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Ring learning with errors: a crossroads between post-quantum

cryptography, machine learning and number theory

IVÁN BLANCO-CHACÓN

Abstract. The present survey is intended to serve as a comprehensive account of the
main areas of the cryptography based on the Ring Learning With Errors Problem. We
cover the major topics, from their mathematical foundations to the main primitives, as
well as several open ends and recent progress with an emphasis in the connections with
algebraic number theory. This work is based to a certain extent on an invited course
and a seminar given by the author at the Basque Center for Applied Mathematics in
2018 and at the ICIAM 2019.

1. Introduction

According to MIRACL Labs, it is estimated that a quantum computer capable of
breaking most of modern cryptography will be built in the next 10-15 years (20-25 years
according to estimates made public in the last NIST call for the standardisation of post-
quantum primitives). All of cryptography is built on supposedly hard 1 mathematical
problems, most of which, like integer factorisation or the discrete logarithm problem,
become relatively easy in the context of a working quantum computer. In response to
this threat there is a need to migrate from these vulnerable constructs to constructs
known to remain strong even in a post-quantum world.

An example of such a hard problem is the shortest vector problem in general lattices,
which is known to be NP-hard (at least for a very small approximation factor). While
there already exist post-quantum solutions for much of standard cryptography, like
public key encryption and digital signature, it is currently unclear how some of the
more elaborate protocols, like those seeking for integrity or non-repudiation can be
successfully migrated. In particular in the last 10+ years bilinear pairings on elliptic
curves have opened up many new possibilities, which might likely be rendered insecure
in a post-quantum world. Already commercial products based on bilinear pairings have
found applications in the ‘real world’, and so much work must be done to ensure that
we will be able to retain this functionality into the future.

At the same time there is much fundamental work to be done on the post-quantum
primitives themselves. A major decision is to choose between one or various of the
following technologies, for each security/integrity demand:

a) Code based cryptography ([31]) is built on the infeasibility of syndrome decoding
for general linear error-correcting codes over finite fields.
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b) Multivariate based cryptography ([14]) is based on the fact that solving general
systems of multivariate polynomial equations over finite fields is proved to be
NP-hard.

c) Supersingular isogeny based cryptography ([19]), is a protocol for key exchange,
analogous to Diffie-Hellman, but the cyclic groups present here are attached to
supersingular elliptic curves defined over finite fields.

d) Finally, lattice based cryptography, admits a large number of different formu-
lations and constructions. This report focuses on one of the most promising
lattice-based technologies: Ring Learning With Errors (RLWE). This scheme is
based on the RLWE problem, which is based in turn on the difficulty of solving
the shortest vector problem (SVP) on ideal lattices.

At the time of writing, code, lattice and multivariate-based methods seem to be the
strongest contenders, as they appear to have the flexible structure needed on which to
base more complex protocols. Within these three categories, the lattice-based one has
by far a larger number of non-broken primitives/protocols.

Lattice-based cryptography has a relatively mature history, primarily due to the
work done by the early proponents of the related NTRU cryptosystem ([24]). This
was a patented technology which enjoyed some minor success, but never really gained
traction, as when it was invented, a quantum computer still seemed very far off. Its
patents have now expired.

RLWE first came to prominence with the paper by Lyubashevsky, Peikert and Regev
([28]). A key-exchange algorithm proposed by them has been recently optimized and
implemented by Alkim, Ducas, Pöppelmann, and Schwabe ([1]). This has been imple-
mented by Google in a well-publicised experiment ([10]). In recent times there have
been many implementation improvements, see for example the recent paper by Scott
([38]). So there can be no doubting the practicality of the technology, opinions support-
ing this view include those of a good number of researchers in Intel Labs and MIRACL
Labs.

RLWE is built on an earlier scheme: the Learning with Errors (LWE) problem, which
admits a security reduction from the SVP on arbitrary lattices, but with a much larger
approximation factor than the one for which SVP is proved to be NP-hard. Of course,
this is not a formal hardness guarantee for LWE but it can be regarded as a clue of its
strength. Moreover, no polynomial-time attack has been found against LWE yet.

The main disadvantage of LWE is a quadratic overhead in the key sizes, which is
overcome in the RLWE scenario, at the cost of being backed in the SVP over just ideal
lattices, which even if based on experience is widely believed to be intractable, there is
no formal proof at the moment, and for no approximation factor.

In spite of that, the RLWE variant appears to be eminently practical: like most post-
quantum proposals, RLWE key sizes are much larger than those of non post-quantum
methods, but the required computing power is usually much smaller. For example while
an elliptic curve based cryptosystem might use keys of 256 bits, an equivalent system
based on RLWE might require keys of 4096 bits to grant the same security level, while
running maybe 10-100 times faster ([27]). These differences might be seen as balancing
each other out. Furthermore, 30% of the surviving proposals for the NIST are based
on RLWE.

We have tried to make our report accessible by a broad audience with no more
knowledge than some basics in finite fields, linear algebra, probability and group/ring
theory. Thus, we have structured our report as follows:
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In section 2 we provide a quick introduction to the different features of cryptography
and introduce the main terms and facts on complexity as they show up in the literature.
We provide several examples, elaborating on those presented in the course by the author.

In section 3 we expose the main concepts of lattice-based cryptography. We focus on
the classical LWE, over which RLWE is built and discuss its advantadges and drawbacks,
as well as different attacks against weak instantiations, which will be exploited in the
RLWE scenario in Section 6.

Section 4 is a quick overview of a few key concepts in algebraic number theory: rings
of integers, canonical embedding, and other topics. These pieces make the foundations
of RLWE, but the reader who is familiar with this material can safely skip it. Sev-
eral examples are worked out there, and in addition, we provide some comprehensible
references for the topic.

Section 5 introduces the RLWE problem in its various formulations. In particular,
we carefully discuss the Polynomial Learning With Errors problem (PLWE), which
appeared in the literature before RLWE ([40]). We discuss the equivalence between
both problems and explain some recent advances in this topic: in particular we comment
on recent work by the author ([6]) which gives a partial answer in the cyclotomic
case, the most interesting from a cryptographic point of view. Besides, we explain the
hardness result which backs RLWE and describe in full detail the LPR crypstosystem,
as presented in [28]. We close the chapter by presenting a key exchange protocol based
in RLWE ([15]).

Section 6 is a summary of several attacks against the RLWE cryptosystem. They
reduce to LWE or to PLWE attacks and allow to discard insecure choices of parameters.
The search for secure instantiations motivates some number theoretical problems and
conjectures which we also discuss.

Section 7 is for RLWE-based digital signatures and homomorphic encryption, a func-
tionality which is gaining much interest nowadays, since it allows to solve a good number
of logistic and security problems in cloud computing and storing. We close the survey
by discussing in detail some (second round) NIST figures.

A couple of remarks to end this introduction: first, by a polynomial time algorithm
we mean an algorithm for which there exists a polynomial p(x) ∈ R[x] and a size
function on the family of the algorithm inputs x(n), such that the time it takes to run

the algorithm on input n is p(x(n)). Second, we will use sometimes the Õ-notation: a

function f(x) is Õ(g(x)) if it is O(g(x)logk(x)) for some k.
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2. Post-quantum cryptography

2.1. Cryptography features. Requirements such as confidentiality and proofs of
identity are crucial in electronic financial and legal transactions, while some other fea-
tures like non-repudiation or operating on encrypted data (homomorphic encryption)
are gaining much traction within the last few years. We examine here most of these
functionalities.

The best known cryptographic problem is confidentiality. This is attained by the use
of well-designed encryption/decription schemes.
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To start with, we fix a finite alphabet A, with some mathematical structure such as
an abelian group or a field (e.g. the finite field Fq for q = pt and p prime, or an elliptic
curve over this field). We consider three sets K ⊂ An (keys),M⊂ AN (plaintexts) and
C ⊂ AN (ciphertexts) with n� N . Finally, we consider a set Λ ⊂ N which parametrizes
the level of security, i.e., the larger λ ∈ Λ, the safer the scheme.

Definition 2.1 (Cipher schemes). A cipher over (K,M, C) is a family of pairs of ef-
ficiently computable functions {(Eλ, Dλ)}λ∈Λ where for each λ, Eλ : K × M → C
(encryption function) and Dλ : K × C → M (decryption function) are such that for
each key k ∈ K and for each plaintext m ∈ M, the following correctness property
holds:

Dλ(k,Eλ(k,m)) = m.

That is to say, decryption undoes encryption.

Efficiently computable means that both Eλ and Dλ can be computed by an algorithm
which is polynomial in the security parameter λ, i.e., there exist polynomials p(x), q(x) ∈
R[x] only depending on the scheme, such that for each λ ∈ Λ, k ∈ K, m ∈ M, and
c ∈ C, the number of steps to compute Eλ(k,m) (resp. Dλ(k, c)) is upper bounded by
p(λ) (resp. q(λ)). Moreover, the algorithm for Eλ can be probabilistic, while Dλ should
always be deterministic.

Since in our definition both the encryption and decryption parties have the same key
(i.e., the scheme is symmetric), they should agree beforehand on that key somehow.
For instance, they might do it physically in a secret meeting but they can also use a
digital key exchange protocol. As usual, any arbitrary legitimate sender (receiver) will
be called Alice (Bob), and any arbitrary eavesdropper will be called Eve.

Definition 2.2 (Key exchange protocol). A key exchange protocol is an efficient
method for Alice and Bob to agree on a key through a (potentially non-safe) chan-
nel. One of the most famous protocols is Diffie-Hellman’s (DH)1, where Alice and Bob
start by agreeing on a finite feld Fq and a primitive root g, namely, a generator of the
cyclic multiplicative group F∗q . The pair (q, g) is made public, and to agree on a private
key, Alice selects an integer a and Bob selects an integer b. Then, Alice sends ga modulo
q to Bob, who on receiving it, raises it to b modulo q, getting gab modulo q. Next, Bob
sends gb modulo q to Alice, who raises it to a, obtaining also gab modulo q, the agreed
private key.

Notice that without knowledge of a or b, Eve cannot obtain gab from ga and gb in an
efficient manner (on a classic computer!), the main obstruction being the unfeasibility of
the discrete logarithm, namely, to obtain a from ga modulo q, if g is known. Nowadays,
a combined usage of Diffie-Hellman (or some variant) with a suitable symmetric cipher
is used in most internet protocols, like TLS or TCP/IP. A variant of DH is ECDH,
where the multiplicative group F∗q is replaced by the additive group of an elliptic curve
over Fq.
Definition 2.3 (Digital signatures). A signature scheme is a pair (G,D), where G :
Λ→ K is an efficient key generating probabilistic algorithm, and D = {(Sλ, Vλ)}λ∈Λ is
a family of pairs of efficiently computable2 functions Sλ : K ×M → T ⊆ Ar (space of
tags) and Vλ : K ×M× T → {0, 1} such that whenever ks (secret key) and kp (public
key) are sampled from G on security level λ, then, for every message m ∈M:

pr [Vλ(kp,m, Sλ(ks,m)) = 1] = 1,

1There are more general versions of the Diffie-Hellman problem, not known to be equivalent to a
discrete logarithm problem, but here we stick to its version over finite fields, which by construction is
so.

2by polynomial-time probabilistic algorithms.
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For a security level λ, Sλ is called the signature function and Vλ the verification
function, which returns 1 if the signature is valid and 0 otherwise, and the correctness
of the scheme means that on a message m and a secret key ks, the signature function
produces a tag Sλ(ks,m), which is verified as valid by the verifying function with prob-
ability 1, given the message m and the public key kp. This scheme provides a proof
that the message was signed by a known signatory (authentication) and the signatory
cannot deny having signed the message (non-repudiation). Classic designs of digital
signature schemes include Rabin’s algorithm, Lamport schemes and Merkle trees, as
well as RSA-based protocols ([7] 13.3.1).

Integrated Encryption Schemes (signcryption schemes) implement both encryption
and authentication. Two of the most commonly used are ECIES, which operates with
elliptic curves and DLIES, which operates over Fq.

Definition 2.4 (Homomorphic encryption3 ). Let (E,D) be a cipher over (K,M, C)
where M and C are abelian groups under the operations ∗M and ∗C respectively. The
cipher is said to be homomorphic if for each key k ∈ K and plaintexts m1,m2 ∈ M, it
is

E(k,m1) ∗C E(k,m2) = E(k,m1 ∗M m2).

Example 2.1. RSA encryption is homomorphic. Indeed, for an RSA integer N = pq >
1 and an exponent e modulo φ(N) with inverse d, encryption goes as x 7→ xe (mod N),
which clearly commutes with the product modulo N , but not with the sum.

When in addition,M and C have ring structure and encryption commutes with both
ring operations, the cipher is said to be fully homomorphic (FHE). Notice that RSA is
not fully homomorphic.

Homomorphic encryption allows to perform operations on the plaintext by operating
directly on the ciphertexts, i.e., without decrypting first. This is relevant when the
operations are outsourced and performed over a non-trustable server. Applications of
homomorphic encryption include encrypted database queries, cloud computing, genetic
computing, health data management or outsourced generation of blockchain addresses.

2.2. P, NP, NP-hard and NP-complete. The author has often seen that the terms
intractable, unfeasible, and hard, are used in the postquantum cryptography literature in
a rather loose (at best!) manner and this may lead to believe that certain computational
problems enjoy certain complexity guarantees that they simply have not. We make
here precise the main terms that usually appear in the problems which back lattice
cryptography.

Definition 2.5 (The P and NP classes). The P class consists of the decission problems
whose solution can be found on a deterministic Turing machine in polynomial time in
the input size. The NP class consists of the decission problems for which a putative
solution can be checked to be a real solution or not in polynomial time on a deterministic
Turing machine on the input size.

Equivalently, the NP-class consists of the decission problems such that a solution can
be found in polynomial time on a non-deterministic Turing machine: indeed, assum-
ing Definition 2.5 for the NP class, an algorithm based on a non-deterministic Turing
Machine can be built in two steps; the first is a non-determininstic guess about the
solution, and the second consists of a polynomial deterministic algorithm that verifies
if the guess is a solution(cf. [2] pag. 283 for details). A common misconception is that
the NP term stands for non-polynomial when in fact it stands for non-deterministic
polynomial acceptable problems.

3From now on, to ease notation, we will omit the λ-subscripts unless it results in ambiguity.
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A note of caution: as we pointed out at the end of the introduction, the term in
polynomial time means that the time it takes to solve a problem is, on input n, upper
bounded by a polynomial in x(n) where x is a size function. The most used size
function is the logarithm, as we can regard it, essentially as the number of digits, a true
size of the input. Hence, a brute force attack on DLP for Fp takes p − 1 powers and
checks, which is polynomial in p but exponential in log(p). There are classical (non-
quantum) algorithms which drastically reduce the order, like the number field sieve
(subexponential), but none of them is polynomial in log(p). We refer the reader to
Chapter 4 of this work for a summary on number fields and their key properties and to
[25] for an exposition of the number field sieve method.

Example 2.2. The problem of primality testing, i.e. deciding whether a positive integer
is prime or not is NP: indeed, given a natural number n > 1 and b ≤ n, the Euclidean
algorithm can be used to check if b | n in approximalety log(b) operations. Moreover,
in a major breakthrough, Agrawal, Kayal and Saxena proved that primality testing is
also a P problem.

Example 2.3. The problem of factoring, namely to return a proper factorisation n = pq
with 1 < p, q < n of an input n ∈ N is also NP: a pair (p, q) ∈ N2 can be checked to be (or
not) a non trivial factorisation of n by performing approximately log(q)2 multiplications,
if q ≥ p.

Two celebrated algorithms due to Peter Shor solve the factoring problem and the
DLP in polynomial time on a quantum computer ([39]). To factor a positive integer n,
Shor’s algorithm runs over all the integers in the range {1, .., n}. For 1 < a < n, if a is
a unit modulo n, the algorithm calls a sub-routine to compute the order of a modulo n.
With this period, the algorithm produces a non-trivial factor of n with arbitrarily large
probability in polynomial time. The order-finding sub-routine is run on a quantum
computer, but the use of the order to produce a factor is classical.

In fairness, this does not mean that the problem of factoring is in the P-class, as a
(probabilistic) quantum algorithm is not equivalent, in general, to a Turing or sequential
machine.

Definition 2.6 (Reduction). We say that a problem A admits a reduction to a problem
B if any instance of A can be transformed to an instance of B in polynomial time, namely,
if solving B suffices for solving A with the same order of complexity.4

Informally, NP-hard and NP-complete problems are those at least as hard as those
in the NP-class, but while NP-complete problems belong to NP, NP-hard ones need not
to. More precisely:

Definition 2.7. The NP-hard class consists of those problems A such that every prob-
lem in NP can be reduced to A in polynomial time. The NP-complete class consists of
those NP problems which are NP-hard.

Example 2.4. The prime factorisation problem, i.e. to return all the prime factors
with multiplicity of an input n ≥ 1, is clearly NP: checking if a putative solution is
a prime factorisation of n can be done in (deterministic) polynomial time. However
it is not known if the prime factorisation is NP-hard (and hence NP-complete). It is
expected, moreover, not to be in the P class.

So, a quantum computer would render insecure both RSA and Diffie-Hellman. Even
more, Tate and Weil’s pairings allow to reduce ECDLP to DLP ([29]), a reduction which

4By order of complexity we mean polynomial, superpolynomial, subexponential and exponential. We
stick to these orders as they are enough for our analysis.
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is even polynomial (although probabilistic) on supersingular curves, hence, the elliptic
version on Diffie-Hellman should also be avoided in a post-quantum scenario. This is
a reason to consider schemes which use pairing-free abelian varieties, hence other than
elliptic curves. Jacobians of hyperelliptic curves are known to be good candidates but
beyond genus 3, the complexity of finding explicit equations and explicit computations
for the addition law render them unfeasible.

Finally, another well-known problem is whether P 6= NP or not. If equality held,
all cryptographic (classic and postquantum) primitives based on NP problems would
be useless. On the contrary, if, as it is widely believed, P 6= NP , then every NP-hard
problem would be non-polynomial, hence suitable for cryptography: indeed, if Λ is NP-
hard, in case P 6= NP , take B in NP \ P . Then Λ cannot be polynomial (otherwise,
B would be so).

But for the moment, lacking a proof of P 6= NP , all we can say is that NP-hard
problems are strongly expected to be suitable for (postquantum) cryptography.

3. Lattice based cryptography

The security of lattice-based schemes relies on two problems which are expected to be
intractable on a quantum computer, as we explain next. By length, we mean Euclidean
length, denoted || ||.

Definition 3.1. A lattice in Rn is a pair (Λ, ρ) where Λ is a finitely generated and free
subgroup of the additive group (Rn,+) and ρ : Λ→ Zn is an isomorphism. We denote
by λ1(Λ) the minimal length among the set of non-zero elements of Λ.

Notice that our definition has implicit the feature of being of full rank. There are
more general definitions but this will be enough for us.

Example 3.1. In the ring of Gaussian integers Z[i] = {a+ bi; a, b ∈ Z}, identifying
(C,+) with (R2,+), we can impose a lattice structure in (at least) two ways:

ρ1 : Z[i] → Z2

a+ bi 7→ (a, b)
(3.1)

or
ρ2 : Z[i] → Z2

a+ bi 7→ (a+ b, a− b). (3.2)

Definition 3.2. Let (Λ, ρ) be a lattice in Rn with basis B = {v1, ..., vn}. The funda-
mental parallelogram of Λ associated to B is:

F(B) =

{
n∑
i=1

λivi : with 0 ≤ λ < 1

}
.

Problem 3.3 (SVP). The shortest vector problem (SVP) is, on input of an arbitrary
lattice Λ in Rn, together with a basis, to determine a vector x ∈ Λ with length λ1(Λ).
For γ > 0, the γ-approximate shortest vector problem (γ-SVP) is to determine a non-
zero vector x ∈ Λ with ||x|| ≤ γλ1(Λ).

Problem 3.4 (CVP). The closest vector problem (CVP) is, on input of an arbitrary
lattice Λ in Rn, together with a basis and a point y ∈ Rn, to find xy ∈ Λ such that

||y − xy|| = min
x∈Λ
||x− y||.

In [30], it is proved that γ-SVP is NP-hard for γ <
√

2 and in [9], it is proved
that CVP is NP-complete, hence if P 6= NP , these two problems cannot be solved in
polynomial time, even with the aid of a quantum computer.
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Figure 1. Fundamental parallelogram, in darker blue. Source:
Wikipedia (by Álvaro Lozano Robledo)

Figure 2. Illustration of the shortest vector problem (basis vectors in
blue, shortest vector in red). Source: Wikipedia (by Sebastian Schmit-
tner)

Figure 3. Illustration of the closest vector problem (basis vectors in
blue, external vector in green, closest vector in red). Source: Wikipedia
(by Sebastian Schmittner)
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3.1. The Learning With Errors problem (LWE). Let q be a rational prime for
which a suitable choice will be made later.

Definition 3.5. The real torus of dimension 1 is the quotient group T = R/Z, its
elements are equivalence classes of the form x+ Z with x ∈ [0, 1).

Lemma 3.6. The following map is a group monomorphism:

Fq ↪→ T
a+ qZ 7→ a

q + Z.

A realization of lattice-based cryptography immune to all current quantum attacks
and with a good chance of being NP-hard relies on the LWE problem, which we describe
in this subsection.

Definition 3.7 (LWE-oracles). Let χ be a discrete random variable with values in T.
For s ∈ Fnq , chosen uniformly at random, a LWE-oracle with respect to s and χ is a
probabilistic algorithm As,χ which, at each execution, performs the following steps:

1. Samples a vector a uniformly at random from Fnq .
2. Computes the scalar product 〈a, s〉.
3. Samples e ∈ T from χ.

4. Outputs the vector
[
a, 1

q 〈a, s〉+ e
]
∈ Fnq × T.

Definition 3.8 (The LWE problem). Let χ be a discrete random variable with values
in T as before. The LWE problem for χ and q is defined as follows:

a) Search version: for an element s ∈ Fnq chosen uniformly at random and a LWE-
oracle As,χ, if an adversary is given access to arbitrarily many samples of the
LWE distribution, this adversary must recover s with non-negligible advantage.

a) Decissional version: for an element s ∈ Fnq chosen uniformly at random and
a LWE oracle As,χ, the adversary is asked to distinguish, with non-negligible
advantage, between arbitrarily many samples from As,χ and the same number of
samples (ai, bi) ∈ Fnq×T where ai and bi are chosen independently and uniformly
at random from Fnq and T.

From now on, χ will be an Fq-valued Gaussian variable, which can be thought of as
having values on T via Lemma 3.6. Such a variable is defined as follows: For σ, c ∈ R
we set ρσ,c(x) = exp −(x−c)2

2σ2 . Write

Sσ,c = ρσ,c(Z) =
∞∑

k=−∞
ρσ,c(k),

and define Dσ,c to be the distribution on Z such that the probability of x ∈ Z is
ρσ,c(x)/Sσ,c. Finally, the discrete Gaussian distribution χ with values in Fq, mean 0,
and parameter σ is defined by the probability function

Pr [χ = k] =
∑

n≡k (mod q)

pr [Dσ,0 = n] .

Some words of caution: first, the variance of χ should be very close to σ2, but not
neccesarily must be equal: in lattice-based cryptography one speaks about discrete ran-
dom variables of parameter (rather than variance) σ2. Second, effective sampling from
discrete Gaussian distributions is a difficult topic and in practical cases it is approached
only by numerical approximation (see [17]).
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We conclude here with the following result due to Regev ([35]): a polynomial time
quantum reduction from the SVP problem to the LWE problem, which backs the hard-
ness of LWE and makes it a candidate to sustain a cryptosystem from it, as we will see
in the next subsection.

Theorem 3.9 (Regev, [35]). Let χr be a discrete Gaussian of parameter r2, q a prime
and s ∈ Fnq . Assume r ≥ 2

√
n. Then, there is a quantum polynomial time reduction

from γ-SVP, with γ = Õ(nq/r)to the search LWE problem attached to the LWE oracle
As,χr .

3.2. Attacks against LWE. In the language of Machine Learning, due to Theorem
3.9, a training algorithm for the LWE problem can be turned, in polynomial time (on a
quantum computer), into an algorithm (of the same complexity) which solves the SVP
problem. If the γ-SVP problem were NP-hard for the value of γ given in Theorem
3.9, it would follow the NP-hardness of the LWE problem. However, that value of γ
depends on r2, the parameter of χr, and the values of r for which the LWE-problem
for As,χr results in a correct cryptosystem is bigger than

√
2, the value for which SVP

is NP-hard. Hence, Regev’s reduction cannot be used to prove NP-hardness of SVP.
Nevertheless, this kind of result can be seen as a clue towards its security.

However, LWE has not been yet broken and there is a wide consense of the problem
being intractable. Nevertheless, some ad-hoc instantiations may be insecure against
very simple attacks. Given m LWE samples {(ai, bi = 1

q 〈s, ai〉 + ei)}mi=1, we can put

them in columns to obtain a matrix A = [a1|...|am] ∈ Fn×mq and set b = 1
qA

ts + e,

where e is the column vector of errors. We analyze three vulnerable instantiations:

1. If χ is identically zero (errorless LWE), s can be recovered via Gaussian elimi-
nation as long as the rows of A are linearly independent, which holds with high
probability for m > n.

2. If χ takes values in z + [−1/2, 1/2) with fixed z ∈ R, we can round away each
coordinate of b and subtract z to reduce to errorless LWE.

3. If each group of k samples has an error vector drawn from some distribution κ
in Rk and some discretized error coordinate is always 0 under κ, we can ignore
the samples corresponding to the other coordinates and since we have access to
unlimited samples by hypothesis, we can equally reduce ourselves to errorless
LWE. Analogously, we can reduce to errorless LWE if the sum (or a linear
combination) of the k error coordinates in each group is 0.

Remark 3.10. Generalizing Case 2 in the above analysis, the error distribution χ is said
not to wrap around Z if Pre←χ

{
e 6∈ z + [1

2 ,
1
2)
}

is small enough for some known z ∈ R.
In this case, again by our unlimited access to the LWE oracle, the same attack as in
Case 2 has good chance of success.

Other instantiations of LWE can be attacked by more sophisticated means. For
instance, as described in [3], if all the discretized errors in our samples (i.e. seen not in
the torus but in Fnq , after rounding to the closest integer) lie in a known set of size d,

then search LWE can be broken in approximately nd time and space, using nd samples.
If d = O(1), the attack is polynomial in the dimension, while if d = n1−ε, the attack is
sub-exponential. For details cf. [32], Section 2.

What these attacks should make us learn is that the distribution χ should be very
carefully chosen, to avoid falling in a low dimensional subspace of Fnq , in which case,
reduction to errorless LWE might have a good chance of success.

3.3. The LWE cryptosystem. Based on the hardness guarantee in Theorem 3.9, and
avoiding the above problematic instantiations, the LWE problem can be used to build
the following cryptosystem:
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Construction 3.11 (LWE cryptosystem, Regev ([35])).
1. Parameters: n,m ∈ N, α > 0.
2. Private key: s ∈ Fnq chosen uniformly at random.
3. Public key:

3.1 Sample a1, ..., am ∈ Fnq , independently and uniformly at random.
3.2 Sample e1, ..., em ∈ Fq, independently from χ, which is assumed here to be

a discrete Gaussian of zero mean and parameter αq
2π .

3.3 Publish {[ai, bi = 〈ai, s〉+ ei]}mi=1.
4. Encryption: for a bit z ∈ F2, consider it as an element of Fq by mapping the

0 and 1 of F2 to the 0 and 1 of Fq. Select a random subset S ⊆ {1, ...,m} and
map

z 7→ [u, v] =

[∑
i∈S

ai, zb
q

2
c+

∑
i∈S

bi

]
.

5. Decryption: on receiving an encrypted message [u, v], compute d := v − 〈u, s〉.
This equals zb q2c+

∑
i∈S ei. If z = 0, then d has absolute value below b q4c with

probability as close to 1 as desired, depending on how we choose the parameter
α. So, if this is the case, decrypt to 0, otherwise, decrypt to 1.

The right choice of q, m and α is given in the following result, whose proof is omited
since it is very similar to the cryptographic scheme presented in the next subsection,
whose proof we will discuss.

Theorem 3.12. If q ∈ {n2, ..., 2n2}, α = 1√
n log2(n)

and m is of the order of n log(q),

then the LWE cryptosystem is correct and pseudorandom5.

As we can see, a public key for LWE has m vectors in Fnq , since m is of the order

of n log(n), it turns out that a public key has an Fq-size of the order n2 log(n). This
quadratic overhead is an unfeasible constrain from a practical point of view, in par-
ticular in settings such as hand-held digital broadcasting, mobile encryption and small
devices in tentative applications of the IoT (Internet of Things), where the hardware
has a relatively small memory. Moreover, in other recent scenarios where homomorphic
encryption is desirable, LWE cannot fit well if the plaintext space is big enough. Such
a scenario is that of electronic elections (e-voting and i-voting), which has to combine
encryption with signature and authentication. For a large enough country, the size of
the keys (which even if a pseudorandom generator is used, must grow with the size of
the plaintext space) is certainly to be taken into account.

A variation of the LWE problem, the ring learning with errors (RLWE) problem was
introduced to tackle this quadratic overhead in the key sizes. The foundations of the
problem require several notions from algebraic number theory, which we present next.

4. Some basics of algebraic number theory

Here we present the notions of algebraic number theory used to build the RLWE
cryptosystem. Readers who are familiar with them can safely skip this section, since
all our notations are standard. Readers who are not so familiar are referred to [41],
Chapter 2 for more details.

4.1. Algebraic number fields. An algebraic number field (number field, for short) is
a field extension K = Q(θ)/Q of finite degree n, where θ satisfies a relation f(θ) = 0 for
some irreducible polynomial f(x) ∈ Q[x], which is monic without loss of generality. The
polynomial f is called the minimal polynomial of θ, and n is also the degree of f . Notice
that K is in particular an n-dimensional Q-vector space and the set {1, θ, ..., θn−1} is a

5I.e. statistically indistinguishable from a uniform distribution.
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Q-basis of K called a power basis. Notice that associating θ with the unknown x yields
a natural isomorphism between K and Q[x]/f(x).

Let Q denote an algebraic closure of Q fixed from now on. A number field K = Q(θ)
of degree n has exactly n field embeddings (injective field homomorphisms) σi : K → Q
fixing Q. Each embedding σi is determined by σi(θ) = θi, where {θi}ni=1 are the different
roots of f . The number field is said to be Galois if K is the splitting field of f .

Example 4.1. Denote by 3
√

2 the unique real cubic root of 2. The number field K =
Q( 3
√

2) is not Galois: indeed, the other two roots of the minimal polynomial, X3− 2 do
not belong to K. To make it Galois, we need to adjoin ω3, a non-real cubic root of 1.

An embedding whose image lies in R (corresponding to a real root of f) is called a real
embedding; otherwise it is called a complex embedding. Since complex roots of f come
in conjugate pairs, so do the complex embeddings. The number of real embeddings is
denoted s1 and the number of pairs of complex embeddings is denoted s2, so we have
n = s1 + 2s2. If s2 = 0 (resp. s1 = 0) K is said to be totally real (resp. totally
imaginary).

Definition 4.1. The canonical embedding σ : K → Rs1 × C2s2 is then defined as

σ(x) = (σ1(x), ..., σn(x)).

4.2. Algebraic integers. An algebraic integer is an element of Q whose minimal poly-
nomial over Q has integer coefficients. For a number field K of degree n, let OK ⊂ K
denote the set of all algebraic integers in K. This set forms a ring under addition and
multiplication in K ([41], Theorem 2.9), called the ring of integers of K. It happens
that OK is a free Z-module of rank n, i.e., it is the set of all Z-linear combinations of
some basis B = {b1, ..., bn} ⊂ OK of K ([41], Theorem 2.16). Such a set B is called an
integral basis.

Example 4.2. Let n > 1 be an integer. The set of primitive n-th roots of unity (those
of the form θk = exp(2πik/n), with 1 ≤ k ≤ n coprime to n) forms a multiplicative
group of order m = φ(n). The n-th cyclotomic polynomial is

Φn(x) =
∏
k∈Z∗

n

(x− θk).

This is the minimal polynomial of θk for each k, so that K = Q(θk) is a number field
of degree m. It can be proved ([41] Chap 3) that the ring of integers of K is precisely
Z[θ] for each θ = θk, with k ∈ Z∗n.

Definition 4.2. A number field K such that OK = Z[α] for some α ∈ OK is said to
be monogenic.

Example 4.3. Let d be a square-free integer. Consider the number field Q(
√
d). It

can be shown that the ring of integers of K is Z[
√
d] if d 6≡ 1 (mod 4) and Z[1+

√
d

2 ]
otherwise.

Definition 4.3 (Norm, trace and discriminant). For a number field K of degree n,
given an element α ∈ K, its norm is defined as the product

N(α) = σ1(α) · · ·σn(α), (4.1)

and the trace is

Tr(α) = σ1(α) + ...+ σn(α). (4.2)
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The discriminant of K, denoted ∆K is the square of the determinant of the following
matrix:  σ1(θ1) ... σn(θ1)

...
. . .

...
σ1(θn) ... σn(θn)

 ,

where {θ1, ...θn} is an integral basis of OK . Notice that since lattice base-change ma-
trices are unimodular, the definition does not depend on the choice of the basis6.

Example 4.4 ([42] Prop. 2.7). Let Kn denote the n-th cyclotomic field. Then, the
discriminant of K equals

∆Kn = (−1)φ(n)/2 nφ(n)∏
p|n p

φ(n)
p−1

.

Norm and trace and discriminant are rational numbers Moreover, they are integers
when restricted to OK .

4.3. Ideals and ideal lattices. Recall that an ideal of a ring R is an additive subgroup
I ⊆ R such that for each α ∈ R and each β ∈ I, it is αβ ∈ I. For instance, for d ≡ 1
(mod 4), the subring Z[

√
d] is not an ideal of the ring of integers, just a subring with

finite index.
Unlike Z, in the ring of integers OK of a number field K, it is not true that every

element α ∈ OK is a unique product, up to order and units, of different irreducible
elements7. For example, in Z[

√
−6], we have 6 = 2 ·3 =

√
−6 ·
√
−6, where 2, 3 and

√
−6

are irreducible elements. However, this generalisation holds if we replace (irreducible)
elements by (prime) ideals:

Theorem 4.4 ([41], Theorem 5.6). OK is a Dedekind domain. In particular, for each
ideal I ⊆ OK , there exist unique prime ideals p1, ..., pr and unique integers e1, ..., er ∈
Z≥0 such that

I = pe11 ...p
egr
r .

Moreover, denoting fi = |OK/pi|, for i = 1, ..., r, it is

n = e1f1 + ...+ erfr.

Example 4.5. In Z[
√
−17], we can express the principal ideal 〈18〉 as the product

p2
1p

2
2p

2
3, with p1 = 〈2, 1 +

√
−17〉, p2 = 〈3, 1 +

√
−17〉 and p3 = 〈3, 1−

√
−17〉.

Definition 4.5. Let p ∈ Z be a rational prime decomposed as (p) = pe11 ...p
er
r in OK

with pi prime ideals. The number ei is called the ramification index of p at pi and if
ei > 1, then p is said to ramify at pi. The number fi = |OK/pi| is called inertia degree
of p at pi. If r = n, then all the ei and fi equal 1 and p is said to be totally split.

A theorem by Minkowski states that every number field has only finitely many rami-
fying primes, which are precisely the rational primes dividing the discriminant. Hence,
going back to Example 4.4, we see that for the n − th cyclotomic field the ramifying
primes are those which divide n.

6In most algebraic number theory texts our ∆k is called the minimal discriminant, since it is possible
to define such a determinant for each K-basis (not necessarily integral). We will only consider integral
bases and minimal discriminants.

7An element α of a ring R is irreducible if for any β, γ ∈ R such that α = βγ, either β or γ is a unit.
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Definition 4.6. Let R be a discrete ring (free and finitely generated as abelian group)
and σ : R→ Rn an additive monomorphism. Nottice that σ(R) is a lattice. The family
of ideal lattices (for the ring R and embedding σ) is the set of all lattices σ(I) for ideals
I in R.

For instance, for R = Z[x]/f(x), the coefficient embedding maps any element of R to
the integer vector in Zn whose coordinates are exactly the coefficients of that element
when viewed as a polynomial residue. When R = OK , the canonical embedding σ
provides in a natural way an ideal lattice for each ideal I of R.

Notice that for the canonical embedding, multiplication and addition are preserved
componentwise. On the contrary, for instance, for the ring R = Z[x]/(xn + 1), the
componentwise multiplication in Znq doesn’t correspond with multiplication in R: mul-
tiplying by x, is equivalent to shifting the coordinates and negate the independent term.
This is one of the advantages of using the canonical embedding.

Moreover, one has the following connection between the fundamental parallelotope
of σ(OK) and the discriminant ∆K :

Theorem 4.7 ([41], cf. Theorem 8.1). Assume that the number field K has s pairs of
complex embeddings. Then, the Euclidean measure of the fundamental parallelotope of
σ(OK) equals 2s

√
∆K .

5. Ring learning with errors: problems, cryptosystem and key exchange

To define the ring learning with errors problem (RLWE), let K be a number field
of degree n and ring of integers OK , regarded as a lattice in Rn, by means of the
canonical embedding. Closely connected with RLWE is the polynomial learning with
errors problem (PLWE). Next we formally introduce both problems and explore their
relation.

5.1. Statement of the problems. In the rest of this subsection f(x) ∈ Z[x] is sup-
posed to be a monic irreducible polynomial of degree n and q is a rational prime which
we will choose later. Define, further, O := Z[x]/(f(x)), which can also be regarded as
a lattice in Rn by means of the coordinate embedding

σ : O → Rn
n−1∑
i=0

aix
i 7→ (a0, ..., an−1).

(5.1)

Each root α of f defines a number field Kα = Q(α). Moreover, the ring Z[α] is a finite
index suborder of the ring of integers OKα . The restriction of the canonical embedding

to Z[α] also provides a lattice in Rn. A very common choice is f(x) = x2k + 1, the
2k+1-th cyclotomic polynomial (cf. [40]).

The n-dimensional torus attached to OK is T := (K ⊗Q R)/OK , and the f -torus
is defined to be Tf := Rq[X]/(f(X)), with Rq := R/Z. As in Lemma 3.6, there are
embeddings OK/qOK ↪→ T and O/qO ↪→ Tf .

Definition 5.1 (RLWE and PLWE-oracles).
1. Let χ be a discrete random variable with values in OK/qOK (which we regard

as taking values in T). For s ∈ OK/qOK chosen uniformly at random, a RLWE-
oracle with respect to s and χ is a probabilistic algorithm As,χ which, at each
execution performs the following steps:
1. Samples an element a ∈ OK/qOK uniformly at random,
2. Samples an element e from χ,
3. Outputs the pair (a, as+ e) ∈ OK/qOK × T.
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2. Let f(x) ∈ Z[x] be monic irreducible as above and χ a discrete random variable
with values in O/qO (which we regard as taking values in Tf ) . For s ∈ O/qO
chosen uniformly at random, a PLWE-oracle with respect to s and χ is a prob-
abilistic algorithm As,χ which, at each execution performs:
1. Samples an element a ∈ O/qO uniformly at random,
2. Samples an element e from χ,
3. Outputs the pair (a, as+ e) ∈ O/qO × Tf .

Definition 5.2 (The RLWE/PLWE problem). Let χ be a discrete random variable
with values in OK/qOK (in O/qO). The RLWE (PLWE) problem for χ is defined as
follows:

a) Search version: for an element s ∈ OK/qOK (O/qO) chosen uniformly at ran-
dom and a RLWE (PLWE)-oracle As,χ, if an adversary is given access to ar-
bitrarily many samples (ai, ais + ei) of the RLWE (PLWE) distribution, this
adversary must recover s with non-negligible advantage.

a) Decisional version: for an element s ∈ OK/qOK (O/qO) chosen uniformly at
random and a RLWE (PLWE)-oracle As,χ, the adversary is asked to distinguish,
with non-negligible advantage, between arbitrarily many samples from As,χ and
the same number of samples (ai, bi), taken uniformly at randon from OK/qOK×
T (O/qO × Tf ).

Some words on the class of distributions we will use from now: first, notice that
if q is totally split, what we will frequently assume, a RLWE-sample can be seen as
an n-tuple of coordinates with values in Fq. However, such a RLWE-sample is indeed
much more than n LWE-samples: OK/qOK is not only an Fq- vector space; it also has
a ring structure. The flexibility and power of RLWE comes from exploiting the ring
structure instead of the sheer lattice structure. This is the reason why instead of taking
n-independent discrete one-dimensional Gaussians, we rather use an n-dimensional one.

As in the 1-dimensional case, the mean will also be supposed 0, but in the RLWE
scenario, the variance-covariance matrix (or rather, the multidmensional parameter)
is normallly chosen, depending on the application, a) either to be diagonal, which is
referred to as saying that the distribution is elliptic8, or b) to have the diagonal elements

bounded in absolute value by αn1/4, for α a parameter which will be made explicit in
the next theorem, which backs the security of the decisional RLWE-problem (hence of
the search RLWE-problem) in the security of the SVP over ideal lattices.

Hence, from now on, we assume that χα is an elliptic n-dimensional discrete T-valued
Gaussian of 0-mean and the elements of the diagonal are bounded as explained. The
details are delicate and can be omited in a first study, since the aforementioned bound
is what really matters for most proofs, but the reader is referred to [28], p. 19 for more
information.

Theorem 5.3 ([28], page 19). Let K be the m-th cyclotomic number field of degree

n = φ(m) and R = OK its ring of integers. Let α <
√

log n/n and let q = q(n) ≥ 2,

q ≡ 1 (mod m) be a prime bounded by a polynomial in n such that αq ≥ ω(
√

log n)9.

There is a polynomial time quantum reduction from Õ(
√
n/α)-SVP on ideal lattices of

K to the decisional RLWE problem for K and χα.

The proof consists of two parts: the first is a quantum reduction from worst case
approximate SVP on ideal lattices to the search version of RLWE. The reduction works

8This is useful when carrying out security-reduction proofs.
9A function f : N → R is ω(g), for g : N → R (denoted as f = ω(g)) if for each integer k > 0 there

exists an integer n0 > 0 such that for each n ≥ n0, it is |f(n)| ≥ k|g(n)|. The notation f(n) ≥ ω(g(n))
means that the asymptotic behaviour of f is at least as fast as ω(g(n)) .
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Figure 4. Discrete bivariate normal distribution supported on a lattice.
Source: [35], with permission given by the author.

in general, not for just cyclotomic number fields. It uses the iterative quantum reduction
for general lattices in [35] as a black box, the main effort being the classical (non-
quantum) part, which requires a careful handling of the canonical embedding and a
smart use of the Chinese Remainder Theorem.

The second part shows that the RLWE distribution is pseudorandom via a classical
reduction from the search version, which has been shown at least as hard as SVP for
ideal lattices in the first part. It uses the fact that the cyclotomic field is Galois and
the fact that q ≡ 1 (mod n), namely, that the ideal qR splits totally into n different
prime ideals in R.

In [34] Theorem 6.2, the authors build on the same number-theoretical kind of argu-
ments as in [28] to prove an analogue of Theorem 5.3 for non-cyclotomic Galois number
fields.

5.2. Equivalence between formulations. In [28], the RLWE problem is introduced
via O∨K/qO∨K as sample space, instead of OK/qOK , where O∨K means the dual of OK
with respect to the trace map, namely:

O∨K = {α ∈ K : Tr(α) ∈ Z}.

We have avoided this formulation to spare the definition of the different ideal and, no
less important, for the sake of the extension of our presentation. In any case, both
formulations are equivalent ([37] Theorem 2.13). By equivalence we mean that every
solution for primal-RLWE can be turned in polynomial time into a solution for dual-
RLWE (and viceversa, but this is immediate, since OK ⊆ O∨K), incurring in a noise
increase which is polynomial in the number field degree.

Before speaking about the RLWE/PLWE equivalence we need to introduce a key
concept: the condition number, which measures the distortion between the lattices
given by the canonical embedding and the coordinate embeding. Let’s do that.

For a monic irreducible polynomial of degree n, f(x) ∈ Z[x] and θ a root of f(x), con-
sider again the subring Z[x]/(f(x)) ∼= Z[θ] ⊆ OK . As lattices, Z[x]/(f(x)) is endowed
with the coordinate embedding while Z[θ] is endowed with the canonical embedding in-
herited from OK , and the evaluation-at-θ morphism causes a distortion between both.
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Explicitly, the transformation between the embeddings is given by

Vf : Z[x]/(f(x)) → σ1(OK)× · · · × σn(OK)

n−1∑
i=0

aix
i 7→


1 θ1 · · · θn−1

1

1 θ2 · · · θn−1
2

...
...

. . .
...

1 θn · · · θn−1
n




a0

a1
...

an−1

 ,
(5.2)

where θ = θ1, θ2, ..., θn are the Galois conjugates of θ. As we see, the transformation Vf
is given by a Vandermonde matrix.

For any matrix A = (aij) ∈ Mn×n(C), denote its transposed conjugate by A∗. The
Frobenius norm is defined as

||A|| :=
√
Tr(AA∗) =

√√√√ n∑
i,j=1

|aij |2. (5.3)

The noise provoked by Vf will remain controlled whenever ||Vf || and ||V −1
f || remain so,

and the product ||Vf ||||V −1
f || serves as a reasonable measure of this control (cf. [37] Ch.

4).

Definition 5.4. The condition number of an invertible matrix A ∈ Mn(C) is defined
as Cond(A) := ||A|||A−1||.

Thus, in the monogenic case, the problem of the equivalence is the problem of showing
that Cond(Vf ) = O(nr) for some r independent of n. The non-monogenic case needs
an intermediate reduction that we will not address here.

In the above mentioned paper [37], the authors introduce the framework to study
the RLWE/PLWE-equivalence in general and prove it for the following family of poly-
nomials:

Theorem 5.5 ([37], pag. 4 and Theorem 4.7). There is a polynomial time reduction
algorithm from RLWE over Kfn,p to PLWE for fn,p(x) where Kfn,p is the splitting field
of fn,p(x) = xn+xp(x)−r where n ≥ 1, p(x) runs over polynomials with deg(p(x)) < n/2
and r runs over primes such that 25||p||21 ≤ r ≤ s(n), with s(x) a polynomial. Notice
that there is a trivial reduction from PLWE to RLWE.10

The argument to prove this theorem is, first, to consider the family of polynomials
φn,a(x) := xn − a, with a ∈ Z \ {0} square-free. Denoting by Kφn,a the splitting field
of φn,a(x) := xn− a, the authors check in first place the equivalence for Kφn,a and they
show, via a careful use of Rouché theorem, that when φn,a(x) is perturbed by adding
another polynomial with degree smaller than n/2 the roots of both polynomials are
close enough.

A reason to be interested in such an equivalence is that working with polynomial
rings instead of rings of integers of number fields is more amenable for computer imple-
mentations. In [8], it is shown how the arithmetic of several polynomial rings leads to
very efficient cryptographic designs.

5.3. The cyclotomic case. In practice, the number fields we are the most interested
in cryptography are the cyclotomic number fields: they are very well understood and
enjoy very nice arithmetic guatantees, like monogeneicity, which allows an amenable
and efficient use for implementations. However, until recently, very little was known
regarding the equivalence, apart from the power-of-two case: the ideas in [16] can be

10For p(x) =

n∑
i=0

pix
i ∈ R[x], the 1-norm is defined as ||p||1 =

n∑
i=0

|pi|
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applied to show the equivalence for cyclotomic number fields of degree 2kp or 2kpq with
p, q primes and q < p. Besides that, the family in Theorem 5.5 is somehow artificially
constructed, but, some of the ideas have been used by this author to give a partial proof
of the equivalence in the cyclotomic case ([6]). This proof is, to our knowledge, the first
given for general cyclotomic degree (but with the caveat of imposing a condition which
we comment next).

Before that, let us examine first the power-of-two degree.

Theorem 5.6. Let n = 2k and m = φ(n) = 2k−1. Then, the map VΦn is a scaled
isommetry. In addition, Cond(VΦn) = m.

Proof. To see that VΦn is a scaled isometry, observe that when we multiply VΦn by
its conjugate transposed, the elements over the diagonal in the product matrix are
identically m, and outside the diagonal, the element in position (i, j) in the product
matrix equals

m−1∑
k=0

ζki ζj
k

=
1− ζmi ζj

m

1− ζiζj
.

But since ζi are n-primitive roots (and so are ζi), then ζmi = −1 and the sum vanishes.
Hence, we have that

VΦnV
∗

Φn = mId,

and m−1/2VΦn is an isometry. For the condition number, we write V −1
Φn

= m−1V ∗Φn ,

hence ||V −1
Φn
|| = 1. By Lemma 5.3, the result follows. �

The main result in [6] is a polynomial bound on the condition number for cyclotomic
number fields which only depends on a) the number of different primes dividing the
conductor and b) the degree of the number field, and what is more important, the
dependence on the degree is polynomial once the number of different prime divisors has
been fixed. Let us see how.

For n ≥ 1, denote by rad(n) the product of all the different primes dividing n (without
exponents). For the n-th cyclotomic polynomial Φn(x), denote by A(n) the maximum
of all the coefficients in absolute value. For instance, for n = pr, prime, A(n) = 1, and
for n = pq, with p, q prime, all the coefficients are 0,±1, due to a classical result by
Migotti, hence A(n) = 1. Our result is as follows:

Theorem 5.7 ([6] Thm. 3.10). Let n ≥ 1 and m = φ(n). If rad(n) = p1...pk, then:

Cond(VΦn) ≤ 2rad(n)n2k+k+2A(n).

Proof. First, from the very definition, one has ||VΦn || = m. Second, we use the following
identity, a proof of which can be found, for instance, in [42] Ch. 1:

Φn(x) = Φrad(n)(x
n

rad(n) ), (5.4)

which yields A(n) = A(rad(n)). The technical core of the result is a series of upper
bounds for the entries wij of the inverse matrix V −1

Φn
, of which the most important is:

|wij | ≤ 2rad(n)n2k+kA(n).

�

Now, to obtain the polynomial bound, we need to bound A(rad(n)), which we do
with the aid of a classical result due to Bateman:
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Theorem 5.8 (Bateman, [5]). Let n = p1...pk with p1 < ... < pk. Then

A(n) ≤ n2k−1
.

We can now derive the polynomial bound:

Corollary 5.9 ([6] Cor. 3.11). Let k ≥ 1 be fixed. If n is the product of at most
k different primes, then Cond(VΦn) is polynomial in n. More in general, let Fk be a
family of cyclotomic polynomials whose degree is divisible by at most k different primes.
Assume that A(n) = O(nr) for polynomials in Fk. Then,

Cond(VΦn) = O(n2k+k+3+r).

In [6], we also give a subexponential upperbound for the condition number if we
do not fix the number of primes as well as more precise upper bounds for conductor
divisible up to three primes. Namely:

Theorem 5.10. For n ≥ 1 and m = φ(n), the following bounds hold for the condition
number of cyclotomic polynomial Φn(x):

a) ([6] Thm. 4.1) If n = pk then

Cond(VΦn) ≤ 4(p− 1)m.

b) ([6] Thm. 4.3) If n = n = prql then

Cond(VΦn) ≤ 2φ(rad(n))m2.

c) ([6] Thm. 4.6) If n = plqsrt then

Cond(VΦn) ≤ 2φ(rad(n))2m2.

In our proofs, apart from some of the ideas from [37], and some properties from
cyclotomic polynomials from [42], we have used results from analytic number theory
like the aforementioned Theorem 5.8 due to Bateman and for the case of two and three
primes, results by Migotti and Bang ([4]). This should highlight the strong link between
ring lattice-based cryptography and number theory.

5.4. The LPR (Lyubashevsky, Peikert and Regev) RLWE-cryptosystem.
Both RLWE and PLWE problems can be turned into public key cryptosystems, as
we show next. We will focus in the PLWE version here. So, let f(x) ∈ Z[x] be a
monic irreducible polynomial, q a prime and set O = Z[x]/f(x). Let χα be an O/qO-
valued discrete Gaussian (seen as taking values on Tf ) and as explained in the former

subsection, we assume the parameter of χα upper bounded entry-wise by αn1/4 with
α ≤

√
log(n)/n and q = q(n) as in 5.3. Take n big enough so that 6

√
log(n)/

√
n < q

4
(this will be used to grant the correctness of the cryptosystem).

Construction 5.11 (The PLWE cryptosystem).
1. Key generation: choose a ∈ O/qO uniformly at random and choose s, e sampled

from χα. The secret key will be s and the public key will be the pair (a, b =
as+ e).

2. Encryption: take a plaintext z consisting of a stream of bits and regard it as a
polynomial in O/qO, mapping each bit to a coefficient. Choose r, e1, e2 sampled
from χα. Set u = ar + e1 and v = br + e2 + b q2cz. The cyphertext is (u, v).

3. Decryption: On cyphertext (u, v), perform v − us = er + e2 − e1s + b q2cz and
round each coefficient either to zero or to b q2c, whichever is closest mod q.
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Proposition 5.12. The PLWE cryptosystem is correct (i.e. decryption undoes encryp-
tion) and pseudorandom.

Proof. For correctness, notice that for the chosen values of α, q and n, with arbitrarily
large probability, the absolute values of the coefficients of er + e2 − e1s will be below
6
√
log(n)/

√
n < q/4, so each bit of z can be recovered by checking if its position in

v − us is less than bq/4c, in which case, we decrypt it as 0, and otherwise as 1, as in
the LWE scheme.

For pseudorandomness, first note that RLWE samples are pseudorandom even when
s is sampled from χα, by a transformation to the Hermite normal form. Therefore,
public keys (a, b) are pseudorandom and we can replace them by a uniform pair in
O × Tf . The observations of a passive adversary are (a, u) and (b, v) which are also
pseudorandom, since r is also sampled from χα. �

Example 5.1. For around 100 bits security, current implementations use a parameter
set with number field degree n = 256, a 13-bit prime modulus q and a narrow discrete
Gaussian distribution with diagonal entries upper-bounded by 4.5.

5.5. A RLWE-based key exchange protocol. Next we present a key exchange
protocol based on RLWE and due to Ding ([15]). Earlier protocols for key transport
were proposed by Peikert ([33]) in 2012 and by Zhang in 2014. This protocol takes
place between two devices typically called initiator and respondent, which we will call
Alice and Bob respectively, for the sake of tradition, both of which have access to a
discrete Gaussian of parameter α and both of which know m = φ(n), a prime q, the
n-th cyclotomic polynomial Φn(x), hence the rings O = Z[x]/(Φx(x)) and O/qO, and
another polynomial a(x) ∈ O/qO. These data can and must be assumed to be publically
known. The algorithm uses the following two functions:

Definition 5.13 (Signalling and binary deletion functions).
Let E := {−b q4c, ..., 0, ..., b

q
4c}. The signalling function, denoted Sig, is the character-

istic function of Fq \ E, namely Sig(v) = 0 if and only if v ∈ E, otherwise Sig(v) = 1.
The binary deletion function is defined as

Mod2 : F2
q −→ F2

(v, w) 7→ v − w
2 (mod 2).

The signalling function signals the elements of E as small, returning 0, while the
binary deletion function returns 0 on pairs (v, w = Sig(v)) corresponding to error bits,
which belong to E (i.e. w = 0 and v = 2k). The steps of the protocol are as follows:

1. Alice initiates:
1.1 Generates two polynomials sA and eA from the discrete Gaussian distribu-

tion χα.
1.2. Computes pA = asA + 2eA.
1.3. Sends Bob the polynomial pA.

2. Bob responds:
2.1 Generates two polynomials sB and eB from the discrete Gaussian distribu-

tion χα.
2.2. Computes pB = asB + 2eB.
2.3. Generates e′B from χα and computes

kB = pAsB + 2e′B = asAsB + 2eAsB + 2e′B.

2.4. Uses the signalling function to find w = Sig(kB) (applying Sig coefficient-
wise to kB)

2.5 Performs skB = Mod2(kB, w)
2. 6 Sends Alice (pB, w).
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3. Alice finishes:
3.1 Generates e′A from χα.

3.2. Computes

kA = pBsA + 2e′A = asAsB + 2eBsA + 2e′A

3.3. Alice performs skA = Mod2(kA, w).

Notice that the elements kA and kB are only approximately equal, up to even errors,
which allows the fuction Mod2 to detect them. The Sig function indicates the region in
which each coefficient of a polynomial lies and helps to make sure that the error terms
in kA and kB do not result in different mod q operations.

With a carefull choice of the parameter α, it will be skA = skB with overwhelming
probability. The difficulty of breaking this scheme is that from pA and/or pB, which is
the only thing which a passive adversary is supposed to see, to recover sA and sB, the
adversary must break PLWE.

Remark 5.14. In November 2015, Alkim, Ducas, Pöpplemann, and Schwabe recom-
mended the parameters n = 1024 and q = 12289 (see [1]). This represents a significant
reduction in public key size over previous schemes, and was submitted to NIST with
the name of NewHope. At the time of writing, NewHope has passed unbroken to the
second round (see Section 7.3).

6. Attacks on RLWE

Detailed reports on the state of the art of attacks on the RLWE cryptosystem can be
found in [18] and [32]. In [18] the authors discuss a list of open questions in algebraic
number theory motivated by several attacks on RLWE. This interplay between cryp-
tography and number theory constitutes a fruitful link which is expected to motivate a
flow of results from each direction to the other.

On the other hand, in [32], a comprehensive review of the known attacks and vul-
nerable instantiations is carried out from a geometric viewpoint. We present, at our
introductory level, only a few of these attacks and questions, working out some details.
Within this subsection, we assume as usual that K is a number field of degree n, and
in the PLWE setting, that the defining polynomial f(x) splits totally over Fq[x]. This
is unnecessary but it will simplify the exposition, while keeping the essential facts.

6.1. Reduction to LWE. Let B be a Z-basis of O such that its reduction modulo q,
B, is an Fq-basis of O/qO. Given a ∈ O/qO, multiplication by a is an Fq-linear map

described by a matrix Aa ∈ Fn×nq with respect to B. Hence, a public key (a, b = as+ e)
has attached the pair (Aa,b = Aas+e), where s and e are, respectively, the coordinates
of s and e with respect to B, which implies that one RLWE sample carries n LWE
samples. A first attack is based on Case 2 in Section 3.2: if the j-th error coordinate
with respect to B does not wrap around Z, namely, if Prej←χ

{
ej 6∈ [1

2 ,
1
2)
}

is small
enough, we have errorless LWE in the j-th row of Aa, and with enough samples we can
recover s with high probability.

Let now q ⊆ OK a prime ideal above q of norm N(q) = |OK/q| and let χ be a
Gaussian distribution over KR = K ⊗ R. Given RLWE samples (a, b = as + e) where
a ∈ OK/qOK and e taken from χ, we can reduce them modulo q to obtain samples
(a′ = a (mod q), b′ = b (mod q)), with b′ = s′a′+e (mod q) with s′ = s (mod q), hence
the secret now lies in a set of size N(q). The following analysis is due to Peikert (cf.
[32] Section 3.2) and yields a potentially successful attack when N(q) is not too large:

1. Since reduction modulo q takes uniform samples onto uniform samples, if χ
modulo q is detectably non-uniform, we have an attack against decission RLWE.
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2. If χ has one or more coefficients that do not wrap around Z, then we can attack
search RLWE by reducing to errorless LWE and try arbitrarily many samples.

In all cases (both in LWE and RLWE), the insecurity of an instantiation is due to the
fact that the error distribution is insufficiently well spread relative to the ring geometry,
so, as in Section 3.2, the main lesson to learn here is that the error distribution should be
taken with parameters as close as possible to those for which the the hardness theorem
works (Theorem 5.3).

6.2. Reduction and attack to PLWE. A first fact to mention is that at the time of
writing, there is no direct attack against RLWE, i.e., without a reduction to an attack
on PLWE or LWE, as described in the previous subsection. So, all the attacks presented
here attemp at breaking PLWE first and then to reduce RLWE to PLWE.

Theorem 6.1 (Elias et al. [18]). If K satisfies the following six conditions, there is a
polynomial time attack to the search version of the associated RLWE scheme:

1. K = Q(β) is Galois of degree n.
2. The ideal (q) splits totally in OK .
3. K is monogenic, i.e, OK = Z[β].
4. The transformation between the canonical embedding of K and the power basis

representation of K is given by a scaled orthogonal matrix.
5. If f is the minimal polynomial of β, then f(1) ≡ 0 (mod q) .
6. The prime q can be chosen suitably large.

The first two conditions are sufficient for the RLWE search-to-decision reduction in
the case where q - [OK : Z[β]], which is implied by the third condition. The third and
fourth conditions are sufficient for the RLWE-to-PLWE reduction; indeed, the fourth
condition can be relaxed to require that the condition number of the matrix describing
the transformation between the embeddings is at most polynomial in n, as we discussed
in the previous section.

Finally, the last two conditions are sufficient for the attack on PLWE. Unfortunately
(for the attacker’s point of view), it is difficult to construct number fields satisfying all
six conditions simultaneously. Next, we explain the attack on PLWE if 5 and 6 hold.

Setting a s usual O = Z[x]/(f(x)), fix a public key (a(x), b(x)) ∈ O/qO × Tf and a
secret key s(x) ∈ O/qO, i.e b(x) = a(x)s(x) + e(x) with e(x) sampled from the discrete
Gaussian χ.

For each root θ ∈ Fq of f(x), consider the projection πθ : O/qO → Fq given by p(x) 7→
p(θ). By short vector inO/qO we refer to those with small coefficients, which in practice
means that these are upper bounded, in absolute value, by q/4. For suitable parameter,
these short vectors lie inside a prescribed region with non-negligible probability and are
easy to recognise. However, for a pair (a(x), b(x)), it is difficult to check if it exists r(x)
and a short vector e(x) such that b(x) = a(x)r(x) + e(x), in which case the attacker
would guess that s(x) = r(x). The reason is that there are qn possibilities for s(x) to
test, which is prohibitive.

By contrast, in a small ring like Fq, it is easy to examine the possibilities for s(θ)
exhaustively: we can loop through the possibilities for s(θ), obtaining for each guess
sθ, the putative value e(θ) = b(θ) − a(θ)sθ. The Decision Problem for PLWE, then, is
solved as soon as we can recognize the set of e(θ) that arise from the Gaussian with
high probability.

Again, this is difficult in general, but if 5 holds, i.e., if θ = 1 is a root of f(x), the
attacker has a chance:

Let us denote by S ⊆ O/qO the subset of polynomials that are produced by the
Gaussian with non-negligible probability. This is a small set, due to the parameter
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choice. However, Fq is also a much smaller set than O/qO and one expects that gener-
ically, πθ(S) = Fq or something very close. One says that in this case S smears across
all of Fq.

But we are supposing that θ = 1. The polynomials g(x) ∈ S have small coefficients,
and hence have small images g(1) ∈ Fq. This is simply because n is much smaller than
q, due to 6, so that the sum of n small coefficients is still small modulo q. These ideas
can be turned into the following algorithm:

Algorithm 6.2. Suppose f(1) ≡ 0 (mod q). The input is a collection of pairs
{(ai(x), bi(x)) ∈ O/qO × Tf}mi=1, where each sample is drawn either uniformly at ran-
dom or from the PLWE distribution . The output is to decide, for each sample, from
which distribution is taken, with non-negligible probability. The algorithm is as follows:

1 For i = 1 to m do
Set S = Fq. This is the first guess for π1(S), which will be updated after each
iteration.

2 For each s ∈ S do
2.1 Compute ei := bi(1)− sai(1);
2.2 If ei is not small in absolute value modulo q, then conclude that the sample

cannot be valid for s with nonnegligible probability, and update S = S \{s};
Next s;

3 If S = ∅, conclude that the sample was random, otherwise declare the sample as
valid;
Next i;

Remark 6.3. Notice that in the inner loop, if the sample is valid, then ei = ei(1) =
n∑
j=1

eij , and if σ is the variance of χ (which is spherical with respect to our embedding,

fixed beforehand), then, ei is sampled from a discrete Gaussian distribution of zero
mean and parameter

√
nσ. The region of non-negligible probability for this Gaussian,

can be taken to be

Λ := {s ∈ Fq : |s| < nσ2 ≤ q/4}.

Notice that the cyclotomic cases are protected against this attack: θ = 1 is never a
root modulo q of a cyclotomic polynomial of degree greater than 1 when q is sufficiently
large. However, with minor modifications, it is possible to extend the former attack to
the case where θ has small order modulo q. Indeed, denote by r the order of θ modulo q.
For an unknown polynomial e(x), to decide from a known value e(θ) if e(x) is sampled
from a Gaussian distribution in a similar fashion as in Remark 6.3 is more complicated.
However, one can still take advantage of a small r, as we explain next.

For e(x) =
n∑
i=0

eix
i, set n = rM + l with 0 ≤ l ≤ r − 1. Define eMr+k = 0 for

0 ≤ k 6= l ≤ r − 1 and write

e(θ) =

r−1∑
i=0

M∑
j=0

ejr+iθ
i.

If e(x) is sampled from a multivariate Gaussian with variance very close to σ2, then

each term
∑M

j=0 ejr+i is sampled from a 1-dimensional Gaussian of variance very close

to (M + 1)σ2. This defines a smallness region , which can be pre-stored as a look-up
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table

Λ = {ρ =

r−1∑
i=0

M∑
j=0

ρjr+iθ
i ⊆ Fq : |ρjr+i| ≤ (M + 1)σ2 � q/4}

to look at, in order to guess tentative values of e(θ). With this observation, we can
derive the following algorithm:

Algorithm 6.4. Suppose f(θ) ≡ 0 (mod q). The input is a collection of pairs
{(ai(x), bi(x)) ∈ O/qO × Tf}mi=1, where each sample is drawn either uniformly at ran-
dom or from the PLWE distribution . The output is to decide, for each sample, from
which distribution is taken, with non-negligible probability. The algorithm is as follows:

1 For i = 1 to m do
Set S = Fq;

2 For each s ∈ S do
2.1 Compute ei := bi(θ)− sai(θ);
2.2 If ei 6∈ Λ, then conclude that the sample cannot be valid for s with nonneg-

ligible probability, and update S = S \ {s};
Next s;

3 If S = ∅, conclude that the sample was random, otherwise declare the sample as
valid;
Next i;

Remark 6.5. The third attack described in [18] is based on the size of the residue of
ei(θ) modulo q. Although here the errors may take on all values in Fq, it may still be
possible to notice if the distribution of samples is not uniform. The attacking algorithm
is built on a delicate probability bound in the case that θ 6= ±1 and the order of θ
modulo q is not small. For example, this third attack is successful for any irreducible
polynomial of degree n = 26, with q of the order of 250, σ = 8 and θ = 2.

6.3. Some number theoretical open questions motivated by attacks on PLWE.
As seen before, being simultaneously Galois and monogenic, having θ = 1 as a root of
the minimal polynomial modulo q (or some other root of small order) and the non-
smearing under the evaluation map πα of the set of small vectors in O/qO can be
regarded as weakness conditions to build a RLWE-based cryptosystem. We give next
a list of number theoretical problems which are motivated by the search of security in
RLWE-based primitives and are still open, up to date.

Question 6.6. Are there any fields of cryptographic size (i.e. n ≥ 210) which are
Galois and monogenic, other than the cyclotomic number fields and their maximal
real subfields? How can one construct such fields explicitly? Is it possible to test
algorithmically both features?

Notice that for fields of cryptographic size, the discriminant is too big to test whether
or not it is square free, hence to decide if it is monogenic. An algorithmic approach
which circumvects this testing is not available at the time of writing. Although for
fields of small degree, a complete characterisation may be feasible (sufficient and neces-
sary conditions for a cubic number field have been found by Gras and Archinard), the
situation is much different for large degree fields. For instance, cyclic extensions tend
to be non-monogenic:

Theorem 6.7. Any cyclic extension K of prime degree n ≥ 5 is non-monogenic except
for the maximal real subfield of the (2l + 1)-th cyclotomic field.

Another result in this direction is as follows:



Ring learning with errors 41

Theorem 6.8. Let n ≥5 be relatively prime to 2, 3. There are only finitely many abelian
number fields of degree n that are monogenic.

Question 6.9. Let θ be a root of f(x) modulo q. For which subsets S ⊆ Rq it is
πθ(S) = Fq? Or, at least, can one determine the conditions for non-smearing, like in
the case when θ = 1 and S is a set of small vectors in O/qO?

Finally, as seen before, polynomials with roots of small order modulo q should be
avoided. Again, cyclotomic polynomials are safe for attacks built on small order roots,
as their roots have maximal order. The problem here is as follows:

Question 6.10. For random polynomials f(x) and random primes q for which f(x)
has a root α modulo q, what can one say about the order of α modulo q?

A special instance of this question is this well-known open problem:

Conjecture 6.11 (Artin). Each a ∈ Z is a primitive root modulo infinitely many
primes q such that a is not a perfect square or −1 modulo 4. In fact the set of primes
for which a is a primitive root has density∏

p prime

(
1− 1

p(p− 1)

)
.

7. Ring Learning With Errors signatures, homomorphic encryption and
some NIST figures

7.1. RLWE Digital Signatures. We present here a 2012 scheme by Gunyesu, Lyuba-
shevsky and Poppelman (GLP [21]). It has some advantages over more recent ecient
post-quantum digital signature proposals such as BLISS and Ring-TESLA, but although
not broken, GLP as originally proposed is no longer considered to oer strong levels of
security. Building on GLP, A. Chopra presented GLYPH in 2017 another RLWE digital
signature schemes: a special instantiation of GLP together with certain modification
in the compressing and hash functions,. It is described in [13], where a throughout
analysis on its resistance to signature forgery, key-recovery, exhaustive and meet-in-the
middle attacks is carried out. However, the main ideas on how to use RLWE for secure
signature is already contained in GLP, hence as a first contact with the topic we have
chosen this scheme.

We use the same terminology and notions as in Definition 2.3 and subsequent dis-
cussion, to which we refer the reader. This scheme uses PLWE in the cyclotomic ring
Rq = Fq[x]/(Φn(x)) with q an odd prime congruent to 1 mod 4 or a power of 2.

A first difference to mention here is that instead of discrete Gaussians, the coefficients
of small polynomials are sampled uniformly from {−1, 0, 1} modulo q. This version of
RLWE, is called the Compact Knapsack Problem over ideal lattices, whose decisional
version backs GLP. Secondly, the lengths of signatures must not exceed a prescribed
parameter n, regardless of the size of the message to sign. To attain this, the scheme
uses a) a hash function H11, which accepts bit strings of arbitrary length and returns
bit strings of bounded length, and b) a function F from the target of H to the set of
polynomials of degree m = φ(n) with exactly k of their coefficients having absolute in
±1 and the rest being zero such that the probability of mapping two hash outputs to
the same sparse element is less than 1/2λ, where λ is a security parameter.

Hence, the procedure has a sampling rejection step, which ensures that the output
signature is not exploitably correlated with the signer’s secret key values: if the infinity
norm of a signature polynomial exceeds a fixed bound, β, that polynomial will be

11A hash function is H : ∪r≥1Fr2 → Fκ2 with fixed κ. In GLP/GLYPH, a common choice for H is
the function SHA256.
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discarded and the signing process starts again. This process will be repeated until the
infinity norm of the signature polynomial is less than or equal β = k− 1, where k is the
number of non-zero coefficients allowed in acceptable polynomials.

Third, it is necessary to fix an injective map I : Rq → FN2 , with N � 1. Last,
the maximum degree of the signature polynomials will be m − 1 so that there are m
coefficients. Typical values for m are 512, and 1024. For m = 1024, GLYPH sets
q = 59393, b = 16383 and k = 16. The scheme is as follows:

1. Key generation:
1.1 Generate, uniformly, two small polynomials s(x) and e(x). The pair

(s(x), e(x)) is the private key.
1.2 Compute t(x) = a(x)s(x) + e(x), with a(x) chosen uniformly at random.

The public key is (a(x), t(x)).
2. Signature generation:

2.1 Input: a message m(x) ∈ Rq and (a(x), e(x), s(x))
2.2 Generate two small polynomials y1(x) and y2(x).
2.3 Compute w(x) = a(x)y1(x) + y2(x).
2.4 Set ω = I(w(x)) and µ = I(m(x)).
2.5 Compute c(x) = F (H(ω||µ)). The symbol || denotes concatenation of

strings.
2.6 Compute z1(x) = s(x)c(x) + y1(x) and z2(x) = e(x)c(x) + y2(x).
2.7 While the infinity norms of z1(x) or z2(x) is greater than β go to step 2.1.
2.8 Output: (c(x), z1(x), z2(x)). Transmit the signature along with the mes-

sage m(x). Notice that we are not discussing here signatures of encrypted
messages, which is a more sophisticated cryptographic functionality.

3. Signature verification:
3.1 Input: (c(x), z1(x), z2(x),m(x)).
3.2 Verify that the infinity norms of z1(x) and z2(x) do not exceed β. If not,

reject the signature.
3.3 Compute w′(x) = a(x)z1(x) + z2(x)− t(x)c(x).
3.4 Set ω′ = I(w′(x)) and µ = I(m(x)).
3.5 Compute c′(x) = F (H(ω′||µ)).
3.6 Output: If c′(x) 6= c(x) reject the signature, otherwise accept the signature

as valid.

Notice that a(x)z1(x) + z2(x)− t(x)c(x) = w(x), hence c′(x) = c(x) if the signature is
not tampered, hence the scheme is correct.

Remark 7.1. The private key (s(x), e(x)) can be represented in 2n log2(3) bits of mem-
ory, and the public key a(x)s(x)+e(x) can be represented in n log2(q) bits, which makes
GLP feasible for practical implementations.

Remark 7.2. Both in [13] and in the earlier [21], the application of the hash function
H may result unclear for a non experienced reader. The reason is that in what we
have labeled steps 2.5 and 3.4, both schemes apply H, defined over a binary domain,
to inputs which are not binary. This point is probably not taken very seriously by
the experts, for all what matters is that H is a collision resistant function and, more
important, that when it comes to comparing H(ω||µ) with H(ω′||µ), they can only be
equal with overwhelming probability if and only if ω = ω′. But of course one needs
to make binary the arguments w(x) and m(x) of H, and this is why we have fixed
the innaccuracy by resourcing to a function I which injectively outputs binary strings
on polynomial inputs and defined ω = I(w(x)) and µ = I(m(x)). In [21] page 6 it is
discussed how forging a signature implies finding a collision on H.
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7.2. RLWE Homomorphic encryption. Homomorphic encryption was first intro-
duced by Rivest, Adleman and Dertouzos back in the 70’s ([36]), where they raised the
problem of constructing a fully homomorphic scheme (a privacy homomorphism, using
their phraseology). This problem was solved by Craig Gentry in 2009 in its seminal
paper [20], by using ideal lattices and (essentially) a modified version of PLWE. The
possibility of cheap cloud computing and distributed storage has drastically changed
how business and individuals process their data and although traditional encryption like
AES are very fast, to perform even simple analytics on encrypted data requires either
the cloud server to access the secret keys, leading to security concerns or to download
the data, decrypt and operate, which is costly. Homomorphic encryption is the solution
to this challenge.

Areas where homomorphic encryption has applications include e-voting systems ([12])
and processing or computing on encrypted health, financial or other kinds of sensitive
data on external servers like cloud or distributed devices.

Homomorphic and fully homomorphic encryption(FHE) has already been introduced
here in Definition 2.5, and Example 2.6 provides an example of a homomorphic but not
non-fully homomorphic encryption scheme.

Examples 7.3. Another example of homomorphic encryption is the LWE cryptosys-
tem. To avoid entering into technicalities, choose an odd prime q, so that 2 is invertible
in Fq. We observe that a LWE-oracle is essentially homomorphic: given a private key
s ∈ Fnq , two uniformly sampled vectors a1, a2 ∈ Fnq and two errors e1, e2 taken from a

T-valued random variable χ, of 0-mean and variance σ2, we se that

(a1, 〈a1, s〉+ e1) + (a2, 〈a2, s〉+ e2) = (a1 + a2, 〈(a1 + a2), s〉+ (e1 + e2)).

Essentially means that the sum e1 + e2 is taken from the variable 2χ, which has also
0-mean but variance 2σ2. This easy observation allows to define a homomorphic cryp-
tosystem, which is a minor modification of Regev’s scheme presented in Section 3.
However, if we keep adding encryption of data, this results in amplifying the error of
the final encrypted data, and when this error passes a certain threshold, decryption be-
comes impossible. This implies that the length of the arithmetic circuit must be known
beforehand and the parameters must be set to meet this feature.

An analogous analysis as in the previous example shows that RLWE oracles are
also essentially homomorphic both in the additive and multiplicative structure, where,
again, essentially means that the error of the sum/product is an amplification of the
individual errors of the encrypted data, hence, RLWE provides a FHE scheme, as we
see next.

Definition 7.4 (The BGV cryptosystem ([11], Section 3.4)).
Denote R = Z[x]/(Φn(x)), with Φn(x) the n-th cyclotomic polynomial and set RN :=
R/NR. Consider as the space of plaintexts the ring Rpr , for fixed r and prime p. The
scheme is parametrized by a sequence of decreasing moduli qL > qL−1 > ... > q0 such
that qi ≤ min

{√
qi+1,

qi+1

2

}
and an i-th level ciphertext is a vector (v, w) ∈ R2

qi .

1. Key generation: Chose s ∈ R by sampling from a discrete Gaussian such that

the probability of the set {0,±1}φ(n) is close enough to 1.
2. Encryption/Decryption: A plaintext α ∈ Rpr is encrypted to E(s, α) = (p0, p1) ∈

R2
qi if and only if p0 + sp1 modulo qi equals α + prε in R with ||ε|| < qi/p

r for
some i ∈ {0, ..., L}.

Observe that adding or multiplying two i-level ciphertexts results in an i + 1-level
ciphertext, so computations over level L-ciphertexts are not allowed, as they cannot be
decrypted. Several recent refinements to this scheme have been proposed ([22]) and the
topic is still under research.
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A number of open-source implementations of homomorphic encryption are available.
For instance, HELib, a widely used library from IBM that implements the BGV cryp-
tosystem, SEAL, a Microsoft version, ΛOλ (pronounced LOL), a Haskell library for
ring-based lattice cryptography that supports FHE or PALISADE, a general lattice
encryption library. it is possible to add new implementations after public review by
contacting contact@HomomorphicEncryption.org. In sum, homomorphic encryption is
already ripe for mainstream use but the lack of standardisation makes difficult to decide
on which implementation to use.

7.3. NIST figures. In 2017, the American National Institute of Standards and Tech-
nology (NIST), launched an open call
(https://csrc.nist.gov/Projects/Post-Quantum-Cryptography) to evaluate and
standardize one or more quantum-resistant public-key cryptographic algorithms. In
their own words:

The question of when a large-scale quantum computer will be built is a complicated
one. While in the past it was less clear that large quantum computers are a physical pos-
sibility, many scientists now believe it to be merely a significant engineering challenge.
Some engineers even predict that within the next twenty or so years sufficiently large
quantum computers will be built to break essentially all public key schemes currently
in use. Historically, it has taken almost two decades to deploy our modern public key
cryptography infrastructure. Therefore, regardless of whether we can estimate the exact
time of the arrival of the quantum computing era, we must begin now to prepare our
information security systems to be able to resist quantum computing.

The deadline for submission was November 30, 2017. The total number of submissions
(for encryption, key exchange and signatures) was 71. In the first round, 14 submissions
were attacked or withdrawn. Of the remaining 57, some of the proposals (mainly code-
based ones) did merge. Taking this into account, 50 proposals remained unbroken.
Some of them were found to have non-fatal attacks, which can be avoided with a right
choice of parameters, also in the first round.

Of these 50 proposals: 9 were code-based, 21 lattice-based, 2 hash-based , 9 multivar-
iate-based, 1 supersingular isogeny Diffie-Hellman (SIDH) key-exchange protocol. The
remaining 8 submissions were hybrid or based on problems such as random walks (1),
braids (2), Chebychev polynomials (1) or hypercomplex numbers (1).

In January 2019, a second round started and taking into account the attacks and
feedback to the surviving proposals of the first round, 26 proposals have passed this
new sieve. The numbers of remaining proposals (at the time of writing) within each
category are listed in Table 1, constructed out of data from
https://www.safecrypto.eu/pqclounge/:

Addendum: in October 2nd of 2020, the third round phase has started. Comments
for the surviving candidates can still be submitted.
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