in the upper (3×3) -corner.

We have the R-linear basis of $\Lambda'_{(2)}$ consisting of

We have $\tau_5 = \tau_1 \tau_2$ and $\tau_6 = \tau_3 \tau_4 + 6\tau_1 \tau_2$. Hence, as an R-algebra $\Lambda'_{(2)}$ is generated by $e_3, e_4, e_5, \tau_1, \tau_2, \tau_3, \tau_4, \tau_7$.

Consider the quiver
$$\Psi:=\left[\tilde{e}_{3}\underbrace{\tilde{\tau}_{2}}_{\tilde{\tau}_{1}}\underbrace{\tilde{e}_{5}}_{\tilde{\tau}_{3}}\underbrace{\tilde{e}_{4}}_{\tilde{\tau}_{3}}\right].$$

We have a surjective R-algebra morphism $\varphi: R\Psi \to \Lambda'_{(2)}$ by sending

$$\tilde{e}_3 \mapsto e_3$$
, $\tilde{e}_4 \mapsto e_4$, $\tilde{e}_5 \mapsto e_5$, $\tilde{\tau}_1 \mapsto \tau_1$, $\tilde{\tau}_2 \mapsto \tau_2$, $\tilde{\tau}_3 \mapsto \tau_3$, $\tilde{\tau}_4 \mapsto \tau_4$, $\tilde{\tau}_7 \mapsto \tau_7$.

We establish the following multiplication trees, where we underline the elements that are not in an R-linear relation with previous elements.

$$\underbrace{e_3} \xrightarrow{\tau_2} \xrightarrow{\tau_3} \underbrace{\tau_2} \xrightarrow{\tau_1} \xrightarrow{\tau_1} \tau_2 \tau_1 = 0$$

$$\underbrace{e_4} \xrightarrow{\tau_4} \xrightarrow{\tau_3} \underbrace{\tau_4} \xrightarrow{\tau_1} \xrightarrow{\tau_1} \tau_4 \tau_1 = 0$$

$$\underbrace{\tau_2 \tau_3} \xrightarrow{\tau_2} \xrightarrow{\tau_7} \xrightarrow{\tau_7} \xrightarrow{\tau_7} \underbrace{\tau_7} \underbrace{\tau_7} \xrightarrow{\tau_7} \underbrace{\tau_7} \xrightarrow{\tau_7} \underbrace{\tau_7} \underbrace{\tau_7} \xrightarrow{\tau_7} \underbrace{\tau_7} \underbrace{\tau_7} \underbrace{\tau_7} \xrightarrow{\tau_7} \underbrace{\tau_7} \underbrace{\tau_7$$

So, the kernel of φ contains the elements:

Let I be the ideal generated by these elements. So $I \subseteq \ker(\varphi)$. Therefore, φ induces a surjective R-algebra morphism from $R\Psi/I$ to $\Lambda'_{(2)}$. We may reduce the list of generators to obtain

$$I = (\tilde{\tau}_2 \tilde{\tau}_1, \tilde{\tau}_4 \tilde{\tau}_1, \tilde{\tau}_7 \tilde{\tau}_1 - 2\tilde{\tau}_1, \tilde{\tau}_2 \tilde{\tau}_3, \tilde{\tau}_4 \tilde{\tau}_3, \tilde{\tau}_7 \tilde{\tau}_3 - 2\tilde{\tau}_3, \tilde{\tau}_2 \tilde{\tau}_7 - 2\tilde{\tau}_2, \tilde{\tau}_4 \tilde{\tau}_7 - 2\tilde{\tau}_4, \tilde{\tau}_7^2 - 2\tilde{\tau}_7 - \tilde{\tau}_1 \tilde{\tau}_2) \ .$$

Note that $R\Psi/I$ is R-linearly generated by

$$\mathcal{N} := \{ \tilde{e}_3 + I, \tilde{e}_4 + I, \tilde{e}_5 + I, \tilde{\tau}_1 + I, \tilde{\tau}_2 + I, \tilde{\tau}_3 + I, \tilde{\tau}_4 + I, \tilde{\tau}_7 + I, \tilde{\tau}_3 \tilde{\tau}_4 + I, \tilde{\tau}_1 \tilde{\tau}_2 + I \},$$

cf. the underlined elements above. To see that, note that a product ξ of k generators may be written as a product in \mathcal{N} of k' generators and a product of k'' generators, where k = k' + k'' and where k' is choosen maximal. We call k'' the excess of ξ . If $k'' \geq 1$ then, using the trees above, we may write ξ as an R-linear combination of products of generators that have excess $\leq k'' - 1$. Moreover, note that $|\mathcal{N}| = 10 = \operatorname{rk}_R(\Lambda'_{(2)})$.

Since we have a surjective R-algebra morphism from $R\Psi/I$ to $\Lambda'_{(2)}$, this rank argument shows this morphism to be bijective. In particular, $I = \text{kern}(\varphi)$.

So, we obtain the

$$\textbf{Proposition 11.} \ \textit{Recall that} \ I = \left(\begin{array}{cccc} \tilde{\tau}_2 \tilde{\tau}_1 & , & \tilde{\tau}_2 \tilde{\tau}_3 & , & \tilde{\tau}_2 \tilde{\tau}_7 - 2 \tilde{\tau}_2, \\ \tilde{\tau}_4 \tilde{\tau}_1 & , & \tilde{\tau}_4 \tilde{\tau}_3 & , & \tilde{\tau}_4 \tilde{\tau}_7 - 2 \tilde{\tau}_4, \\ \tilde{\tau}_7 \tilde{\tau}_1 - 2 \tilde{\tau}_1 & , & \tilde{\tau}_7 \tilde{\tau}_3 - 2 \tilde{\tau}_3 & , & \tilde{\tau}_7^2 - 2 \tilde{\tau}_7 - \tilde{\tau}_1 \tilde{\tau}_2 \end{array} \right).$$

We have the isomorphism of $\mathbf{Z}_{(2)}$ -algebras

$$\Lambda'_{(2)} \stackrel{\sim}{\to} R \left[\underbrace{\tilde{e}_3 \underbrace{\tilde{\tau}_2}_{\tilde{\tau}_1} \tilde{e}_5}_{\tilde{\tau}_3} \underbrace{\tilde{e}_5 \underbrace{\tilde{\tau}_7}_{\tilde{\tau}_3} \tilde{e}_4}_{\tilde{\tau}_3} \right] / I$$

$$\begin{array}{lll} e_i & \mapsto & \tilde{e}_i + I \ \textit{for} \ i \in [3, 5] \\ \tau_j & \mapsto & \tilde{\tau}_j + I \ \textit{for} \ j \in [1, 7] \setminus \{5, 6\} \ . \end{array}$$

Recall that $B_{\mathbf{Z}_{(2)}}(S_3,S_3)$ is Morita equivalent to $\Lambda'_{(2)}$.

Corollary 12. As \mathbf{F}_2 -algebras, we have

$$\Lambda'_{(2)}/2\Lambda'_{(2)} \cong \mathbf{F}_{2} \left[\underbrace{\tilde{\tau}_{2}}_{\tilde{\tau}_{1}} \underbrace{\tilde{e}_{5}}_{\tilde{\tau}_{7}} \underbrace{\tilde{e}_{4}}_{\tilde{\tau}_{3}} \right] / \left(\underbrace{\tilde{\tau}_{2}\tilde{\tau}_{1}}_{\tilde{\tau}_{7}\tilde{\tau}_{1}}, \underbrace{\tilde{\tau}_{2}\tilde{\tau}_{3}}_{\tilde{\tau}_{7}\tilde{\tau}_{1}}, \underbrace{\tilde{\tau}_{2}\tilde{\tau}_{7}}_{\tilde{\tau}_{7}\tilde{\tau}_{1}}, \underbrace{\tilde{\tau}_{4}\tilde{\tau}_{3}}_{\tilde{\tau}_{7}\tilde{\tau}_{7}\tilde{\tau}_{3}}, \underbrace{\tilde{\tau}_{4}\tilde{\tau}_{7}}_{\tilde{\tau}_{7}\tilde{\tau}_{2}} \right).$$

Recall that $B_{\mathbf{F}_2}(S_3, S_3)$ is Morita equivalent to $\Lambda'_{(2)}/2\Lambda'_{(2)}$.

5.4. Localisation at 3: $B_{\mathbf{Z}_{(3)}}(S_3, S_3)$ via congruences. Write $R = \mathbf{Z}_{(3)}$. In the **Q**-algebra A, cf. Proposition 5, we have the R-order

$$A_R := \begin{bmatrix} A_{R,1,1} & A_{R,1,2} & A_{R,1,3} & A_{R,1,4} \\ A_{R,2,1} & A_{R,2,2} & A_{R,2,3} & A_{R,2,4} \\ A_{R,3,1} & A_{R,3,2} & A_{R,3,3} & A_{R,3,4} \\ A_{R,4,1} & A_{R,4,2} & A_{R,4,3} & A_{R,4,4} \end{bmatrix} := \begin{bmatrix} R^{3\times3} & 0 & 0 & R^{3\times1} \\ 0 & R & 0 & R \\ 0 & 0 & R & 0 \\ R^{1\times3} & R & 0 & R[\overline{\eta}, \overline{\xi}] \end{bmatrix} \subseteq A.$$

Corollary 13. We have

$$\Lambda_{(3)} = \left\{ \begin{bmatrix} s_{1,1} \, s_{1,2} \, s_{1,3} & 0 & 0 & t_1 \\ s_{2,1} \, s_{2,2} \, s_{2,3} & 0 & 0 & t_2 \\ s_{3,1} \, s_{3,2} \, s_{3,3} & 0 & 0 & t_3 \\ 0 & 0 & 0 & u & 0 & v \\ 0 & 0 & 0 & w & 0 \\ x_1 & x_2 & x_3 & y & 0 & z_1 + z_2 \overline{\eta} + z_3 \overline{\xi} \end{bmatrix} \in A_R : \begin{cases} x_1 \equiv_3 0 \\ x_2 \equiv_3 0 \\ z_2 \equiv_3 0 \end{cases} \right\} \subseteq A_R.$$

In particular, we have $B_R = B_R(S_3, S_3) \cong \Lambda_{(3)}$ as R-algebras.

More symbolically written, we have

$$\Lambda_{(3)} = \begin{bmatrix} R & R & R & 0 & 0 & R \\ R & R & R & 0 & 0 & R \\ R & R & R & 0 & 0 & R \\ 0 & 0 & 0 & R & 0 & R \\ 0 & 0 & 0 & R & 0 \\ (3) & (3) & (3) & R & 0 & R & +(3)\overline{\eta} & +R\overline{\xi} \end{bmatrix}.$$

Remark 14. We claim that $1_{\Lambda_{(3)}} = e_1 + e_2 + e_3 + e_4 + e_5 + e_6$ is an orthogonal decomposition into primitive idempotents, where

Proof. We have $e_s \Lambda_{(3)} e_s \cong R$ for $s \in [1, 5]$. Therefore it follows that e_1, e_2, e_3, e_4, e_5 are primitive.

To show that that e_6 is primitive, we *claim* that the ring $e_6 \Lambda_{(3)} e_6 \cong R[\overline{\eta}, \overline{\xi}]$ is local. We have $U(R[\overline{\eta}, \overline{\xi}]) = R[\overline{\eta}, \overline{\xi}] \setminus (3, \overline{\eta}, \overline{\xi})$. In fact, for $u := a + b\overline{\eta} + c\overline{\xi}$ with $a \in R \setminus (3)$ and $b, c \in R$, the inverse is given by $u^{-1} = a^{-1} - a^{-2}b\overline{\eta} - a^{-2}c\overline{\xi}$ as

$$uu^{-1} = aa^{-1} + (-a^{-1}b + a^{-1}b)\overline{\eta} + (-a^{-1}c + a^{-1}c)\overline{\xi} = 1 \ .$$

Thus the nonunits of $R[\overline{\eta}, \overline{\xi}]$ form an ideal and so $R[\overline{\eta}, \overline{\xi}]$ is a local ring. This proves the *claim*.

5.5. $B_{\mathbf{Z}_{(3)}}(S_3, S_3)$ and $B_{\mathbf{F}_3}(S_3, S_3)$ as path algebras modulo relations. Write $R := \mathbf{Z}_{(3)}$. We aim to write $\Lambda_{(3)}$, up to Morita equivalence, as path algebra modulo relations. The R-algebra $\Lambda_{(3)}$ is Morita equivalent to $\Lambda'_{(3)} := (e_3 + e_4 + e_5 + e_6)\Lambda_{(3)}(e_3 + e_4 + e_5 + e_6)$ since $\Lambda_{(3)} e_1 \cong \Lambda_{(3)} e_2 \cong \Lambda_{(3)} e_3$ using multiplication with elements of $\Lambda_{(3)}$ with a single nonzero entry 1 in the upper (3×3) -corner. We have the R-linear basis of $\Lambda'_{(3)}$ consisting of

We have $\tau_5 = \tau_1 \tau_2$ and $\tau_6 = \tau_3 \tau_4 + 4\tau_1 \tau_2$. Hence, as an R-algebra $\Lambda'_{(3)}$ is generated by $e_3, e_4, e_5, e_6, \tau_1, \tau_2, \tau_3, \tau_4$.

Consider the quiver
$$\Psi:=\left[\tilde{e}_5 \qquad \tilde{e}_3 \overbrace{\tilde{\tau}_1}^{\tilde{\tau}_2} \tilde{e}_6 \overbrace{\tilde{\tau}_3}^{\tilde{\tau}_4} \tilde{e}_4\right]$$
. We have a surjective quiver $\Psi:=\left[\tilde{e}_5 \qquad \tilde{e}_4 \right]$

tive R-algebra morphism $\varphi: R\Psi \to \Lambda'_{(3)}$ by sending

$$\tilde{e}_3 \mapsto e_3$$
, $\tilde{e}_4 \mapsto e_4$, $\tilde{e}_5 \mapsto e_5$, $\tilde{e}_6 \mapsto e_6$, $\tilde{\tau}_1 \mapsto \tau_1$, $\tilde{\tau}_2 \mapsto \tau_2$, $\tilde{\tau}_3 \mapsto \tau_3$, $\tilde{\tau}_4 \mapsto \tau_4$.

We establish the following multiplication trees, where we underline the elements that are not in an R-linear relation with previous elements.

The multiplication tree of the idempotent e_5 consists only of the element e_5 .

$$\underbrace{e_4 \xrightarrow{\tau_4} \xrightarrow{\tau_4} \xrightarrow{\tau_3}}_{\tau_1 \downarrow} \xrightarrow{\tau_3} \tau_4 \tau_3 = 0 \qquad \underbrace{e_3}_{\tau_2} \xrightarrow{\tau_2} \xrightarrow{\tau_2} \xrightarrow{\tau_1} \tau_2 \tau_1 = 0$$

$$\underbrace{\tau_1 \downarrow}_{\tau_4 \tau_1} = 0 \qquad \qquad \underbrace{\tau_2 \tau_3}_{\tau_2} = 0$$

So the kernel of φ contains the elements:

$$\tilde{\tau}_4\tilde{\tau}_1,\ \tilde{\tau}_4\tilde{\tau}_3,\ \tilde{\tau}_2\tilde{\tau}_1,\ \tilde{\tau}_2\tilde{\tau}_3,\ \tilde{\tau}_3\tilde{\tau}_4\tilde{\tau}_3,\ \tilde{\tau}_2\tilde{\tau}_3,\ \tilde{\tau}_3\tilde{\tau}_4\tilde{\tau}_1,\ \tilde{\tau}_1\tilde{\tau}_2\tilde{\tau}_3,\ \tilde{\tau}_1\tilde{\tau}_2\tilde{\tau}_1\ .$$

Let I be the ideal generated by these elements. So, $I \subseteq \text{kern}(\varphi)$. Therefore, φ induces a surjective R-algebra morphism from $R\Psi/I$ to $\Lambda'_{(3)}$. We may reduce the list of generators to obtain $I = (\tilde{\tau}_4 \tilde{\tau}_3, \ \tilde{\tau}_4 \tilde{\tau}_1, \ \tilde{\tau}_2 \tilde{\tau}_1, \ \tilde{\tau}_2 \tilde{\tau}_3)$.

Note that $R\Psi/I$ is R-linearly generated by

$$\mathcal{N} := \{ \tilde{\mathbf{e}}_3 + I, \tilde{\mathbf{e}}_4 + I, \tilde{\mathbf{e}}_5 + I, \tilde{\mathbf{e}}_6 + I, \tilde{\tau}_1 + I, \tilde{\tau}_2 + I, \tilde{\tau}_3 + I, \tilde{\tau}_4 + I, \tilde{\tau}_3 \tilde{\tau}_4 + I, \tilde{\tau}_1 \tilde{\tau}_2 + I \},$$

cf. the underlined elements above. To see that, note that a product ξ of k generators may be written as a product in $\mathcal N$ of k' generators and a product of k'' generators, where k=k'+k'' and where k' is choosen maximal. If $k''\geq 1$ then, using the trees above, we have $\xi=0$. Moreover, note that $|\mathcal N|=10=\operatorname{rk}_R(\Lambda'_{(3)})$.

Since we have an surjective algebra morphism from $R\Psi/I$ to $\Lambda'_{(3)}$, this rank argument shows this morphism to be bijective. In particular, $I = \text{kern}(\varphi)$.

So, we obtain the

Proposition 15. Recall that $I = (\tilde{\tau}_4 \tilde{\tau}_3, \ \tilde{\tau}_2 \tilde{\tau}_1, \ \tilde{\tau}_4 \tilde{\tau}_1, \ \tilde{\tau}_2 \tilde{\tau}_3)$. We have the isomorphisms of R-algebras

Recall that $B_{\mathbf{Z}_{(3)}}(S_3, S_3)$ is Morita equivalent to $\Lambda'_{(3)}$.

Corollary 16. As \mathbf{F}_3 -algebras, we have

$$\Lambda'_{(3)}/3\Lambda'_{(3)} \cong \mathbf{F}_{3} \begin{bmatrix} \tilde{e}_{5} & \tilde{e}_{6} & \tilde{e}_{4} \\ \tilde{e}_{5} & \tilde{e}_{6} & \tilde{e}_{4} \end{bmatrix} / (\tilde{\tau}_{4}\tilde{\tau}_{3}, \ \tilde{\tau}_{4}\tilde{\tau}_{1}, \ \tilde{\tau}_{2}\tilde{\tau}_{1}, \ \tilde{\tau}_{2}\tilde{\tau}_{3})$$

Recall that $B_{\mathbf{F}_3}(S_3,S_3)$ is Morita equivalent to $\Lambda'_{(3)}/3\Lambda'_{(3)}$.

References

[1] B. Masterson, On the table of marks of a direct product of finite groups, http://hdl.handle.net/10379/5550, PhD thesis, NUI Galway, 2016.

- [2] B. Masterson, G. Pfeiffer On the table of marks of a direct product of finite groups, arXiv:1704.03433v3, 2018.
- [3] S. Bouc, Foncteurs d'ensembles munis d'une double action, J. Algebra 183, 664-736, 1996.
- [4] S. Bouc, Burnside rings, Handbook of Algebra, volume 2, section 6E, 739-804, 2000.
- [5] S. Bouc, Biset Functors for Finite Groups, Springer, 2010.
- [6] P. Webb, A guide to Mackey functors, Handbook of Algebra, volume 2, section 6E, 805-836, 2000.
- [7] R. Boltje, S. Danz, A ghost algebra of the double Burnside algebra in characteristic zero, arXiv:1203.1346, 2013.
- [8] I. Reiner, Maximal Orders, Oxford University Press, 2003.
- [9] G. D. James, *The irreducible representations of symmetric groups*, Bull. London Math. Soc. 8, no. 3, 229-232, 1976.
- [10] Wieb Bosma, John Cannon, and Catherine Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput., 24, 235-265, 1997.

Nora Krauss has written a Master's Thesis at the University of Stuttgart on double Burnside rings, where she in particular studied the case S_3 in detail. At present, she is a PhD student at the University of Stuttgart.

(author) University of Stuttgart

 $E ext{-}mail\ address: kraussna@mathematik.uni-stuttgart.de}$