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EDITORIAL

Recently, the editors of zbMATH informed us that the article by Elke Wolf: Composition
operators between weighted Bergman spaces and weighted Banach spaces of holomorphic
functions which we published in Bulletin 79 (2017) 75–85, has almost identical content
to her article with the same title published earlier in Mathematica 57(80), No. 1–
2, 126–134 (2015). See Zbl 1389.47077 https://zbmath.org/?q=an%3A1389.47077.
They wrote: “The papers are identical to the letter apart from a remark in Section
2.2 in the IMS Bulletin version that was apparently added at the referee’s suggestion.
Actually, the IMS Bulletin version was submitted after the other version had been
accepted.” We learned that this author published another article multiple times. We
are grateful to zbMATH for detecting the issue and pointing it out. Our Editorial
Board was appalled. We contacted the author, and she apologized unreservedly. We
contacted the editors of Mathematica, whose copyright we had inadvertently violated,
and they were understanding of our position, stating that they considered the author
bore the main responsibility for the breach.

There are established guidelines for handling such issues, set out in the article Re-
traction Guidelines, by COPE (Committee on Publication Ethics), available at

www.publicationethics.org/files/retractionguidelines.pdf.
Adhering to these, we decided:

• to retract the article on the grounds of self-plagiarism, i.e. redundant publica-
tion,

• to retain the online electronic copy of the article on our website, but to mark
each page with an indication of the withdrawal,

• to record here in this editorial the basis and details of our decision,
• to publish a statement of the retraction in the format of an ordinary article
in this issue of our Bulletin, with a view to having the retraction indexed in
zbMath and MathSciNet and any other indexing resources.

Members will wish to note that there are some changes and new classes in the Math-
ematics Subject Classification 2020. There are searchable versions at the zbMATH
website:

https://zbmath.org/classification/

and also at the MathSciNet site:
https://mathscinet.ams.org/mathscinet/searchMSC.html

Additionally, there is a PDF version of MSC2020 at
https://mathscinet.ams.org/msnhtml/msc2020.pdf

I encourage authors to employ MSC2020 from now on. We have provided revised
versions of our class file bimsart.cls and article and review templates to accommodate
MSC2020 classes.

I remind Irish schools to contribute news, ideally through the local representatives.
Please send reports for 2020 by mid-December to

mailto://ims.bulletin+news@gmail.com

so they can be included in the Winter Bulletin.

As before, to facilitate members who might wish to print the whole issue, the website
will carry a pdf file of the whole Bulletin 85, in addition to the usual pdf files of the
individual articles. As a further convenience (which may suit some Departments and
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ii EDITORIAL

Libraries), for a limited time a printed and bound copy of this Bulletin may be ordered
online on a print-on-demand basis at a minimal price1.

This year’s IMS Annual Scientific Meeting (also known as the “September meeting”)
will be held in DCU. Due to the disruption caused by the COVID-19 pandemic,

the meeting has been rescheduled, and will held in late December or early

January.

Recently the Royal Irish Academy confirmed its decision to cease underwriting the cost
of Ireland’s participation in the International Mathematical Union (IMU). The main
costs are the subscription, currently e2840 per annum, and the expenses of a delegate
to the ICM, every four years. The IMS Committee has decided to keep our participation
going, and to take over from the RIA the rôle of liaison with the IMU. Our President,
Pauline Mellon, will be writing to IMS members in a little while about the challenges
this poses. It may be useful to recall some facts about Ireland’s connection to the
International Union to date:

The main purposes of the IMU are (cf. https://www.mathunion.org/)

• To promote international cooperation in mathematics.
• To support and assist the International Congress of Mathematicians (ICM) and
other international scientific meetings or conferences.

• To encourage and support other international mathematical activities consid-
ered likely to contribute to the development of mathematical science in any of
its aspects, pure, applied, or educational.

The permanent secretariat of the Union is in Berlin, since 2011. The Union has 88
member countries.

A country’s subscription depends on its level of mathematical activity and develop-
ment. Ireland pays the same subscription as countries of comparable size (in terms
of mathematics) such as Austria, Denmark, Portugal and Slovakia. Big players such
as France, Germany, Italy, Israel, UK, Japan, Russia, and USA pay Euro 17,160 per
annum.

The first ICM took place at the Chicago World’s Fair of 1893, and apart from in-
terruptions due to world wars they continue on a quadrenniel basis. Hilbert’s famous
‘Problems’ address at the 1900 Congress in Paris set out agenda that guided Mathe-
matical research for much of the twentieth century. The IMU was set up in 1920 to look
after the administration of the ICM. As part of this work, the IMU could be said to
canonise the current priorities in mainstream mathematical research. The programme
for the ICM is organised on the basis of a division of the discipline into sections, and
this division is dynamic, evolving over time according to the appearance of new devel-
opments and applications.

From 1950 onward, the Fields Medals are awarded at the ICM, and more recently
other prizes.

Colm Mulcahy has set out a comprehensive record of Irish participation in the
International Congress (http://www.mathsireland.ie/blog/2018_09_cm and http:

//www.mathsireland.ie/blog/2018_11_cm). Looking at these blogs, one sees that
Irish mathematicians were prominent at some key stages in the evolution of the ICM.
For instance, Larmor, who was present at Hilbert’s address and who gave a plenary
address in 1912, was Vice-President of the Congress by 1920, when the IMU was set up.
Synge was influential in the administration of several congresses, and played a key ro̧le
in the creation of the Fields Medal. The first official representative of the Irish state was
Conway, at the 1924 ICM in Toronto. At that meeting Ireland had two delegates and
members present, out of 444, of whom 298 were from the US or Canada. By contrast,

1Go to www.lulu.com and search for Irish Mathematical Society Bulletin.



EDITORIAL iii

the 2018 ICM in Rio de Janeiro had 3018 full members. Other speakers over the years
included F.Edgeworth, E.T.Whittaker, William McCrea, John Todd, F.D.Murnaghan,
P.de Brun, A.J. McConnell, J.R. McConnell, Lanczos, Paddy Kennedy, Paddy Barry,
Cathleen Morawetz, and Don McQuillan.

The visibility of Irish-based people in the key IMU committees (the executive, the
programme, the medal committees) and in the lists of invited speakers is substantially
less than in the past. To a large extent this follows the same pattern as the sports
olympics movement, where rising participation from around the world and differential
population growth has reduced our relative proportion of top-level candidates. Recent
ICM speakers included Kevin Costello b. Cork (Hyderabad 2010), Samson Shatashvili
(TCD), and David Conlon b. Sligo (Seoul 2014).

In the past thirty years or so, the ICM has been accompanied by a large number
of ‘satellite conferences’, held in the same country before or after the Congress, and
focussing on specific fields. Although it does not appear on the record of the ICM,
Irish mathematicians have been included as invited speakers at some of these meetings,
and they are an important benefit to the country, in terms of new ideas learned and
international collaborations initiated and maintained.

The most important benefit of Irish participation in the IMU and ICM lies in the
maintenance and development of useful contacts, and the integration of the Irish math-
ematical community into the worldwide community.

The IMU has three commissions: ICMI (founded 1908) for Mathematics Education,
CDC for Developing Countries, and ICHM for History of Mathematics, and two main
Committees2: CEIC for Electronic Information and CWM for Women in Mathemat-
ics. Merrilyn Goos (UL) is Vice-President of ICMI, and with Maurice O’Reilly (DCU)
Thérèse Dooley (UL) and others helped bring the major CERME103 conference, held
in Croke Park in February 2017. The ICHM co-sponsored the Fifth Joint Conference of
the British Society for the History of Mathematics and the Canadian Society for His-
tory and Philosophy of Mathematics held in TCD in July 2011. Romina Gaburro (UL)
is local ambassador for the CWM, and related activity includes the annual Women in
Mathematics Day.

In my opinion, continued Irish membership in the International Mathematical Union
is vital for the health of Irish mathematics and for the reputation of the country. To
cease participation would be to declare that we are just giving up. Granted, support
within Ireland for research in basic science, particularly in mathematical science, and
even more particularly in pure mathematics, is just lamentable, but we are not at rock
bottom.

2 https://www.mathunion.org/activities/imu-commissions-and-committees
3 https://www.mathunion.org/news-and-events/2017-02-01/cerme-10
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Links for Postgraduate Study

The following are the links provided by Irish Schools for prospective research students
in Mathematics:

DCU: mailto://maths@dcu.ie

DIT: mailto://chris.hills@dit.ie

NUIG: mailto://james.cruickshank@nuigalway.ie

MU: mailto://mathsstatspg@mu.ie

QUB: http://www.qub.ac.uk/puremaths/Funded_PG_2016.html

TCD: http://www.maths.tcd.ie/postgraduate/

UCC: http://www.ucc.ie/en/matsci/postgraduate/

UCD: mailto://nuria.garcia@ucd.ie

UL: mailto://sarah.mitchell@ul.ie

UU: http://www.compeng.ulster.ac.uk/rgs/

The remaining schools with Ph.D. programmes in Mathematics are invited to send their
preferred link to the editor. All links are live, and hence may be accessed by a click,
when read in a suitable pdf reader.

Editor, Bulletin IMS, Department of Mathematics and Statistics, Maynooth Univer-

sity, Co. Kildare W23 HW31, Ireland.

E-mail address: ims.bulletin@gmail.com
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(4) Any member with a bank account in the Irish Republic may pay his or her sub-
scription by a bank standing order using the form supplied by the Society.

(5) Any ordinary member who has reached the age of 65 years and has been a fully
paid up member for the previous five years may pay at the student membership rate of
subscription.

(6) Subscriptions normally fall due on 1 February each year.

(7) Cheques should be made payable to the Irish Mathematical Society.

(8) Any application for membership must be presented to the Committee of the I.M.S.
before it can be accepted. This Committee meets twice each year.
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School of Mathematical Sciences
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University College Cork
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Ireland

E-mail address: subscriptions.ims@gmail.com
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Martin Gardiner: the first Irish–Australian mathematician

GRAEME L. COHEN

Abstract. Martin Gardiner was one of the first students enrolled in Queen’s College,
Galway, in 1850. He performed exceptionally well but ended his studies in civil engi-
neering after just two years. While there, he developed his own set of correspondents,
such as Richard Townsend in Trinity College, Dublin, through which he maintained
a comprehensive knowledge of current developments in geometry. By 1857, he was in
Melbourne, Australia, and was soon promoting himself as more capable than any local
mathematician. He took surveying positions around the country, never for more than
five years at a time, and everywhere he lived advertised himself as a private tutor,
or as conducting a school for mathematicians and engineers. None was successful.
Gardiner had over twenty publications in the proceedings of the Royal Societies of
Victoria and New South Wales, as well as a few in leading English journals.

Martin Gardiner, from his paper The three sections . . . .

Introduction

Until the appearance of my book, Counting Australia In (Cohen [2]), and more
recently my bibliography of Australian mathematics (Cohen [3]), very little had been
written about the surveyor, mathematician and perennial combatant, Martin Gardiner.
The online Encyclopedia of Australian Science says little more than that he “was a
mathematician who specialised in geometry,” and refers only to his time in Victoria
(see http://www.eoas.info/biogs/P001569b.htm). In fact, Gardiner, born in Ireland
around 1833, was a surveyor who worked in all states of Australia except Tasmania,
rarely holding a job for more than five years. He was aggressive and insulting towards

2010 Mathematics Subject Classification. 01-XX.
Key words and phrases. Galway, Gardiner, Geometry, Surveying, Mathematics.
Received on 5-3-2020.

c©2020 Irish Mathematical Society
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4 COHEN

his colleagues, highly critical of his superiors, a bankrupt, and violent towards his wife.
There is some evidence that he falsified his academic qualifications.

Yet he was indeed a capable and knowledgable mathematician, apparently largely self-
taught, and well aware of the current research in his field, with twenty or so publications
to his credit including some in the best English journals. The full list of his publications,
as far as they are known to me, is given in the Appendix. In Counting Australia In (p.
75), I wrote: “Gardiner’s work is generally very detailed and difficult to fathom, and
none of it has lasted.” But in his day he received lavish praise from some of the most
highly regarded English mathematicians.

This article is based in large measure on newspaper reports of Royal Society and other
meetings and reports of New South Wales parliamentary proceedings, on government
Gazette notices, on newspaper advertisements, and on letters to the editors of dozens of
newspapers. Gardiner was a prolific letter writer, always ready to criticise the colonists
among whom he lived and worked. Other sources include journal notices and a number
of birth, death and marriage certificates.

Over the past five years or so, there has been a lively email discussion ascertaining
various facets of Gardiner’s life and work. I very much appreciate the efforts and advice
in this period of professors Alan Atkinson, Colm Mulcahy and James Tattersall.

1. First, Melbourne

Martin Gardiner arrived in Melbourne on 9 December 1856 aboard the Royal Charter
with his wife, maiden name Bridget Mary Maguire, two-year old son Charles Napoleon
and infant daughter Margaret. Just a few months later, on 17 March 1857, the baby
Margaret died from dysentery, aged two years and two months; and a month after that,
on 20 April, another child, James, was born. The Royal Charter’s passenger list gives
Martin’s age on board as 24 and Bridget’s as 18, but the latter could hardly be correct.
Indeed, James’ birth certificate states that Bridget was then aged 22, and was born in
Limerick, Ireland. Gardiner’s age is given as 25 and his birthplace as Galway, Ireland
(but evidence below will suggest the more likely possibility that he was born in Dublin).
The birth certificate states also that Martin and Bridget had married on 7 December
1852 at Sherbrook, near Montréal, Canada.

Details of Gardiner’s education are sketchy. Alan Atkinson found that The Dublin
Evening Post reported on 31 December 1850 that a science scholarship for a Martin
Gardiner in the Faculty of Arts at Queens College, Galway, had been “granted” on the
23rd; and the Dublin Advocate reported the same on 1 January 1851. Colm Mulcahy
passed on photographs of the handwritten log from the Registrar’s Office at the col-
lege, which show a Martin Gardiner from “Dublin School” admitted as “A Scholar in
Engineering” on 7 January 1850 for the session 1849–50, and being “A Scholar 1st Year
Arts” for 1850–1851.1 The details for those two years are confirmed by entries in the
Calendar for Queen’s College, Galway, for the year 1899 (available online). There are
no further mentions and, in particular, the Calendar does not include Gardiner among
its list of all graduates of the college up to 1898. So Gardiner, who would very often
sign himself as “Martin Gardiner, C.E., Scholar of Queen’s College, Galway”, does not
appear from this to have completed a full course of study there. (See Mitchell [10] for
a description of the College’s early years.)

However, he brought with him to Australia a certificate from the college, dated
September 1852 and stating: “We . . . do hereby certify that Mr. Martin Gardiner has
diligently pursued the Course of Study prescribed in the Queen’s University in Ireland,
and is duly qualified to act as Assistant-Civil-Engineer.” Alongside that certificate is
another, “to Certify that at an Examination held on the 12th day of June, 1851, Mr.

1The photographs were obtained by Professor Ted Hurley, there. I am most grateful.
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Martin Gardiner has been awarded a Prize of First Rank for Proficiency in Natural
Philosophy during the second year of his academic course.”2 There is no evidence that
he undertook further tertiary studies anywhere else.

Gardiner, possibly with Bridget, left for Canada soon after his time at Queen’s Col-
lege. The County Galway Surname List3 confirms this in very brief terms. The list says
of Gardiner no more than: “born about 1832 emigrated to Canada by about 1850”. In
Canada, Gardiner worked for the Grand Trunk Railway, and that is about all that is
known of his time there.

In contrast to her husband, Bridget may have been illiterate: on James’ birth certifi-
cate, she signed with her mark, “X”.

Within a year of his arrival in Australia, Gardiner issued a challenge: “To the Math-
ematicians of Australia. — £10 for any Person who shall (before the 1st of January,
1858,) present to the Public Library of Melbourne ORIGINAL GEOMETRICAL PA-
PERS to equal or excel those which I shall have contributed. — Martin Gardiner,
C.E.”4 Just about all of his contributions to newspapers, over 40 years and from five
Australian states, exhibited the same self-promoting arrogance and deprecating of the
local colonists.

On 28 May 1859, he gave a public lecture entitled “The necessity of having the
Mathematics and Applied Mechanics occupy a more prominent place in public instruc-
tion”5 and soon after, he was advertised as giving regular lectures for the Mechanics
Institution: classes in “Mathematics and Mechanical Philosophy . . . every Tuesday and
Saturday Evening, 7 to 9 o’clock. Two guineas for the session, and no extra charges
for instructions in calculus, descriptive geometry, framing, skew bridges, &c.”6 These
classes did not eventuate, as “those who were so eager to join the classes have not
been forthcoming.”7 This was the first of many instances of failed attempts to establish
himself as a teacher.

Gardiner was elected a member of the Philosophical Institute of Victoria in June
1859. He had a paper, “Improvements in Fundamental Ideas and Elementary Theorems
of Geometry”,8 in Volume 4 of the Transactions of the Institute published that year.
Although this, his first paper, is dated 1859, he had earlier presented a bound volume of
three papers in 40 pages entitled Geometrical Papers to the Melbourne Public Library.
These no doubt formed the basis for his challenge, two years before. He wrote in his
introduction to these Papers that he had endeavoured to bring the work to the notice
of William Parkinson Wilson (1826?–1874), professor of mathematics in the recently
established University of Melbourne, but, as I wrote in Counting Australia In (p. 75), “in
the manner of countless academics when similarly approached, ‘the learned proffessor
[sic] did not wish to enter into the details of my methods’.”9

At the meeting of the Philosophical Institute on 30 November 1859, Gardiner read a
paper “Hints for Field Practice, in the Laying-out of Compound-circular and Parabolic
Railway Curves”. The Institute was transformed into the Royal Society of Victoria in
the following year, and Gardiner stood unsuccessfully for election to its council in April.

2The certificates are among the collected correspondence of Sir Henry Parkes, Volume 27, call no.
A897 (State Library of NSW), pp. 236–240.

3www.rootsweb.ancestry.com/∼irlgalway/galway.htm.
4The Argus, 19 October 1857.
5The Age, 25 May 1859. Many newspaper advertisements were repeated in the following days.

Generally, only the first occurrence is recorded here.
6The Age, 2 June 1859.
7The Argus, 30 June 1859.
8“Read before the Institute 13th July and 3rd August, 1859.”
9Before his appointment to the chair in Melbourne, Wilson had been the foundation professor of

mathematics in Queen’s College, Belfast.
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He read a paper to its meeting on 4 June 1860 (“Analogous Solutions to the Section of
Ratio, Section of Space, and Determinate Section of Apollonius, with their Generating
Problems”), and on 30 September 1861 his paper “A few observations on the tangencies
of Apollonius” was “laid upon the table”.

2. Sydney

In August 1860 Gardiner, with Bridget and their two surviving children, moved to
Sydney with the expectation that he would obtain employment in the department of
railways. Just five months later, on 23 January, Bridget died of a lung disease, aged 27.
According to the death certificate, the burial was witnessed by a young friend, Emma
Guile, who was to become Martin’s second wife soon after, on 13 August. Their marriage
certificate gives Emma’s age as 18 at the time and her birthplace as London. Martin’s
birthplace is given as Dublin, not Galway as stated above, and his parents are stated
as William (“a Gentleman”) and Mary. On 12 June 1862, Emma gave birth to a son,
Martin. There would be two more children: daughters, Emma on 18 September 1864
and Mary Louisa in Newcastle, New South Wales, on 25 October 1867. This marriage
ended in violence by Gardiner against Emma, then desertion and finally divorce.

Gardiner was exceptionally proud of the paper he presented to the Philosophical So-
ciety of New South Wales on 9 July 1862. It was titled “Improvements in geometrical
science, with their applications in solutions to celebrated problems, and in the inves-
tigations of new Porisms.”10 Two months earlier, he had written to the editor of the
Sydney critical newspaper, the Empire, “As I have determined on publishing a model
solution to a celebrated geometrical problem, I hope you will be so kind as to insert
its history in your philanthropic journal, and be a benefactor to pure science in this
colony, where the highest intellectual ambition of the rising generation is almost entirely
directed to what I consider the useless, inglorious, art of ‘cricket-batting.’ ”

The problem in its simplest form is: To inscribe a triangle in a given circle, such
that its sides (produced if necessary) shall pass through three given points. The Empire
did indeed publish (in almost 1300 words) Gardiner’s history of the Cramer–Castillon
problem, as it is now known. Much of this history was taken, with very similar wording
in some parts, from a paper by Thomas Davies [5] that had appeared a dozen years be-
fore. Gardiner acknowledged Davies’ paper in a more detailed history of the “celebrated
problem” at the end of the third part of his “Geometrical Researches” (Appendix (e)),
where his complete analysis was given. Generalisations of the Cramer–Castillon prob-
lem were the subject of a number of Gardiner’s papers, and undoubtedly constituted
his best work in mathematics.

Regarding the presentation to the Philosophical Society, the Herald (10 July 1862)
wrote, “Last night, the monthly meeting of the Philosophical Society of New South
Wales was held in the hall of the Australian Library . . . Two papers were read—the first
by Mr. Martin Gardiner, C.E., . . . Mr. G. introduced supplementary ideas concerning
the modes of formation of lines in respect of points, and of surfaces in respect to lines
and points; and, although the subject was of a very abstruse character, he succeeded in
rendering it, by the aid of diagrams, somewhat interesting . . . ”

In a letter to the Empire, on 27 January 1863, in which he signs himself as working
for the “Railway Department”, Gardiner paid tribute to “the newly appointed Chief
Justice of Queensland . . . [who] is well known as a very eminent mathematician.” Not
named by Gardiner in the letter, this was Sir James Cockle (1819–1895). (See Bennett
[1], Deakin [6].) In 1867 Gardiner read a paper of Cockle’s to a meeting of the Royal

10From Wikipedia: “A porism is a mathematical proposition or corollary. In particular, the term
porism has been used to refer to a direct result of a proof, analogous to how a corollary refers to a
direct result of a theorem.”
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Society of New South Wales. In 1870, Cockle supported Gardiner in his unsuccessful
application for the chair of mathematics in the newly established University of Otago,
New Zealand (to be described in detail below).

Gardiner presented a paper to a meeting of the Philosophical Society of New South
Wales on 17 June 1863 (“Complete Solution to a Celebrated Problem”). Another
paper was scheduled for presentation at the next monthly meeting of the Society on 8
July (“The correct scientific method of forming railway curves and railways, with an
exposition of the injurious effects of the system adopted in this colony”), but, perhaps
because of the controversial nature of the paper, it was deferred to the subsequent
meeting on 12 August. Gardiner wrote to the editor of the Empire on 14 August,
asking that “in order to . . . advance the interests of the colony,” the paper be printed
in the newspaper in full; and this was done.

Gardiner read a paper, “On improved analytical geometry,” to a meeting of the Royal
Society of New South Wales on 17 August 1864.11

In an announcement in The Sydney Morning Herald on 6 March 1865, “Mr. Sheri-
dan Moore, Licensed Tutor of the University”, informed “undergraduates and others”
that Gardiner was to “take charge of all his advanced Mathematical Classes.” Joseph
Sheridan Moore was a prolific local poet and essayist. He was involved in a number of
educational ventures (as was Gardiner), none of which succeeded. An Irishman who mi-
grated to Sydney in 1847, Moore “was esteemed by some but condemned as a charlatan
by the native-born members [of his literary group] who distrusted him” (Glass [7]).

3. Newcastle

By the end of July 1865, Gardiner and family had moved to Newcastle, north of
Sydney, where Gardiner had obtained the position of City Surveyor. As usual, wherever
he went, he was keen to promote himself as a teacher. In the Newcastle Chronicle on
23 September 1865, he advertised his services as follows. “Mathematics, Surveying,
Engineering &c, taught to Gentlemen who wish to undergo Civil Service Examinations,
or to obtain Certificates of Qualification as Civil Engineers. Martin Gardiner, C.E.,
City Engineer and Surveyor, Newcastle.”

A few months later, on 2 January 1866, there was more self-promotion with the
following, from a letter to the Empire:

From the report of the Deputy Surveyor-General on the state of the Survey department, I
learn that he recommends the Government to send to England for a scientific trigonometrical
and geodetic surveyor, and for an equally qualified draughtsman for the office-work pertaining
to trigonometrical surveys.

Now, I can produce abundant testimony (to those who are sufficiently advanced in the
science of the profession to be able to understand the worth of such testimony) as to my
thorough qualifications to perform either the field or office duties of trigonometrical and
geodetic (astronomical) surveying, and to avail myself of the formulae of reduction, &c, con-
tained in the most approved French and English authors, as Puissant Airy, and the published
accounts of the ordinance survey of Britain and Ireland . . . I maintain that at such work I
have no superior in this colony, or in England . . . I hope Mr. Adams will not overlook capable
men who are now in the colony; and I would call his attention to the two following letters
the first of which is from his friend Mr. Hodgkinson, the most scientific and accomplished
professional surveyor in the service of the Victorian Government.

The reference in the last lines is to Clement Hodgkinson (1818–1893), a public servant
and surveyor, heavily involved with the Philosophical Institute and then the Royal
Society of Victoria. Gardiner’s description of him is apt.12 His letter to Gardiner is dated

11See royalsoc.org.au/council-members-section/91-philsoc1856-65#1866.
12Hodgkinson is described in Counting Australia In (p. 76) as the author of the “first paper of

mathematical interest published in Victoria” (Hodgkinson [8]).
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9 June 1860 and reads as follows: “As you state that you are about to proceed to Sydney,
with a view to employment as a railway surveyor, I beg to assure you that, in my humble
opinion, your qualifications are of the very highest order. As a member of the Royal
Society of Victoria, you have not only contributed to the transactions of that society
some valuable information on professional subjects, but also, some papers displaying
profound knowledge of the higher branches of mathematics and great originality and
genius.”

The other letter that Gardiner mentions was from Richard Townsend (1821–1884),
an eminent geometer and professor of natural philosophy at Trinity College, Dublin.
The letter, dated 17 October 1865, is highly praising of Gardiner’s work. For example,
referring to one of Gardiner’s papers, he wrote: “I can assure you I have not for a long
time enjoyed a greater treat or experienced more pleasure than its study has afforded
me. You need not ask me, my dear sir, to help to rescue your papers from obscurity—
that paper will immortalise your name and hand it down to history, as that of a pure
geometer of the first order.”

Townsend’s letter is addressed to Gardiner at “St. John’s College, Sydney”. In
Volume IV (1866) and from Volume VII (1867) to Volume XXXVI (1881), Gardiner
was listed as a contributor to Mathematical Questions, with their Solutions, from the
“Educational Times” and he described himself there (from Volume VIII onwards) as
“late Professor of Mathematics in St. John’s College, Sydney.” There is no evidence,
according to the archivist at St John’s College in the University of Sydney (personal
communication) of any such association. The title of professor would only have been
allowed by the college if it had been bestowed by some other institution and there is
no evidence of that, either. I have noticed only the following two contributions from
Gardiner to Mathematical Questions: Unsolved Question No. 1882 in Volume VI (1866)
and No. 2255 in Volume VII (1867). In contrast, for example, Sir James Cockle had
numerous contributions in most volumes in this period.

As their titles suggest, these volumes consist largely of mathematical problems and
their solutions from The Educational Times.13 In the occasional lists of contributors
that the journal published (which were distinct from those in the Mathematical Ques-
tions) from 1870 to 1875, Gardiner was listed as “Martin Gardiner, F.R.A.S., St. John’s
College, Sydney, Australia.” It is known (indirect personal communication) that Gar-
diner was not at any time a Fellow of the Royal Astronomical Society, and nothing else
seems plausible. He did not use those initials in any other context.

Gardiner contributed four questions to The Educational Times: No. 1855 in Vol-
ume XVIII (December 1865); No. 1882 in Volume XVIII (January 1866) (repeated as
No. 4056 in Volume XXVI (April 1873)); No. 1897 in Volume XVIII (February 1866)
(repeated as No. 4106 in Volume XXVI (June 1873)); and No. 2255 in Volume XIX
(October 1866). Nos 1882 and 2255 subsequently appeared with the same numbers in
Mathematical Questions, as recorded above. No. 1882, slightly reworded and ascribed
to “the Editor” rather than Gardiner, was solved by Âsûtosh Mukhopâdhyây in Vol-
ume XLIII (1885) of Mathematical Questions. I am grateful to Jim Tattersall for this
information; he asserts further that Gardiner did not produce solutions for any of his
questions.

Under the heading “FENIAN EXCITEMENT AT NEWCASTLE, N.S.W.”, the New-
castle Chronicle on 28 March 1868 reported that Gardiner was before the Court, “on
summons, to answer a charge of using insulting words to one Charles Edward Thurlow,
on the 21st instant, whereby a breach of the peace might have been occasioned.” He

13Full title: The Educational Times and Journal of the College of Preceptors, “A Monthly Journal
of Education, Literature and Science”, published in London in varying forms from 1847 to 1923.
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pleaded not guilty. Not long before, on 12 March, there had been the attempted assas-
sination in Sydney of Prince Alfred, Duke of Edinburgh, during the first ever royal visit
to Australia. It was seen as an instance of the pervading tension between Irish Catholics
and non-Catholics during what was termed “Fenian terrorism” in England. (The Fe-
nians sought the establishment of an independent Irish republic.) Thurlow complained
that, while walking with Gardiner and another man the previous Saturday, and having
expressed the view that “the colony had been disgraced by the attempt”, Gardiner had
immediately replied, “The whole of you in the colonies are a set of cowards and toad-
ies.” Thurlow’s response was “Gardiner, I’d rather be one of the cowards and toadies
that you call the colonists than such an unhappy mortal as yourself; you are always
grumbling, or abusing somebody or something.” And so it continued, with Thurlow
calling Gardiner a Fenian, among other things. The Bench considered the case to be
“not a serious one”, but “found the defendant guilty, and sentenced him to pay a fine
of 20s. and 4s. 6d. court costs, in default of payment, to be imprisoned in the lock-up
for forty-eight hours.” The fine was paid.

Gardiner continued working in Newcastle until the end of 1868.

4. Sydney again; City College

Gardiner returned to Sydney. On 2 June 1869 he presented three papers to the
monthly meeting of the Royal Society of New South Wales — papers (h), (i) and (j) in
the Appendix. The meeting and details of all three papers were reported in a number
of newspapers in the following week.

He then embarked on his most ambitious educational venture. With Sheridan Moore,
he made extensive plans for the City College, to be situated near Hyde Park, Sydney,
and to open on 19 July 1869. The College was to have two departments, a School
of Engineering, Surveying, and Architecture; and a Classical, English, and Commercial
School. The former was advertised as “exclusively under the charge and direction of Mr.
Martin Gardiner, C.E., Queen’s University, Ireland, Mem. of Math. Society of London”.
Here we have the first mention of Gardiner as a member of the London Mathematical
Society. Elizabeth Fisher, the Membership & Activities Officer there, has confirmed
to me (personal communication) that Gardiner was elected as a member on 27 June
1867 and, at that meeting, “Prof. Hirst communicated a Paper ‘On the determination
of Double Entities in Uniquadric Homographics,’ by Mr. Gardiner.” I am grateful to
Ms Fisher for bringing the paper to my attention; see Appendix (g).

Many of the advertisements included the college’s prospectus, of which the following
is a very small part.

Mr. Gardiner obtained the highest distinction in Mathematics, Natural Philosophy, and Civil
Engineering, during his University career, and has since then been professionally engaged
as draughtsman, land-surveyor, engineer and surveyor on railways and other works. His
elementary mathematical and engineering papers have been published by the Royal Societies
of Sydney and Melbourne, and his recent researches in the higher branches have had the
honour of publication by “The Mathematical Society” and “The Royal Society,” of London.

Accompanying references included Morris Birkbeck Pell (1827–1879), first professor
of mathematics in the University of Sydney, Sir James Cockle, and “Professor Townsend,
(Trinity College Dublin.) Professor Hirst, (London University). Professor Cayley, (Uni-
versity of Cambridge) President of the Mathematical Society of London.”

The City College was first advertised on 12 June, five weeks before it was due to
open, but within a month or so, before it had opened, there was an unexplained falling
out between Gardiner and Moore. Many of the later advertisements did not mention
Gardiner, and for the opening on 19 July there was again no mention. The opening
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was in fact postponed for a week because of “the inclement weather”, according to a
newspaper advertisement.

On 7 August there was a further advertisement in Freeman’s Journal for the City
College, along the lines of some of the earlier ones but with Gardiner’s name absent. In
The Sydney Morning Herald on the same day, and often over the next few weeks, Gar-
diner advertised his own services separately: “Gentlemen instructed in all branches of
Mathematics, Surveying, and Engineering. Proficiency guaranteed to articled pupils.”
The split was fully apparent by 19 August with an advertisement in The Sydney Morn-
ing Herald announcing that the “entire course” in the School of Civil Engineering,
Surveying, and Architecture, of the City College, had been “re-constructed” under
the direction of “EDWARD HUGHES, Esq., C.E., late Resident Engineer on the Pun-
jaub Railways, formerly (for four years) Assistant Engineer on Brassey and Co.’s French
Railway Contracts, Messrs. Grissell’s Contracts, Great Yarmouth Bridge Works, Roads,
&c.”

Then the scheme collapsed entirely, and it cannot be claimed that it would have
succeeded with Gardiner remaining as one of the headmasters.

Throughout this time, Gardiner’s researches in geometry continued. The monthly
meeting of the Royal Society of New South Wales for October 1869 was reported on as
follows by The Sydney Morning Herald: “Mr. Martin Gardiner, C.E., then read to the
members of the Royal Society a paper on ‘Improved Solutions to Important Problems
in Trigonometrical Surveying.’ Mr. Gardiner demonstrated the principles he contended
for in the paper by means of diagrams, and was listened to with great attention by all
present. The subject treated of was evidently much appreciated, but was of rather too
abstruse a character to be made intelligible in a popular form.”

At the end of that year, 1869, the Borough of Balmain in Sydney announced Gar-
diner’s appointment as Council Clerk and Surveyor, but the following August saw him
declared insolvent and he was obliged to resign from his position.

5. Otago chair; divorce

The University of Otago in Dunedin, New Zealand, the country’s first university, was
established in 1869, and Gardiner was an applicant for the chair of Mathematics and
Natural Philosophy. I have copies of four letters that he wrote to the University Council
over the period 27 May to 31 August 1870. Garry Tee from the University of Auckland
received these from David Murray, a university archivist in Otago, and forwarded them
on, and I am grateful to both for this. The four letters are written from “Darling Street,
Balmain”, and in one, dated 18 June, there is the following remarkable passage.

I think it proper, under present circumstances, to observe that the Professors of Mathematics
& Natural Philosophy in the Sydney & Melbourne Universities have contributed nothing
theoretical or practical to science in these colonies, or elsewhere, since their arrivals, nor, as
a natural consequence, have the graduates or scholars done anything to give the universities
a name or to prove them to be successful institutions.

To set the record straight, if that is required, Pell from Sydney University was “re-
garded as the most important commentator on mortality in Australia before 1900”
(Lancaster [9]), and Wilson, a fervent astronomer, was instrumental in bringing what
became known as the Great Melbourne Telescope to Australia in 1869 ([2], p. 56).

Two references accompanied Gardiner’s application and they are worth reproducing
in full. The first was from William Hearn at the University of Melbourne, dated 2 May
1870.

Mr. Martin Gardiner, C.E., was a student in Queen’s College, Galway, when I was connected
with that institution. Mr. Gardiner, obtained the highest distinctions in the College, in its
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engineering department (including the higher branches of Mathematics and Physics) and
subsequently obtained the diploma of Civil Engineer.

I subsequently knew Mr. Gardiner in Victoria, when he was a member of the Royal Society.
He pursued, often in circumstances of great difficulty and discouragement, his mathematical
studies with great success.

I do not consider myself competent to express an opinion on the value of Mr. Gardiner’s
papers, but from my general knowledge of his powers if he were able to devote his whole time
without interruption to his favourite pursuits, he would be speedily known as one of the most
successful Mathematicians of the day.

The other was from Sir James Cockle in Brisbane, dated 4 May 1870.

I have to beg you to accept my apologies for not having written to you long since. Your
letter dated April 21st, 1870 informs me that you are a candidate for the Professorship of
Mathematics and Natural Philosophy in the University of Otago, New Zealand.

It would give me pleasure to hear that you had succeeded in obtaining the appointment.
From papers which you have sent me long since, and from a more recent one by you

which I have seen in (I think) “The Quarterly Journal of Mathematics,” I believe you have
been and to be an able and persevering investigator in an abstruse and difficult portion of
Mathematical Science. And in the fact of your having pursued these advanced studies, I
find an ample warrant for sending you this testimonial accompanied by my best wishes for
your success in your application, and that in such an appointment you may find a fitting and
agreeable field for the exercise of your Mathematical talents.

The letters appear in the collected correspondence of Sir Henry Parkes.14 With these
is the letter from Clement Hodgkinson that we have seen before, but bearing the date
“January 1860” rather than 9 June 1860 as before, and with a few other minor dif-
ferences.15 There is also a letter from T. Archer Hirst of University College, London,
dated 1 January 1867, commending Gardiner’s memoir, “Researches in the Geometry
of Three Dimensions”.

There were 62 applicants for the position in Otago, including nine specified as “From
the Colonies”. Success went to a Scot, John Shand, who is remembered in New Zealand
mainly for his support for teaching and secondary education.

Two and a half years later, apparently living the whole while in Sydney, Gardiner
was again granted an “insolvent’s certificate”,16 and later that year he issued a notice:
“I will not be responsible for any Debts contracted by any person whomsoever without
my own authority. Martin Gardiner, C. E.”.17

For Gardiner’s wife Emma, it was much worse than financial hardship. On 22 October
1872, the Evening News reported that, in the Central Police Court, “Martin Gardiner
was fined 40s, with 6s 6d costs of court and 21s professional costs, or seven days, for
assaulting Emma Gardiner.” Three days later, in the The Sydney Morning Herald,
we find: “In Emma Gardiner v. Martin Gardiner, an order was made by consent of
defendant for a weekly payment of 30s for the separate maintenance of his deserted
wife.” Two years later, Gardiner was on another charge before the Central Police
Court for “assaulting and beating his wife Emma Gardiner.” It was another nineteen
years, December 1893, before Emma “commenced a suit” against Martin Gardiner for
divorce on the ground of desertion.18 In an appearance before the Supreme Court, she
asserted that Gardiner “had deserted her since 1874, and that she had never heard from
or of him from that date.” The presiding Justice granted the decree nisi, to be made
absolute after three months.

14Parkes, op. cit.
15Such letters would, of course, have been reprinted by the recipient for subsequent distribution, and

might well be altered in content.
16Empire, 2 April 1873.
17The Sydney Morning Herald, 23 September 1873.
18NSW Government Gazette, 8 December 1893, p. 9285.
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6. Final wanderings

In fact, in 1874 Gardiner was in Brisbane, as evidenced by the following letter from Sir
James Cockle to his equivalent Chief Justice in New South Wales, Sir Alfred Stephen,
seeking Stephen’s help to find employment for Gardiner.

There is living in New South Wales, I believe in Sydney, Mr. Martin Gardiner, C.E. If it
should happen to come in your way to be able to render him a service I think that such
favour would be well bestowed. He is a mathematician of a very high order. It was only
a day or two ago that I met with his name in an English mathematical publication and in
connection not with an isolated problem, but with a recondite class of researches. I believe
that he has contributed at least two papers to the Transactions of New South Wales. He
is not however a theorist alone, but he is a practical man and visited Queensland lately in
quest of professional employment. There was however no opening for him there and I failed
in an effort I made for him. I then thought of some endeavor to interest the New South
Wales officials in his behalf, but I gathered from what he said that he thought that your
good word or influence would be more powerful . . . Accordingly after some delay, caused in
part by pressures of business, I write. And I do so because the picture of such a man as
Mr. Martin Gardiner working hard for inadequate remuneration is one of the most striking
instances that I know of how occasionally cruel Fortune is in her caprices. With but a fair
chance I doubt not that he would make his mark in the world.19

Soon after, Gardiner was back in Melbourne. In May 1876, he presented to the Royal
Society a paper on geodetic surveying, but “as, owing to its length, it would have taken
several hours to read, Mr. Gardiner gave a précis of the contents of the paper, which
he explained by diagrams.”20

In Queensland again, a year or two later, there are some minor newspaper references
suggesting that Gardiner worked as a surveyor until the middle of 1883. During 1883
and 1884, preliminary surveys were being undertaken for the famous Cairns Range
Railway to Kuranda and Gardiner is listed as one “of the various officers who were
directly responsible for the survey of and the building of the Range Railway.” So is
his son Charles Napoleon, who was also a licensed surveyor (Collinson [4]). The first
section of the railway was completed in October 1887, but Gardiner was long gone from
Queensland by then. He had travelled to Adelaide where he was noted as presenting
to the South Australian Institute of Surveyors his works on “Practical Geodesy” and
“Dynamics”.21 Soon after, he opened a “School of Civil Engineering and Surveying,
and of Pure and Applied Mathematics”. Advertisements for his new school appeared
regularly until 30 August, and then no more was heard of the school, or of Gardiner in
South Australia.

In the early 1890s, Gardiner was in Melbourne yet again. There was an advertisement
in The Argus for “ELEMENTARY ORGANIC GEOMETRY (Preparatory to Quater-
nions), By Martin Gardiner, C.E., Member of the London Mathematical Society.”22 I
cannot find any other mention of this book. On 10 March, according to The Age, he
attended the Annual General Meeting of the Royal Society of Victoria and presented a
paper there. The paper’s title is not given in The Age, but it was presumably Appendix
(v), his last mathematical publication.

The final newspaper references to Gardiner are from Perth, Western Australia. From
The West Australian (18 April 1898), and similarly in other papers there in the following

19Correspondence from Sir James Cockle to Sir Alfred Stephen (23 December 1874) in “Public Men
of Australia”, call no. MS C4872 (State Library of NSW), pp. 202–205. I am grateful to Jim Tattersall
for bringing this item to my attention.

20The Argus, 12 May 1876.
21South Australian Register and The South Australian Advertiser, 17 July 1884.
22The Argus, 17 January 1891.
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days, we find that Gardiner was employed teaching elementary engineering in “the
James-street Central School” and was again advertising classes of his own.23

That is all. As to Gardiner’s death, the only possibility that has been found is in
the West Australian Registry. A Martin Gardiner, engineer, died on 3 April 1899 at
Helena Weir, Mundaring, about 50km east of Perth. His age at death is given as 60,
which does not accord with being born in 1832 or 1833, but may be a common error of
the times.

7. Other Irish–Australian mathematicians

The second such, after Martin Gardiner, was Henry Charles Kingsmill (1843–1909).
He was born in Donegal, studied in Cambridge, and came to Australia in 1873. Kingsmill
was instrumental in the formation of the University of Tasmania and held lecturing po-
sitions there in mathematics and surveying.

John Henry MacFarland (1851–1935) was also prominent in university administra-
tion, becoming chancellor of the University of Melbourne in 1918. He was born in
Omagh, County Tyrone, and studied mathematics at Queen’s College, Belfast, and
then St John’s College, Cambridge. MacFarland first went to the University of Mel-
bourne, as Master of Ormond College, in 1881. He was knighted in 1919.

Then there was John Frederick Adair (1852–1913), from Dublin, who studied at
Trinity College, Dublin, and then Pembroke College, Cambridge. He vied with Thomas
Lyle (below) and William Henry Bragg to succeed Horace Lamb as Elder Professor
of Mathematics in the University of Adelaide. (Bragg won, and was the winner in
1915 of the Nobel Prize in Physics, jointly with his son.) Adair won some fame as a
cricketer playing for Ireland in 1883, before taking a demonstratorship in physics at the
University of Sydney for three years.

Much better-known than these was Thomas Ranken Lyle (1860–1944), born in Col-
eraine. After distinguished study at Trinity College, Dublin, he came to Australia in
1889 as professor of natural philosophy in the University of Melbourne. He retired from
that position in 1915 because of latent injuries received playing rugby for Ireland before
going to Australia. Lyle was made a fellow of the Royal Society in 1912 and he gained
a knighthood in 1922.

Hugh Davison Erwin (1879–1957), with a BA, BSc from the Royal University of Ire-
land, was, like Kingsmill, also involved with mathematics at the University of Tasmania.

There are no others, closely associated with Ireland and then actively associated with
Australian mathematics, who are known to me up to the appointment of Vincent Hart
to the University of Queensland in 1964. Hart was born in Hull, Yorkshire, in 1930 and
moved to Cork in 1940.

All of these, except MacFarland, are discussed in some detail in Counting Australia
In. See also Mulcahy [11] for an interview with Vincent Hart. I apologise for not having
a comprehensive knowledge of others who would be more recent arrivals in Australia.

Appendix

The following are all the papers and pamphlets (and a book that never saw the light
of day) by Martin Gardiner that I am aware of. These were listed in Counting Australia
In ([2], pp. 387–388), except for (d), (f), (o) and (q), which were included in [3]. The
titles of the “four papers” in (e) were not given in the former list.

(a) Geometrical Papers by Martin Gardiner C.E., State Library of Victoria, Aus-
tralian Manuscripts Collection (MS 9947, MSB125) (1857).

23The West Australian, 6 June 1898.
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(b) Improvements in fundamental ideas and elementary theorems of geometry, Trans.
Phil. Inst. Vic. (4) (1859), 76–96. Also published as a reprint by Mason and
Firth, Melbourne (1859), 24 pages.

(c) The “three sections,” the “tangencies,” and a “loci problem” of Apollonius,
and porismatic developments, Trans. Roy. Soc. Vic., (5) (1860), 19–89. Also
published as a reprint by Mason and Firth, Melbourne (1860), 73 pages.

(d) A paper concerning polygons inscribed in curves and surfaces of the second de-
gree, Quart. J. Pure Appl. Math., (7) (1866), 146–154, 284–301. With regard to
this paper, Richard Townsend wrote, “A very elegant construction, at once sim-
ple, direct, and general, has recently been given for the case of n odd, by Mr. M.
Gardiner, C.E., late Scholar of Queen’s College, Galway, Ireland, and since Pro-
fessor of Mathematics in St. John’s College, Sydney, New South Wales.” (See
the footnote in Townsend [13].) Elizabeth Fisher of the London Mathematical
Society informed me of this.

(e) “Geometrical Researches” in four papers, comprising numerous new theorems
and porisms, and complete solutions to celebrated problems. 1. Researches con-
cerning figures particularly derived from other figures, 2. Researches concerning
n’gons inscribed in other n’gons, 3. Researches concerning n’gons inscribed in
curves of the second degree, 4. Researches concerning n’gons inscribed in sur-
faces of the second degree, Trans. Phil. Soc. NSW, (1862–1865) (1866), 61–126.

(f) On the inscription, by a simplification of Sir W. R. Hamilton’s process of re-
duction, of closed n-gons in any quadric, so that the sides of each shall pass in
order through n given points, Proc. Lond. Math. Soc., (s1-2) (1866), 63–69.

(g) Memoir on “Undevelopable uniquadric homographics”, Proc. Roy. Soc. Lond.,
(16) (1867–68), 389–398.

(h) Analytical solution to Sir William Hamilton’s problem on the inscription of
closed N ’gons in any quadric, Trans. Roy. Soc. NSW, (3) (1869), 38–41.

(i) Important new theorem in the geometry of three dimensions, Trans. Roy. Soc.
NSW, (3) (1869), 41–42.

(j) An exposition of the American method of levelling for sections—its superiority
to the English and French methods as regards actual field practice and subsequent
plotting of the section, Trans. Roy. Soc. NSW, (3) (1869), 43–45.

(k) Improved solutions to important problems in trigonometrical surveying, Trans.
Roy. Soc. NSW, (3) (1869), 129–133.

(l) Properties of quadrics having common intersection, and of quadrics inscribed in
the same developable, (being an extension of Chapter XVI. of Chasles’ Conics),
Quart. J. Pure Appl. Math., (10) (1870), 132–147.

(m) On the solution of certain geodesic problems, Trans. Roy. Soc. NSW, (7) (1873),
53–72.

(n) On geodesic investigations, Trans. Roy. Soc. NSW (7) (1873), 149–182.
(o) Leichhardt (cartographic material) (1874). A ms. map, 54 x 130cm, held by the

State Library of NSW.
(p) On practical geodesy, Trans. Proc. Roy. Soc. Vic., (13) (1878), 1–66.
(q) Disproof of the “Parallelogram of Rotative Velocities”, The Week (Brisbane), (2

June 1883), 21.24

(r) Solution to the celebrated fundamental question (hitherto unsolved) of dynamics,
Woodcock and Co., Brisbane (1883), 10 pages. This booklet was noted as
received by the Royal Society of Queensland as its first “donation”, Proc. Roy.
Soc. Queensland, (1) (1884), 1.

24The argument is invalid, according to physicists I have consulted.
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(s) Solution to one of the most celebrated fundamental questions (hitherto unsolved)
in dynamics, Woodcock and Co., Brisbane (July 1883), 8 pages.

(t) Determination of the motion of the solar system in fixed unalterable space,
Woodcock and Co., Brisbane (1883), 14 pages.

(u) Elementary organic geometry (preparatory to quaternions). Described as “Ready
for Publication”, The Argus (17 January 1891). Unseen; no other references.

(v) On “confocal quadrics of moments in inertia” pertaining to all planes in space,
and loci and envelopes of straight lines whose “moments of inertia” are constant,
Proc. Roy. Soc. Vic., (5) (1893), 200–208.
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Values of f(G) for groups G of odd order with Pr(G) ≥ 11/75

ROBERT HEFFERNAN AND DESMOND MACHALE

Abstract. We augment the 2011 table of Das and Nath by finding all possible values
of the commutativity ratio f(G) for a finite group G of odd order, where another
commutativity ratio Pr(G) satisfies Pr(G) ≥ 11/75.

1. Introduction

Throughout, let G be a finite group and let Pr(G) be the probability that two elements
of G, chosen at random with replacement, commute with each other. Since Pr(G) = 1
if and only if G is abelian, Pr(G) may be regarded as a commutativity ratio for groups.

It is well known that Pr(G) = k(G)
|G| , where G has k(G) conjugacy classes. In 2011, Das

and Nath [3] found all possible values of Pr(G) where |G| is odd and Pr(G) ≥ 11
75 . They

also found the structures for G′, G′ ∩Z(G) and G/Z(G) corresponding to each of these
values of Pr(G).

We define f(G) to be

1

|G|

k(G)∑

i=1

di

where di, 1 ≤ i ≤ k(G), are the degrees of the irreducible complex representations
of G. Since f(G) = 1 if and only if G is abelian, f(G) may also be regarded as a
commutativity ratio for finite groups.

The commuting probability Pr(G) has been extensively studied [5, 9, 12, 10, 13, 11, 4]
and the ratio f(G) has also been considered by several authors [8, 7, 1, 13].

One’s intuitive feeling is that if the values of one commutativity ratio Pr(G) for a
given set of groups are ‘large’, then the values of another commutativity ratio f(G)
should be ‘large’ also. For the groups G of odd order with Pr(G) ≥ 11

75 , we find the

corresponding values of f(G) and show that if Pr(G) ≥ 11
75 , then f(G) >

15
75 .

In general
(f(G))2 ≤ Pr(G) ≤ f(G)

with equality if and only G is abelian [2].
We note that, for non-abelian G, saying Pr(G) and f(G) are ‘large’ is another way

of saying that G is close to being abelian.
Finally, it is clear that Pr(G) = 1 = f(G) = |G′| = |G/Z(G)| if and only if G is

abelian and this corresponds to row 1 of the table in [3]. So, from now on we may
assume that G is non-abelian of odd order.

We employ Philip Hall’s very useful concept of isoclinism [6], which is not specif-
ically mentioned in [3]. Two groups H and K are said to be isoclinic if there exist
isomorphisms θ : H/Z(H) → K/Z(K) and φ : H ′ → K ′ such that the isomorphism φ is
induced by the isomorphism θ. Isoclinism is an equivalence relation on finite groups and
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18 HEFFERNAN AND MACHALE

the isoclinism classes are called families. Each family contains a stem group G, with
the property that G′ ⊇ Z(G). Thus, for a stem group G we have G′ ∩ Z(G) = Z(G)
and |G| = |Z(G)||G/Z(G)| = |G′ ∩ Z(G)||G/Z(G)| and these values of the orders of
stem groups can be read off from the following table taken from [3]:

Row Pr(G) G′ G′ ∩ Z(G) G/Z(G) f(G)

1 1 {1} {1} {1} 1

2 1
3

(
1 + 2

32s

)
C3 C3 (C3 × C3)

s 32s+2
32s+1

3 1
5

(
1 + 4

52s

)
C5 C5 (C5 × C5)

s 52s+4
52s+1

4 5
21 C7 {1} C7 ⋊ C3

3
7

5 55
343 C7 C7 C7 × C7

13
49

6 17
81 C9 or C3 × C3 C3 (C3 × C3)⋊ C3

11
27

6A 17
81 C3 × C3 C3 × C3 C3 × C3 × C3

11
27

7 121
729 C3 × C3 C3 × C3 C3 × C3 × C3 × C3

25
81

8 7
39 C13 {1} C13 ⋊ C3

5
13

9 3
19 C19 {1} C19 ⋊ C3

7
19

10 29
189 C21 C3 C3 × (C7 ⋊ C3)

23
63

11 11
75 C5 × C5 {1} (C5 × C5)⋊ C3

9
25

We aim to justify the values of f(G) appearing in the final column of this augmented
table. Both Pr(G) and f(G) are isoclinic invariants [10, 2], so we may confine our
attention in general to the case where G is a stem group.

2. Values of f(G)

Consider the unique non-abelian group Gpq of order pq, where p < q are odd primes
and p divides q − 1.

It is easy to see that Z(Gpq) is trivial and that |Gpq : G′
pq| = p, since the Sylow

q-subgroup is normal with abelian factor group. Furthermore, each representation of
Gpq has degree 1 or p, since the Sylow q-subgroup is normal and abelian.

Routine calculations show that Gpq has p+ (q − 1)/p conjugacy classes so that

Pr(Gpq) =
p2 + q − 1

p2q
.

The degree equation

|G| =

k(G)∑

i=1

d2i

of Gpq is now given by

|Gpq| = p+

[
q − 1

p

]
p2

so

f(Gpq) =
p+ [(q − 1)/p] p

pq
=
p+ q − 1

pq
.

We are now in a position to fill in the values of f(G) for several rows of the table.

Row 4. Pr(G) = 5
21 ; a stem group G has order 21 = 3 · 7, so f(G) = 7+3−1

7·3 = 9
21 = 3

7 .

Row 8. Pr(G) = 7
39 ; a stem group G has order 39 = 3 ·13, so f(G) = 3+13−1

3·13 = 15
39 = 5

13 .

Row 9. Pr(G) = 3
19 ; a stem group G has order 57 = 3 · 19, so f(G) = 3+19−1

3·19 = 7
19 .
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Row 11. Pr(G) = 11
75 ; a stem group has order |Z(G)||G/Z(G)| = 75 and is the unique

non-abelian group of this order. Since the Sylow 5-subgroup is abelian, normal and of
index 3, each di = 1 or 3 for all i. Thus G has eleven conjugacy classes, so the degree
equation can only be

75 = 1 + 1 + 1 + 8 · 32.

Thus, f(G) = 3+8·3
75 = 27

75 = 9
25 .

Row 10. Pr(G) = 29
189 ; a stem group G has order 189, has 29 conjugacy classes and

|G : G′| = 189
21 = 9. The degree equation can only be

189 = 9 · 1 + 20 · 32.

So, f(G) = 9+20·3
189 = 23

63 .

Row 6. Pr(G) = 17
81 ; a stem group G has order 81 and 17 conjugacy classes. We have

|G : G′| = 9, so the only possible degree equation is

81 = 9 · 12 + 8 · 32.

Thus f(G) = 9+8·3
81 = 11

27 .

Row 6A. Pr(G) = 17
81 = 51

243 ; a stem group has order 27 · 9 = 243 and 51 conjugacy
classes. |G′| = 9, so |G : G′| = 27 and there are 24 other conjugacy classes. The only
possible degree equation is

243 = 27 · 12 + 24 · 32,

so f(G) = 27+24·3
243 = 11

27 .
Note that rows 6 and 6A are an example of different families which have the same

Pr(G) and f(G) values.

Row 5. Pr(G) = 55
343 ; a stem group G has order 73 = 343 and 55 conjugacy classes.

|G′| = 7, so |G : G′| = 49 and there are 6 other classes. Thus the only possible degree
equation is

343 = 49 · 12 + 6 · 72

and f(G) = 49+6·7
343 = 13

49 .

Row 7. Pr(G) = 121
729 ; a stem group G has order 32 ·34 = 729. |G′| = 9 and |G : G′| = 81.

G has 40 other classes.
Now, 81+40 ·9 < 729, so we must consider the possibility that G has representations

of degrees 3 and 9. Thus the degree equation is

729 = 81 + a · 32 + b · 34

for some non-negative integers a and b. We get 9a + 81b = 648 and a + b = 40. This
gives a = 36 and b = 4. So, the degree equation is

729 = 81 + 36 · 32 + 4 · 34.

Thus

f(G) =
81 + 36 · 3 + 4 · 9

729
=

25

81
=

(
5

9

)2

.

Now all that remains is to examine the extra-special 3-group and 5-group cases.
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Row 2. Pr(G) =
(
1
3

) (
1 + 2

3s

)
, s ≥ 1. Here |G′| = 3, |G′ ∩ Z(G)| = |Z(G)| = 3 and

|G/Z(G)| = 32s. So, a stem group has order 32s+1. Now, |G : G′| = 32s+1

3 = 32s and

Pr(G) = 32s
(
1 + 2/32s

32s+1

)
=

32s + 2

32s+1
.

So G has 32s +2 classes, so we have two extra classes to consider. The degree equation
can only be

32s+1 = 32s + (3s)2 + (3s)2 .

So

f(G) =
3s + 2

3s+1

after simplification.

Row 3. Pr(G) = 1
5 + 4

52s+1 . In like manner to the above, we find

f(G) =
5s + 4

5s+1
.
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A reflection property in Minkowski planes

MOSTAFA GHANDEHARI AND HORST MARTINI

Abstract. With the reflection property investigated here we mean a generalization
of the following task, also called Heron’s problem: Minimize the length of a path
joining two points on one side of a line in the Euclidean plane such that this path
meets also this line. We present an extension of this reflection property to (normed or)
Minkowski planes and use this generalization to discuss also corresponding reflection
properties of Minkowskian conics.

1. Introduction

The concept of Minkowski distance defined by means of a convex body centered
at the origin was developed by H. Minkowski [21], yielding the notion of Minkowski
spaces; these are simply finite dimensional real Banach spaces with the planar sub-
case of Minkowski planes. The geometry of such spaces and planes is usually called
Minkowski geometry, see the monograph [31]. The articles [3] by Busemann, [26] by
Petty, the surveys [19] and [18], Chapter 6 from [2] and Chapter 4 from [32] as well as
the whole monograph [31] contain useful background material reflecting main directions
of Minkowski geometry and also those parts of classical convexity which are needed for
it.

In this paper we will deal with the extension of Heron’s problem to Minkowski planes
and conic sections there. In the Euclidean plane, Heron’s problem asks for minimizing
the length of a path that joins two points on one side of a line and should meet also
this line. Using Fermat’s principle of least time and the fact that in a homogeneous
medium the time travelled is proportional to the distance travelled one obtains the re-
flection principle as follows: Consider two points u, v lying in one of the open halfplanes
determined by a line L in the Euclidean plane. A point w on L such that the Euclidean
sum of distances ‖u− w‖e + ‖v − w‖e is minimum has the property that the reflection
of a light ray, say from u to w, will pass through v. The angle of incidence is equal to
the angle of reflection. Our main objective is it to extend this reflection property to
normed planes and to apply it to corresponding conics.

A convex body in the Euclidean plane is a compact, convex set having non-empty
interior. Any convex body E centered at the origin can be taken to define aMinkowskian
distance from x to y by

‖x− y‖ =
‖x− y‖e

r
.

Here ‖x− y‖e is the Euclidean distance from x to y, and r is the value of the Euclidean
radial function of E in the direction of the vector y−x. (The Euclidean radial function
is the function on R

2 whose value at each oint z depends only on the distance of z and
the origin o.) We will call the standard plane equipped with this new metric a (normed
or) Minkowski plane, having E as unit circle.

2020 Mathematics Subject Classification. 52A21, 52A10, 46B20.
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2. Preliminaries

Assuming that the unit circle E of a Minkowski plane is smooth and strictly convex,
we give in the next section an extension of the reflection principle, and in Section 4
we will discuss the reflection property of conics in Minkowski planes. Note that E is
called smooth if through any boundary point of E a unique supporting line passes; and
it is called strictly convex if the boundary of E contains no line segments. Consider
a Minkowski plane with unit circle E. An E-ellipse is the locus of all points whose
sum of Minkowskian distances from two fixed points is constant. An E-hyperbola is
the locus of all points whose difference of Minkowskian distances from two fixed points
is constant, and an E-parabola is the locus of all points which are equidistant from a
given point and a given line. Both E-ellipses and E-parabolas bound convex regions.
Minkowskian analogues of the reflection properties for an ellipse and a hyperbola and
the focal property for a parabola are given in Section 4. We refer also to [12], [16], and
[14] for various results and properties of Minkowskian analogues of conics.

The following is needed in Section 4. Given a line L and a point u /∈ L, for v ∈ L
the direction v − u is called transversal to L provided ‖u − v‖ = min‖u − w‖ for all
w ∈ L. It is very easy to see that if a homothetic copy of the unit circle E centered
at u touches L at a point v, then u − v is transversal to L. (Note that homotheties
are transformations with a fixed point x sending each m 6= x to a point n such that
n− s is on the same line as m− s, but scaled by a real factor λ.) This natural type of
transversality is usually called Birkhoff orthogonality, see the related expository paper
[1].

We finish this preliminary part by proving a lemma needed in Section 4 and saying
that the sum of distances from m fixed points in a normed space is a convex function.

Lemma 2.1. Consider m points v1, v2, ..., vm in a normed space X. The function f

defined by f(x) =
m∑
i=1

‖x− vi‖ is convex.

Proof. The statement holds since the norm function is convex, and the sum of convex
functions is convex, too. �

We remark that the level sets of the function discussed here occur as so-called polyel-
lipses or multifocal ellipses and their higher-dimensional analogues, i.e., as respective
generalizations of ellipsoids having m foci (see [14]).

3. A reflection property

Our main objective in this section is to prove the following theorem giving the
Minkowskian analogue of Heron’s problem (see Figure 1, where the Euclidean subcase
is shown).

Theorem 3.1. Consider two points u, v lying in one of the open halfplanes determined
by a line L in a Minkowski plane with continuously differentiable boundary of the unit
circle E. A point p on L such that

‖u− p‖+ ‖v − p‖ = min
q∈L

{‖u− q‖+ ‖v − q‖}

has the following reflection property: Let a homothetic copy E′ of the unit circle E,
which is centered at the point p, intersect the line segments joining p to u and v in the
points u′ and v′, respectively. Let u′′ and v′′ be intersections of the tangent lines to E′

at u′ and v′ with L. Then

‖p− u′′‖e = ‖p− v′′‖e (and so ‖p− u′′‖ = ‖p− v′′‖) .
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p

u′v′

E′

u′′v′′
L

v

u

Figure 1. E-reflection property

We will use the following Lemma 3.2 (the proof of which is a nice exercise in calculus)
to prove Theorem 3.1.

Lemma 3.2. Let r = g(ϑ) describe a differentiable curve C in polar coordinates. Then
the x-intercept of the tangent line at a point (r, ϑ) is given by

x =
r2

r cosϑ+ r′ sinϑ
,

where

r′ =
dg

dϑ
.

Proof of Theorem 3.1. The function f(q) = ‖q − u‖ + ‖q − v‖, q ∈ L, is convex and
unbounded. Hence f has a minimum on at least one point p ∈ L. That is, there
exists p ∈ L with f(p) ≤ f(q) for all q ∈ L. Since the boundary of E is of class C1,
f(q) = ‖q − u‖ + ‖q − v‖ = F (E, q − u) + F (E, q − v) is of class C1. Therefore the
function f = f |L is of class C1, and the method of Lagrange multipliers can be applied.

p
L

v

u

ϑ1

ϑ2b

a

c

Figure 2. For the proof of Theorem 3.1

Using some trigonometry and the definitions of the Minkowski metric, Theorem 3.1
is equivalent to the following constraint optimization problem (see Figure 2):

Minimize F (ϑ1, ϑ2) =
a cscϑ1
r(ϑ1)

+
b cscϑ2
r(ϑ2)

, (1)
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subject to G(ϑ1, ϑ2) = a cotϑ1 − b cotϑ2 − c = 0 , (2)

with a, b, c as shown in Figure 2.
The Lagrangian is denoted by J and given by

J(ϑ1, ϑ2, λ) =
a cscϑ1
r(ϑ1)

+
b cscϑ2
r(ϑ2)

− λ (a cotϑ1 − b cotϑ2 − c) . (3)

Setting ∂J
∂ϑ1

, ∂J
∂ϑ2

, and ∂J
∂λ equal to zero, we obtain

∂J

∂ϑ1
=

−a cscϑ1 cotϑ1
r(ϑ1)

−
a cscϑ1r

′(ϑ1)

r2(ϑ1)
+ λa csc2ϑ1 = 0 , (4)

∂J

∂ϑ2
=

−b cscϑ2 cotϑ2
r(ϑ2)

−
b cscϑ2r

′(ϑ2)

r2(ϑ2)
− λb csc2ϑ2 = 0 , (5)

∂J

∂λ
= −a cotϑ1 + b cotϑ2 + c = 0 . (6)

Dividing equations (4) and (5) by a csc2ϑ1 and b csc2ϑ2, respectively, and using Lemma
3.2, we obtain

λ =
r(ϑ1) cosϑ1 + r′(ϑ1) sinϑ1

r2(ϑ1)
=

1

‖p− u′′‖e
, (7)

λ = −
r(ϑ2) cosϑ2 + r′(ϑ2) sinϑ2

r2(ϑ2)
=

1

‖p− v′′‖e
, (8)

where u′′ and v′′ are the x-intercepts of tangent lines to a copy of the unit circle centered
at p. Points of tangency are intersections of line segments joining p to u and v in the
points u′ and v′, with the unit circle. Hence ‖p − u′′‖e = ‖p − v′′‖e, and consequently
‖p− u′′‖ = ‖p− v′′‖. �

The reflection property for the Euclidean case is a special case of Theorem 3.1. If E
has a vertical axis of symmetry, then the angle of incidence will be equal to the angle
of reflection. In the next section we use the above reflection property to discuss the
reflection property of conics.

Hawkins [9] used variational techniques to find a generalization of Snell’s law of
refraction for media, where the speed of light depends only on the direction at each
point. He also used the method of Lagrange multipliers to generalize Snell’s law, taking
a constraint optimization problem similar to that in the proof of Theorem 3.1 into
consideration. Ghandehari and Golomb [8] have done similar work.

By methods from convex analysis, Heron’s problem was generalized in [22] where the
sum of distances to m given closed convex sets is studied. From the numerical point of
view, generalizations of Heron’s problem are investigated in [5]. An extension to Banach
spaces is presented in [23], and we also mention the paper [11] containing related results
for Hilbert spaces.

4. Conics

In this section we define conics in the Minkowski plane and analyze their reflection
properties. The excellent book by Hilbert and Cohn-Vossen has a good introduction to
conics in the Euclidean plane, and for Minkowskian conics we refer to [12] and [16].

Suppose E is a smooth, convex and compact body in the plane inducing a Minkowski
norm ‖ · ‖. If u and v are distinct points and L is a line, we say that a point p ∈ L has
the E-reflection property with respect to u, v, and L if ‖u − p‖ + ‖v − p‖ = min

z∈L
{‖u −

z‖+ ‖v − z‖}.
In the Euclidean plane, the line segments joining the two foci to a point on an ellipse

will make equal angles with the tangent line to the ellipse at the point of tangency. This
is called the reflection property of an ellipse. A short and elegant proof of the reflection
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property of an ellipse using derivatives is given in Schulz and Moore [28]. Recall that
we defined an E-ellipse in a Minkowski plane with unit circle E as the locus of all points
whose Minkowskian sum of distances from two fixed points is constant. We shall not
use the definition of an ellipse by using eccentricity here, but mention that Tamássy
and Bélteky [30] showed that if in a Minkowski plane the characterization of an ellipse
in terms of sums of distances coincides with that via eccentricity, then the plane is
Euclidean.

The following Theorem 4.2 concerns the Minkowskian analogue of the reflection prop-
erty of an E-ellipse. The proof is the same as in the Euclidean case. Before stating and
proving Theorem 4.2, we need the following lemma.

Lemma 4.1. The region bounded by an E-ellipse is convex.

Proof. Let D = {x ∈ R
2| ‖x − u‖ + ‖x − v‖ ≤ d}, where u and v are the foci and d

is the constant sum of distances of points of the E-ellipse from u and v. Let f(x) =
‖x− u‖+ ‖x− v‖. By Lemma 2.1 we have that if x ∈ D, y ∈ D, then, for 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λd+ (1− λ)d = d .

Hence D is convex. �

We note that the unit circle E is strictly convex if and only if E-ellipses are strictly
convex (see [12]).

Theorem 4.2. Let u and v be foci of an E-ellipse in a Minkowski plane with smooth
and strictly convex unit circle E. Let L be the tangent line to the E-ellipse at a point
p. Then p has the E-reflection property with respect to u, v, and L (see Figure 3 for the
Euclidean subcase).

u v

p
L

q

Figure 3. Reflection property of an E-ellipse

Proof. Since the E-ellipse is a convex curve, any point q ∈ L, q 6= p, lies outside of the
E-ellipse. Then ‖q − u‖ + ‖q − v‖ ≥ ‖p − u‖ + ‖p − v‖. Hence p has the E-reflection
property. �

In what follows, Theorem 4.3 deals with a property of a point p on the unit circle
such that ‖p − u‖ + ‖p − v‖ is a minimum for given points u, v in a Minkowski plane.
Theorem 4.4 is based on Theorem 4.3 and gives a property of the Fermat-Torricelli
point for three given points u, v, and w (i.e., of the unique point having minimal sum
of distances to u, v, and w). Theorem 4.5 is a generalization of Theorem 3.1 where,
given a point u and two lines L1 and L2, we find points p ∈ L1 and v ∈ L2 such that
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‖p−u‖+‖p−v‖ is minimum. We then use Theorem 4.5 to prove Theorem 4.7, which is
the focal property for an E-parabola. Theorem 4.8 gives the reflection property for an
E-hyperbola, and we finish the article with a conjecture referring to confocal ellipses.

Theorem 4.3. Consider two points u and v such that the line segment connecting u
and v lies outside of a homothetic copy of the strictly convex unit circle E. A point
p on the copy of E minimizes ‖u − p‖ + ‖v − p‖ if and only if p has the E-reflection
property with respect to u, v, and the line L tangent to the copy of E at p (see Figure
4).

u

v

p

E

Lp

q

w

Figure 4. p minimizes ‖p− u‖+ ‖p− v‖

Proof. We first prove that if p ∈ E such that ‖u−p‖+‖v−p‖ = min
z∈Lp

{‖u−z‖+‖v−z‖}

with Lp tangent to E at p, then ‖u − p‖ + ‖v − p‖ = min
q∈E

{‖u − q‖ + ‖v − q‖}. For

any q ∈ E, let w be the intersection of the line segment, connecting q and v outside
of E, with the tangent line Lp at p (see again Figure 4). Then ‖u − q‖ + ‖q − v‖ =
‖u− q‖+ ‖q − w‖+ ‖w − v‖, since Lp meets the line segment [q, v]. This follows from
the assumption on p formulated at the beginning of the proof. Further on, we have
‖u − q‖ + ‖q − w‖ + ‖w − v‖ ≥ ‖u − w‖ + ‖w − v‖ ≥ ‖u − p‖ + ‖v − p‖, where the
last inequality follows since w ∈ Lp and ‖p− u‖+ ‖v − p‖ = min

z∈Lp

{‖z − u‖+ ‖v − z‖}.

Hence, if p has the E-reflection property with respect to u, v, and the tangent line Lp

at p, then ‖u− p‖+ ‖v − p‖ = min
q∈E

{‖u− q‖+ ‖v − q‖}.

If ‖u− p‖+ ‖v − p‖ = min
q∈E

{‖u− q‖+ ‖v − q‖}, then ‖u− p‖+ ‖v − p‖ = min
z∈Lp

{‖u−

z‖ + ‖v − z‖} as follows: The E-ellipse, with foci u and v and the constant sum of
distances equal to the minimum, intersects E at only one point. If there are two points
of intersection, then for any x inside the line segment joining two points of intersection,
x is inside E since E is strictly convex. Then ‖u − x‖ + ‖v − x‖ ≤ ‖u − p‖ + ‖v − p‖
since E is strictly convex. Let y be some chosen point from the intersection of the line
segment joining x to v with E. Then ‖u−x‖+ ‖v−x‖ = ‖u−x‖+ ‖x− y‖+ ‖y− v‖ >
‖u− y‖+ ‖u− v‖ ≥ ‖u− p‖+ ‖v− p‖, a contradiction. Hence there is only one point p
of intersection. The tangent line to E at p is also tangent to the E-ellipse. By Theorem
4.2, p has the E-reflection property with respect to u, v, and the tangent line Lp. �

A problem related to the reflection property is the so-called Fermat-Torricelli prob-
lem. In its simplest form, it asks for a point in the Euclidean plane minimizing the sum
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of the distances to three given points. In the article [4] the Fermat-Torricelli problem
in Minkowski spaces is investigated, see also [20].

Theorem 4.4. Consider three points u, v, and w in a given Minkowski plane with
smooth and strictly convex unit circle E. Let p be the Fermat-Torricelli point, assuming
it exists and is different from u, v, or w. Let u′, v′ and w′ be the intersections of a copy
of E centered at p with the line segments joining p to u, v,, and w. Then the triangle
formed by drawing tangents to E at u′, v′, and w′ has p as its centroid.

Proof. Consider a copy of the unit circle E centered at w and passing through p. Since
‖u − p‖ + ‖v − p‖ is minimized as p varies on this copy of the unit circle, p has the
E-reflection property with respect to u, v, and the tangent line L1 to this copy of the
unit circle. We now consider another copy of the unit circle, centered at p and passing
through w. Let u′ and v′ be the intersection with line segments joining p to u and v,
respectively. Let L2 be a line tangent to a copy of the unit circle at w with L2‖L1.
By the E-reflection property (Theorem 3.1), the line segment passing through p and
parallel to L2 is bisected by the sides of the triangle formed by the tangents. Using the
same argument for u and v we see that the line segment passing through p and being
parallel to L2 is bisected by the sides of the triangle formed by tangents. Using the
same argument for u and v we see that the line segments passing through p and parallel
to the sides of the triangle formed by the tangents are bisected. It is an elementary but
interesting exercise to show that the point p has to be the centroid. �

The excellent book by Courant and Robbins [6] has a treatment of extremal distances
in the Euclidean plane. Similar results for Minkowski planes can be obtained. We will
use the following theorem to discuss the focal property of parabolas.

Theorem 4.5. Consider a point u and two lines L1 and L2 in a Minkowski plane with
smooth and strictly convex unit circle E. If ‖v− p‖+ ‖u− p‖ is a minimum for p ∈ L1

and v ∈ L2, then p has the E-reflection property with respect to u, v, and L1.

Proof. If p ∈ L1 and v ∈ L2 attain this minimum, then the minimum of ‖u−z‖+‖v−z‖
as z runs along L1 is attained at z = p.

Hence p has the E-reflection property with respect to u, v, and L1. �

For a parabola in the Euclidean plane, the path of reflection of a light ray starting
from the focus and going to the boundary is called its focal property. Theorem 4.7 below
gives an analogue of this focal property in the Minkowski plane. Before this, we show
that the region bounded by an E-parabola is convex.

Lemma 4.6. An E-parabola bounds a convex region.

Proof. Let L and u be the line and the point generating the E-parabola in the classical
way. Let D = {x|‖x − u‖ ≤ ρ(x,L)} where ρ(x,L) is the distance of x from L. If
x, y ∈ D and 0 ≤ λ ≤ 1, then ‖λx + (1 − λ)y − u‖ ≤ λ‖x − u‖ + (1 − λ)‖y − u‖ ≤
λρ(x,L) + (1− λ)ρ(y,L) = ρ(λx+ (1− λ)y,L). The last equality follows from the fact
that transversal directions to L are all parallel. �

Laatsch [17] gave an interesting treatment of pyramidal sections in taxicab geometry
which is a special case of Minkowski geometry, with unit circle E a square centered at
the origin and diagonals on the x- and y-axes. For other references on conics in Taxicab
geometry see the articles by Iny [13], Moser and Kramer [24], Reynolds [27], and Sowell
[29]. For a computerized approach to conics with Taxicab metric we refer to Natsoulas
[25].

The following theorem gives the focal property of a Minkowskian parabola, which is
generated as locus of all points equidistant from a given point (focus) and a given line
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(directrix). For a short geometric proof of the focal property of the parabola in the
Euclidean plane, see Williams [33].

Theorem 4.7. (Focal property). For an E-parabola with focus u and directrix L, let
L′ be any line parallel to L such that u is between L and L′. For any point p on the E-
parabola, choose v ∈ L′ such that p−v is transversal to L′. Then p has the E-reflection
property with respect to u, v, and the tangent line to the E-parabola at p.

Proof. Let L′′ be the tangent line to the E-parabola at p. For q ∈ L′′, choose w ∈ L′

such that q−w is transversal to L′. Let q′ be the intersection of the line segment joining
q to u with the E-parabola. Choose w′ on L′ such that q′ − w′ is transversal to L′.
Then

‖u− q‖+ ‖q − v‖ ≥ ‖u− q‖+ ‖q − w‖ ≥ ‖u− q′‖+ ‖q′ − w‖ ≥
‖u− q′‖+ ‖q′ − w′‖ = ‖u− p‖+ ‖p− v‖ ,

where the first inequality follows from the triangle inequality for the points q′, q, w, and
the second inequality follows since q′w′ is transversal to L′. The last equality holds since
the points p and q′ both lie on the E-parabola. Thus, p has the E-reflection property
with respect to u, v, and L′′. �

The following theorem gives the reflection property of an E-hyperbola. Chapter 3
of the book by Kazarinoff [15] contains a good treatment of reflection properties in the
Euclidean plane. In particular, a proof of the reflection property for a hyperbola is
given there. The book by Courant and Robbins [6] contains a treatment of extremal
distances in the Euclidean plane and a nice discussion of Heron’s reflection principle
and the reflection property of conics.

Theorem 4.8. Let u and v be two foci of an E-hyperbola in a Minkowski plane with
smooth and strictly convex unit circle E. Let p be a point on a branch of the hyperbola
containing the focus v. Assume v′ is the reflection of v through p. Consider a line L
through p such that p has the E-reflection property with respect to u, v′, and L. Then
L is tangent to the hyperbola at p (see Figure 5 for the Euclidean subcase).

vu

p

L

v′

Figure 5. The tangent property of the hyperbola

Proof. Suppose the line L intersects the hyperbola in another point q. Then

‖u− q‖+ ‖q − v′‖ = ‖u− q‖ − ‖v − q‖+ ‖v − q‖+ ‖q − v′‖
= ‖p− u‖ − ‖p− v‖+ ‖v − q‖+ ‖q − v′‖
> ‖p− u‖ − ‖p− v‖+ 2‖p− v‖
= ‖p− u‖+ ‖p− v‖ ,
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where we have used the definition of an E-hyperbola and the triangle inequality for the
triangle vqv′. Thus

‖u− q‖+ ‖q − v′‖ > ‖p− u‖+ ‖p− v‖ ,

giving a contradiction to the fact that p has the E-reflection property with respect to
u, v′ and L. Hence L is tangent to the hyperbola. �

We conclude the paper by a conjecture which would generalize the following result on
Euclidean reflections for confocal ellipses (see Figure 6): Consider two confocal ellipses
with foci f1 and f2. Assume that p is a point on the larger ellipse. Draw the tangent
line L to the larger ellipse at p. From p draw two tangents to the smaller ellipse, with a
and b as points of tangency, respectively. Then ap and bp have the reflection property
with respect to L. That is, in Figure 6 the angles α and β are equal.

α
β

f1 f2

p

L

a

b

Figure 6. Confocal ellipses

Conjecture. Consider an analogous construction of confocal ellipses in a Minkowski
plane with smooth unit circle. Then the Minkowskian reflection property holds between
ap, bp, and L.
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[16] Á. Kurusa: Conics in Minkowski geometries. Aequationes Math. 92 (2018), 949-961.
[17] R. Laatsch: Pyramidal sections in taxicab geometry. Math. Mag. 55 (1982), no. 4, 205-212.
[18] H. Martini, K. J. Swanepoel: The geometry of Minkowski spaces - a survey, Part II. Expositiones

Math. 22 (2004), 93-144.
[19] H. Martini, K. J. Swanepoel, G. Weiss: The geometry of Minkowski spaces - a survey, Part I.

Expositiones Math. 19 (2001), no. 2, 97-142.
[20] H. Martini, K. J. Swanepoel, G. Weiss: The Fermat-Torricelli problem in normed planes and

spaces. J. Optim. Theory Appl. 115 (2002), 283-314.
[21] H. Minkowski: Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs.
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Abstract. The concept of dimension is ubiquitous in Mathematics. In this survey
we discuss the interrelations between dimension and injectivity in the categorical
sense.

1. Introduction

An invariant for an object enables us to distinguish it from a like one up to a suitable
notion of isomorphism; ‘dimension’ is one of the most common invariants. Maybe
the best known dimension is the cardinality of a basis of a vector space; which is
even a complete invariant in the sense that two vector spaces (over the same field) are
isomorphic if and only if they have the same dimension. In the argument that the
cardinality of any two bases of a given vector space agree with each other (so that its
‘dimension’ is well defined) the fact that every basis of a subspace can be extended to
a basis of a larger space plays an important role. This is tantamount to the statement
that a linear mapping from a subspace of a vector space can always be extended to a
linear mapping on the larger space; diagrammatically

E
µ

//

f

��

F

f̃
��

G

(1.1)

where µ is the ‘embedding’ (an injective linear mapping) of E into F , f is the given

linear mapping into a vector space G and f̃ denotes the extension of f to F . In the
context of modules over a (commutative, unital) ring R this is quickly seen to fail in
general: given the canonical embedding µ : 2Z → Z, the Z-linear map f : 2n 7→ n from

2Z into Z cannot be extended to the larger module Z as, otherwise, the extension f̃

would have to satisfy 1 = f(2) = f̃(2) = 2f̃(1) which is impossible as f̃(1) ∈ Z. The
expert already notices at this stage the reason for this is that the Z-module Z is not
‘injective’; equivalently, the ring Z is not ‘semisimple’.

The property of an object I in a category to ensure the ‘extension’ of a morphism
from a ‘subobject’ E of an object F to F is generally called ‘injectivity’; and is used in
module categories to define a cohomological dimension which is not tied to the existence
of a basis. In this survey article, we will review the interaction between injectivity
and dimension in a wider setting of not necessarily abelian categories with a view on
categories arising in functional analysis.
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The fundamental ingredients in a category are the morphisms, the ‘arrows’ between
objects. They determine the concept of ‘isomorphism’ in the category, and similarly
important is the choice of ‘embeddings’ some of which we have observed above. Typical
categories we are interested in are the following ones.

Category Objects Morphisms/Arrows

VecC complex vector spaces linear maps

ModR modules over a ring R R-module maps

Nor∞ (complex) normed spaces bounded linear maps

Nor1 normed spaces contractive linear maps

Ban∞ Banach spaces bounded linear maps

Ban1 Banach spaces contractive linear maps

Top topological spaces continuous maps

Note, however, that not all objects in a category have to be sets with some additional
structure and even if they are, the morphisms need not be mappings. For instance, we
could consider homotopy classes of continuous mappings between topological spaces as
the morphisms. In functor categories, such as categories of sheaves, e.g., the morphisms
are typically given by natural transformations.

In a category A we will denote by obj(A) the class of objects of A and, for any two
E,F ∈ obj(A), by Mor(E,F ) the set of all morphisms between E and F . In case we
need to specify the category explicitly, we write MorA(E,F ). Let us recall some basic
terminology; for a comprehensive discussion see, e.g., [1].

A morphism f ∈ Mor(E,F ) is called a monomorphism if for any two morphisms
g, h ∈ Mor(F,G) the identity fg = fh implies that g = h, and it is called an epimor-
phism if for any two morphisms g, h ∈ Mor(G,E) the identity gf = hf implies that
g = h. In a concrete category, that is, the objects have an underlying set structure
and the morphisms are set mappings (with some additional properties), every injective
morphism is a monomorphism and every surjective morphism is an epimorphism how-
ever the reverse implications fail in general. The morphism f ∈ Mor(E,F ) is called an
isomorphism if there is a morphism f̄ ∈ Mor(F,E) such that f̄f = idE and ff̄ = idF ,
where id stands for the identity morphism of an object. An isomorphism is always a
monomorphism and an epimorphism but the converse often fails; for example, in Nor∞.

The concept of a ‘subobject’ can be replaced by specifying a class M of monomor-
phisms which one usually assumes to be closed under composition and contains all
isomorphisms in the category. For E,F ∈ obj(A) we will write

M(E,F ) = {µ ∈ MorA(E,F ) | µ ∈ M}

for the set of all morphisms between E and F that belong to the class M. With these
preparations we now introduce the main idea.

2. Injective Objects

An object I ∈ obj(A) is called M-injective (for a specified class M of monomorphisms
in the category A) if, whenever E,F ∈ obj(A) and µ ∈ M(E,F ) are given, every

f ∈ Mor(E, I) can be ‘extended’ to a morphism f̃ ∈ Mor(F, I), that is, f = f̃µ
as shown in the diagram (1.1) above (with I = G). Equivalently, if the mapping
µ∗ : Mor(F, I) → Mor(E, I), g 7→ gµ is surjective. (We shall take up this point of view
in more detail in Section 3 below.)



Injectivity 33

Example 2.1. In the category Nor1 we choose as M all linear isometries. An M-
injective object I therefore has the property that, whenever E is (linearly isometric
to) a subspace of a normed space F , every linear contraction from E into I can be
extended to a contraction from F to I. Let f : E → I be a bounded linear mapping

with ‖f‖ 6= 0. The contraction f1 = f
‖f‖ is extended to a contraction f̃1 : F → I.

With µ : E → F the embedding we have f̃1µ = f1, equivalently, ‖f‖f̃1µ = f . Hence∥∥‖f‖f̃1
∥∥ = ‖f‖ ‖f̃1‖ ≤ ‖f‖, in other words, f̃ := ‖f‖f̃1 is a ‘Hahn–Banach extension’

of f : it has the same norm as f . The Hahn–Banach theorem now states that C is an
M-injective object in Nor1.

Taking the same class M in the full subcategory Ban1, the M-injectives in Ban1

are the completions of the M-injectives in Nor1.

Sometimes it is possible to characterise all injective objects in a category. For exam-
ple, in Ban1, an object E is M-injective (where M is the class of all linear isometries)
if and only if E is isomorphic in Ban1 to a space C(X) of continuous complex-valued
functions on an extremally disconnected compact Hausdorff space X [11, Chapter 3,
Section 11, Theorem 6].

We say that the category A has enough M-injectives if, for every E ∈ obj(A), there
are an M-injective object I and a morphism µ ∈ M(E, I); in other words, every object
can be embedded into an M-injective object.

Example 2.2. The category Ban1 has enough M-injectives. The reason for this is
two-fold. Firstly, every Banach space can be isometrically embedded into a space of the
form

ℓ∞(Ω) = {ϕ : Ω → C | ϕ is bounded}.

This is a consequence of the Hahn–Banach theorem. Let E ∈ obj(Ban1) and let E′
1

denote its dual unit ball, that is, the set of all bounded linear functionals on E with
norm at most one. Then x 7→ x̂, E → ℓ∞(E′

1), where x̂(f) = f(x) for all f ∈ E′
1 is a

linear isometry. So we may take Ω = E′
1 and µ ∈ M(E, ℓ∞(Ω)) this isometry.

Secondly, Ban1 has arbitrary products, namely, for any family {Eω | ω ∈ Ω} of
Banach spaces, the space

∏

ω∈Ω

Eω =
{
ϕ ∈ X

ω∈Ω
Eω

∣∣ sup
ω∈Ω

‖ϕ(ω)‖ <∞
}
,

where Xω∈ΩEω denotes the cartesian product of the family {Eω | ω ∈ Ω}. Setting
Eω = C for each ω, we clearly have

∏
ω∈ΩEω = ℓ∞(Ω). Each Eω is M-injective

(Example 2.1) and it is a general fact that products of injectives are injective in a
category with products; thus ℓ∞(Ω) is M-injective.

Since every normed space can be isometrically embedded into a Banach space (its
completion), Nor1 has enough M-injectives as well.

The following terminology is useful in understanding the relations between injective
and non-injective objects.

Definition 2.3. (i) Let E,F ∈ obj(A). We say E is a retract of F if there exist
morphisms s ∈ Mor(E,F ) and r ∈ Mor(F,E) such that rs = idE . In this case we call
s a section and r a retraction.

(ii) An object E ∈ obj(A) is an absolute M-retract if every µ ∈ M(E,F ) for any
F ∈ obj(A) is a section.

Proposition 2.4. Every M-injective object is an absolute M-retract. Every retract of
an M-injective object is M-injective. If A has enough M-injectives then every absolute
M-retract is M-injective.
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Proof. Let I ∈ obj(A) be M-injective and let µ ∈ M(I, F ) for some F ∈ obj(A). Then,
for idI , there is r ∈ Mor(F, I) such that idI = rµ, so µ is a section. If E ∈ obj(A) and
s ∈ Mor(E, I), r ∈ Mor(I, E) satisfy rs = idE then, for every f ∈ Mor(G,E), G any

object in A, and µ ∈ M(G,H), H ∈ obj(A), there is f̃ ∈ Mor(H, I) with sf = f̃µ and

hence, f = idEf = rsf = rf̃µ so that E is M-injective as a retract of I.
Suppose A has enough M-injectives. Then every absolute M-retract is a retract of

an M-injective and hence is M-injective. �

The above result is effective in deciding which objects can be injective.

Example 2.5. Let F be a Banach space. Suppose E is a retract of F and s : E → F
and r : F → E are the section and retraction, respectively. Then (sr)2 = srsr = sr is
a projection of norm one from F onto E. In other words, E is a (topological) direct
summand of F . As Ban1 has enough M-injectives (Example 2.2), a Banach space
E is injective if and only if, whenever E is (isometrically isomorphic to) a subspace
of an injective Banach space F , there is a norm-one projection from F onto E, by
Proposition 2.4 above.

Let c0(Ω) be the closed subspace of ℓ∞(Ω) consisting of those bounded functions ϕ
such that, for every ε > 0, the set {ω ∈ Ω | |ϕ(ω)| ≥ ε} is finite. By a well-known result
of Phillips, see, e.g., [9, Theorem 5.6], there is no bounded projection from ℓ∞(Ω) onto
c0(Ω); as a result, c0(Ω) is not M-injective.

3. Additive Categories

So far the categories we considered had very few additional properties; in order to be
able to define a dimension efficiently we need some more structure.

Definition 3.1. A category A is called additive if it has a zero object (a unique object
0 such that, for every E ∈ obj(A), both MorA(E, 0) and MorA(0, E) are singleton
sets each); for all E,F ∈ obj(A) the morphism set MorA(E,F ) has the structure
of an (additive) abelian group (in which case it is usually denoted by HomA(E,F ))
such that composition of morphisms is bilinear; and for every pair of objects E,F ∈
obj(A) their biproduct exists (that is, there existsD ∈ obj(A) together with morphisms
µE ∈ MorA(E,D), πE ∈ MorA(D,E), µF ∈ MorA(F,D), πF ∈ MorA(D,F ) such that
πEµE = idE , πFµF = idF and µEπE + µFπF = idD. In this case, the unique biproduct
is usually denoted by D = E ⊕ F and called the direct sum of E and F .

More details on additive categories can be found, for example, in [12].

Example 3.2. Probably the most commonly known additive categories are module
categories. Let R be a unital ring. Let ModR denote the category whose objects are
the right R-modules and the morphisms are the R-module maps (also called R-linear
maps). Usually, MorModR

(E,F ) is denoted by HomR(E,F ), for E,F ∈ obj(ModR),
and it is evidently an abelian group. The zero object is the zero module. The direct
sum of E and F consists of all pairs (x, y) with x ∈ E and y ∈ F with coordinatewise
operations, the R-module maps µ and π are the inclusions and the projections into and
onto the respective coordinate. Hence, the direct sum E⊕F is isomorphic to the direct
product E×F (as is the case in any additive category, where the terminology coproduct
is used instead of direct sum).

The canonical choice for the class M is the one consisting of all monomorphisms
in ModR; these agree with the one-to-one R-module maps. The category ModR has
enough M-injectives [10, Proposition I.8.3].
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Example 3.3. Since the sum of two contractions is not a contraction, the category
Ban1 is not additive. However, the larger category Ban∞ is: the sum of two bounded
linear operators is bounded, the zero object is the zero Banach space, and the direct
sum of two Banach spaces exists. In this case, for E,F ∈ obj(Ban∞), MorBan∞(E,F )
is typically written as L(E,F ) and is another object in Ban∞ (a difference to ModR).
The monomorphisms in Ban∞ are the one-to-one bounded operators and the epimor-
phisms those with dense range. Thus, for f ∈ L(E,F ) to be an isomorphism in Ban∞

it is not sufficient to be both a monomorphism and an epimorphism.
For the class M one could take the same as in Ban1; but then not all isomorphisms

(bijective bounded operators) would be in M. So the canonical choice is the one-to-
one bounded operators with closed range. By Example 2.2, Ban∞ has enough M-
injectives. Let us point out a subtle difference in the notions of injectivity in Ban1 and
in Ban∞. A Banach space I which is injective in Ban1 is also injective in Ban∞: see
the normalisation argument in Example 2.1. But if I is injective in Ban∞ it need not
be injective in Ban1 as the extension may not preserve the norm.

There is a neat way to describe injectivity in a category by ‘comparison’ with the
category Ab of abelian groups with group homomorphisms; this is done via the concept
of an ‘exact functor’. To introduce this notion, we firstly look at module categories. A
sequence in ModR,

0 // E
µ

// F
π // G // 0 (3.1)

is called short exact if µ is a monomorphism (one-to-one), π is an epimorphism (onto)
and the image of µ agrees with the kernel of π. We introduce the contravariant Hom-
functor as follows. Let I ∈ obj(ModR) be arbitrary and define

HomR(−, I) : ModR −→ Ab

E 7−→ HomR(E, I)

HomR(E,G) ∋ f 7−→ f∗ = HomR(f, I)

(3.2)

given by f∗(g) = gf for g ∈ HomR(G, I). Then f∗ : HomR(G, I) → HomR(E, I) is a
group homomorphism, and ‘contravariant’ means that (f1f2)

∗ = f∗2 f
∗
1 for composable

morphisms f1 and f2.
It is easy to check that this functor turns the sequence (3.1) above into the sequence

0 // HomR(G, I)
π∗

// HomR(F, I)
µ∗

// HomR(E, I) (3.3)

where π∗ is one-to-one and the image of π∗ equals the kernel of µ∗ but µ∗ need not
be surjective. One says the functor HomR(−, I) is left exact. In the case that µ∗ is
surjective—so that (3.3) turns into an exact sequence in Ab—one calls the functor
exact.

With M still the class of all monomorphisms in ModR we find that I ∈ obj(ModR)
is M-injective if and only if the functor HomR(−, I) is exact. The idea behind using a
functor is that properties in the image category, such as Ab for example, may be easier
to understand.

Before moving on to more general categories, we wish to make the following point.
A morphism µ ∈ HomR(E,F ) is always ‘the first half’ of a short exact sequence as
in (3.1): we only have to take for G the quotient F/imµ, where imµ is the image of µ,
and π the canonical quotient mapping. This point of view will be stressed very soon
below.

Let A be an additive category and let f ∈ MorA(E,F ) for some E,F ∈ obj(A).

Definition 3.4. A morphism i : K → E is a kernel of f if fi = 0 and for each
D ∈ obj(A) and g ∈ MorA(D,E) with fg = 0 there is a unique h ∈ MorA(D,K)
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making the diagram below commutative

D

g

��

0

��

h

~~
K

0

66
i // E

f
// F

(3.4)

Any kernel is a monomorphism and is, up to isomorphism, unique. Thus we shall write
i = ker f .

Definition 3.5. A morphism p : F → C is a cokernel of f if pf = 0 and for each
D ∈ obj(A) and g ∈ MorA(F,D) with gf = 0 there is a unique h ∈ MorA(C,D)
making the diagram below commutative

E

0

((

0
&&

f
// F p

//

g

��

C

h
��

D

(3.5)

Any cokernel is an epimorphism and is, up to isomorphism, unique. Thus we shall write
p = coker f .

Example 3.6. Let E,F be Banach spaces and let f ∈ L(E,F ) be a bounded linear
operator. A kernel of f is the isometric embedding of ker f = {x ∈ E | f(x) = 0}
into E. A cokernel of f is the open quotient mapping F 7→ F/im f , where im f stands
for the closure of the subspace im f = {f(x) | x ∈ E}.

Since the composition of a kernel with an isomorphism is a kernel, a monomorphism
in Ban∞ is a kernel if and only if it has closed image (by the Open Mapping Theorem).
Likewise, an epimorphism is a cokernel if and only if it is surjective.

Let

ℓ1 =
{
(ξn)n∈N

∣∣
∞∑

n=1

|ξn| <∞
}

be the space of all absolutely summable complex sequences with its canonical norm
and let c0 = c0(N). Then the embedding ℓ1 →֒ c0 is both a monomorphism and an
epimorphism but neither a kernel, nor a cokernel, nor an isomorphism.

Good sources of information on categories of Banach spaces are, e.g., [6, Chapter IV]
and [7].

It turns out that the correct generalisation of short exact sequences in general additive
categories is the concept of ‘kernel–cokernel pairs’.

Definition 3.7. In an additive category A, a kernel–cokernel pair (µ, π) consists of
two composable morphisms in A such that µ = kerπ and π = cokerµ, depicted as

E1
// µ // E2

π // // E3 (3.6)

where Ei ∈ obj(A). A monomorphism arising in such a pair is called admissible and is
denoted as

E // //F

and an epimorphism arising in such a pair is called admissible and is denoted as

E // //F
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Evidently this is a generalisation of (3.1) in ModR. The categories that resemble
module categories most are the abelian categories which are now discussed in the next
section.

4. Abelian vs. Exact Categories

One of the main technical devices in Homological Algebra are the ‘diagram lemmas’
which allow for (often skillful) manipulations with morphisms. In order for these to be
possible one often requires the additive category A to satisfy two further conditions

(i) every morphism in A has both a kernel and a cokernel;
(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

In this case, A is an abelian category. These seemingly innocent looking additional
requirements have far-reaching consequences. For example, it follows that every mor-
phism which is both a monomorphism and an epimorphism is already an isomorphism.
In addition, every morphism f can be uniquely factorised as

E
f

//

π
  

F

G

µ

>> (4.1)

where π is an epimorphism and µ is a monomorphism. Clearly, ModR is an abelian
category and, in fact, every abelian category can, in some sense, be ‘embedded’ into
a module category (the Freyd–Mitchell embedding theorem [14, Section VI.7]). The
short exact sequences can then equivalently be expressed by (3.6).

Alas, the categories in functional analysis such as Ban∞ are typically not abelian,
see Example 3.6. Among the many generalisations of abelian categories the one that
seems to work best for us is the concept of an exact category in the sense of Quillen;
see [5] and [6].

Definition 4.1. An exact structure on an additive category A is a class of kernel–
cokernel pairs, closed under isomorphisms, satisfying the following axioms.

[E0 ] ∀ E ∈ A : idE is an admissible monomorphism;
[E0op ] ∀ E ∈ A : idE is an admissible epimorphism;
[E1 ] the class M of admissible monomorphisms is closed under composition;

[E1op ] the class P of admissible epimorphisms is closed under composition;
[E2 ] the push-out of an admissible monomorphism along an arbitrary morphism

exists and yields an admissible monomorphism;
[E2op ] the pull-back of an admissible epimorphism along an arbitrary morphism exists

and yields an admissible epimorphism.

Together with an exact structure, A is called an exact category. We will also use the
notation E = (M,P) to denote an exact structure.

It is not a coincidence that we chose the symbol M above; this will become clear in
the next section. An easy exercise shows that an abelian category equipped with the
exact structure given by all monomorphisms and all epimorphisms is an exact category.
On the other hand, Ban∞ is a non-abelian category which is an exact category when
endowed with the structure Emax of all kernel–cokernel pairs, see [6, Theorem 2.3.3].

We can now make contact with the notion of retract introduced in Section 2, Defini-
tion 2.3.
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Definition 4.2. A kernel–cokernel pair in an exact category A,

E // µ // F
π // // G

is split if there exist morphisms ν ∈ M(F,E) and ι ∈ P(G,F ) that make F a direct
sum of E and G (where P(G,F ) = {ρ ∈ MorA(G,F ) | ρ ∈ P}).

The following result is the analogue of the ‘Splitting Lemma’ in module theory.

Proposition 4.3. Let A be an exact category. The following are equivalent for a

kernel-cokernel pair E // µ // F
π // // G in (M,P):

(a) The kernel–cokernel pair is split;
(b) E is a retract of F with section µ;
(c) G is a retract of F with retraction π.

Proof. By definition, (a) implies both (b) and (c). Assume (b) and let ν ∈ HomA(F,E)
be such that νµ = idE . Then (idF − µν)µ = 0 so by the property of π = cokerµ there
is ι ∈ HomA(G,F ) such that idF − µν = ιπ and hence, idF = µν + ιπ. Moreover,

πιπ = π(idF − µν) = π − πµν = π

so that πι = idG follows as π is an epimorphism.
The implication (c) ⇒ (a) is proved in a similar way. �

In analogy with module theory we introduce the following concept.

Definition 4.4. An object F ∈ obj(A) is called M-semisimple if all kernel–cokernel

pairs of the form E // µ // F
π // // G in (M,P) split.

Corollary 4.5. The following are equivalent:

(a) Every object in A is M-injective;
(b) Every kernel–cokernel pair in (M,P) is split;
(c) Every object in A is M-semisimple.

Proof. This follows immediately from the definitions, Proposition 4.3 and Proposi-
tion 2.4. �

Example 4.6. Let R be a unital ring and let A = ModR. Let M be the class of all
monomorphisms in A. Then M-injectivity is the usual injectivity considered in module
theory, and the statement in Corollary 4.5 above is well known. In addition, see, e.g.,
[15, Theorem 4.40], every right R-module is projective; every right R-module is a direct
sum of simple submodules; and R is a finite direct product of matrix rings over division
rings (the Artin–Wedderburn theorem). In this situation, R is termed semisimple.

5. Dimension

In this section we come back to the topic of dimension. Let us approach it from the
point of view of splitting the short exact sequence (3.1):

0 // E
µ

// F
π // G // 0 (5.1)

If G is a free module then π automatically is a retraction; this continues to hold if G
is merely projective (a direct summand of a free module). On the other hand, if E
is injective, then it is an absolute retract (Proposition 2.4) so µ is a section and the
sequence splits too. We have a left–right symmetric situation here and it may thus not
come as a surprise that, in module theory, the ‘global dimension’ of the ring R can
be defined equivalently using projective or using injective modules; see, e.g., [15]. In
other categories, for example sheaves of modules over ringed spaces or their analogues
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in C*-theory, see [3], there are enough injective but not enough projective objects. This
is why it may be desirable to focus on injectivity.

The starting point is: if an object is injective, its dimension should be 0. Now, and
from now on, suppose we have enough injectives. Then any object can be embedded
into an injective one and if it is a retract, then it is itself injective (Proposition 2.4)
so the dimension is still 0. But if it is not a retract then its dimension should be at
least 1. In this case it makes sense to consider the ‘quotient’ of the bigger injective
object by the smaller non-injective one: if this turns out to be injective, one would say
the dimension is equal to 1; otherwise at least 2. And so on . . .

Let us formalise this process. Suppose A is an exact category and M the class of
admissible monomorphisms (kernels of cokernels), cf. Definition 3.7. Take E ∈ obj(A).
As A has enough M-injectives, there are an M-injective I0 and µ ∈ M(E, I0). If µ is
a section we are done. Otherwise let π0 = cokerµ with codomain C1. If C1 is injective
we stop. Otherwise there are an M-injective I1 and µ0 ∈ M(C1, I1). If µ0 is a section
we stop; and so on . . .

E // µ
// I0

π0

%% %%
C1 // µ0

// I1

π1

%% %%
C2 // µ1

// I2

%% %%

(5.2)

Why have we written this long sequence as a staircase? Note that (µ, π0), (µ0, π1),
. . . , in general, (µk−1, πk) are kernel–cokernel pairs while the morphisms µkπk between
Ik−1 and Ik are compositions of a morphism in P followed by a morphism in M. This
means the sequence is ‘exact’ at the Ik whereas the morphisms between the M-injective
objects are of a special form.

Let’s have a look again at the canonical factorisation of a morphism in an abelian
category as displayed in (4.1). This is an essential ingredient in the workings of Homo-
logical Algebra; however, not every morphism in an exact category can be factorised in
such a way. In fact, if every morphism can be factorised as in (4.1) in an exact cate-
gory, then the category is already abelian. So we have to specialise to those morphisms,
which is done below. In addition, we have to define ‘long exact sequences’.

Definition 5.1. Let A be an exact category with exact structure E = (M,P). The
morphism f ∈ HomA(E,F ), E,F ∈ obj(A) is called admissible if it can be factorised
as

E
f

//

π     

F

G
>> µ

>>

for some admissible monomorphism µ and some admissible epimorphism π in A.
A sequence of admissible morphisms in A,

E1
f1 //

π1 $$ $$

E2
f2 //

π2 $$ $$

E3

G1

:: µ1

::

G2

:: µ2

::
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is said to be exact if the short sequence G1
// µ1 // E2

π2 // // G2 is exact (that is,

(µ1, π2) ∈ (M,P)). An arbitrary sequence of admissible morphisms in A is exact if the
sequences given by any two consecutive morphisms are exact.

We can now reformulate the above ‘staircase’ (5.2) by ‘straightening it out’ as follows.

Definition 5.2. Let E ∈ obj(A) for an exact category A. An M-injective resolution
of E is a sequence of the form

E // // I0
d0 // I1

d1 // I2
d2 // . . . (5.3)

where all the morphisms dk are admissible, the sequence is exact (at all Ik) and all Ik

are M-injective. (Note that this in particular implies that the sequence is a complex,
that is, dkdk−1 = 0 for all k ∈ N.)

We are now in a position to define a dimension using injectivity.

Definition 5.3. Let E ∈ obj(A) for an exact category A. We say E has finite M-
injective dimension if there exists a finite M-injective resolution (5.3) such that dk−1

is a section for some k ∈ N. In this case we define

M- dim(E) = min{k ∈ N | dk−1 is a section} (5.4)

as the M-injective dimension of E. In case E does not have a finite M-injective
resolution we put M- dim(E) = ∞ and say that E has infinite M-injective dimension.

Let us return to the staircase (5.2) using the same notation and put dk−1 = µk−1πk−1

for all k ≥ 1 to obtain (5.3). Suppose dk−1 is a section with retraction ρk−1 in
HomA(I

k, Ik−1). From idIk−1 = ρk−1dk−1 = ρk−1µk−1πk−1 we obtain idGkπk−1 =
πk−1ρk−1µk−1πk−1 which implies that idGk = πk−1ρk−1µk−1 as πk−1 is an epimor-
phism. Hence µk−1 is a section and Gk is a retract of the M-injective object Ik, thus
M-injective by Proposition 2.4. Conversely, if Gk is M-injective, then µk−1 is a sec-
tion (as Gk is an absolute M-retract) and we can replace Ik by Gk. Therefore finite
M-injective dimension really determines the first k ≥ 0 such that a morphism in an
injective resolution is a cokernel just as intended in the explanation of the staircase.
(Note also that, by Proposition 4.3, µk−1 is a section if and only if πk is a retraction.)

It would, however, be tedious to work through all possible injective resolutions in
order to find the injective dimension of an object. This is where the Hom-functor
comes in.

In the sequel, A will always denote an exact category with exact structure (M,P)
and with enough injectives. Firstly we observe that every object E ∈ obj(A) has an
M-injective resolution; this is the construction in the staircase (5.2). Secondly, all such
resolutions are equivalent in the following sense.

Definition 5.4. A complex in A, denoted by (E•, d•), is a sequence

. . . // En−1 dn−1
// En dn // En+1 // . . . (5.5)

such that (En)n∈Z is a sequence of objects in A, (dn)n∈Z is a sequence of admissible
morphisms dn ∈ HomA(E

n, En+1) and dn+1dn = 0 for all n ∈ Z.
Let (E•, d•) and (F •, ∂•) be two complexes in A. A morphism from (E•, d•) to

(F •, ∂•) is a sequence of morphisms En → Fn, n ∈ Z making the diagram below
commutative

. . . // En−1 dn−1
//

��

En dn //

��

En+1 //

��

. . .

. . . // Fn−1 ∂n−1
// Fn ∂n

// Fn+1 // . . .

(5.6)
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Definition 5.5. Let ϕ, ψ : (E•, d•) → (F •, ∂•) be morphisms of complexes in A. Then
ϕ is homotopic to ψ, written as ϕ ≃ ψ, if there is a sequence (σn)n∈Z of morphisms
σn ∈ HomA(E

n, Fn−1) such that, for all n ∈ Z, we have

ϕn − ψn = ∂n−1σn + σn+1dn. (5.7)

This defines an equivalence relation on the class of morphisms of complexes.
The two complexes (E•, d•) and (F •, ∂•) are called homotopic if there exist mor-

phisms ϕ : (E•, d•) → (F •, ∂•) and ϕ̄ : (F •, ∂•) → (E•, d•) such that ϕ̄ϕ ≃ id(E•,d•) and
ϕϕ̄ ≃ id(F •,∂•).

To an M-injective resolution (5.3) one associates a complex (I•, d•), where E is
deleted from the sequence and all In = 0 for n < 0 (in particular, d−1 = 0). The
following is a standard result in Homological Algebra, see, e.g., [10, Proposition IV.4.5],
since the arguments used in abelian categories take over in exact categories, cf. [5] and
[16, Chapter 3].

Proposition 5.6. Any two M-injective resolutions of E ∈ obj(A) are homotopic.

In analogy to the contravariant Hom-functor (3.2) one has the covariant Hom-functor.
Let F ∈ obj(A) be arbitrary and define

HomA(F, –) : A −→ Ab

E 7−→ HomA(F,E)

HomA(G,E) ∋ f 7−→ f∗ = Hom(f, F )

(5.8)

given by f∗(g) = fg for g ∈ HomA(F,G). Then f∗ : HomA(F,G) → HomA(F,E) is
a group homomorphism, and ‘covariant’ means that (f1f2)

∗ = f∗1 f
∗
2 for composable

morphisms f1 and f2.
Apply this functor to the complex (I•, d•) to obtain a complex as below in Ab

0 // HomA(F, I
0)

d0
∗ // HomA(F, I

1)
d1
∗ // HomA(F, I

2) // . . . (5.9)

In general, this is no longer an exact sequence so one applies homology, that is, takes
the quotient group ker dk+1

∗ / im dk∗ which is possible since dk+1
∗ dk∗ = 0.

Definition 5.7. Let A be an exact category with enough injectives. Let F ∈ obj(A)
be fixed. Let E ∈ obj(A) and (I•, d•) be the complex associated to an M-injective
resolution (5.3) of E. Each ker dk+1

∗ / im dk∗ is called the k-th cohomology group and will
be denoted by Extk(F,E).

Remark 5.8. Either by definition or left exactness of HomA(F, –) we have Ext
0(F,E) ∼=

HomA(F,E) for all F and E.

Though it appears that the above definition depends on the choice of the injective
resolution, in fact, by Proposition 5.6, any two injective resolutions of E are homotopic
and this is preserved by the functor HomA(F, –). As a consequence, the homology is the
same. For details, see, e.g., [10, Section IV.3]. Moreover, for each ϕ ∈ HomA(E,E

′) one
can define a homomorphism ϕ∗ : Ext

k(F,E) → Extk(F,E′), k ∈ N and hence obtains
the k-th right derived functor of HomA(F, –). See [10, Section IV.5] for more details.

We finally state how these gadgets can help to determine the injective dimension.

5.9 Injective Dimension Theorem. Let A be an exact category with enough injec-
tives. Let n ∈ N. The following are equivalent for an object E ∈ obj(A):

(a) M- dim(E) ≤ n;
(b) Extm(F,E) = 0 for all m > n and all F ∈ obj(A);
(c) Extn+1(F,E) = 0 for all F ∈ obj(A);
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(d) Extn(–, E) : A → Ab is exact;
(e) there exists an M-injective resolution of E whose n-th cokernel is M-injective;
(f) for every M-injective resolution of E the n-th cokernel is M-injective.

A proof of this result for module categories and more general abelian categories can
be found in [15] and its extension to exact categories in [16].

6. Operator Modules

In [16], the above theory is applied to the category of operator modules over a C*-algebra
and, in more general form, to sheaves of operator modules over C*-ringed spaces in [3];
see also [13]. Throughout this section A will denote a unital C*-algebra.

Definition 6.1. A unital right A-module E which at the same time is an operator space
is a right operator A-module if it satisfies either of the following equivalent conditions:

(a) There exist a complete isometry Φ: E −→ B(H,K), for some Hilbert spaces H, K,
and a *-homomorphism π : A −→ B(H) such that Φ(x·a) = Φ(x)π(a) for all x ∈ E,
a ∈ A.

(b) The bilinear mapping E×A −→ E, (x, a) 7→ x ·a extends to a complete contraction
E ⊗h A −→ E.

(c) For each n ∈ N, Mn(E) is a right Banach Mn(A)-module in the canonical way.

Our general reference for operator modules is [4], where, for instance, the Haagerup
tensor product in the above definition, part (b) is treated in great detail. See also [16,
Appendix A] for an in-depth discussion of this type of module and comparisons to other
kinds of ‘operator space modules’. We will denote by OMod∞

A the category with objects
the right operator A-modules and morphisms the completely bounded A-module maps.
It is similar to the category Ban∞, in particular it is not abelian, but the morphisms
respect the so-called matricial structure of a C*-algebra, which has become important
in that area since the 1970s.

In OMod∞
A , a morphism T is a kernel iff it is a completely bounded isomorphism

onto its image, and it is a cokernel iff it is surjective and completely open. (Note that
there is no Open Mapping Theorem for operator spaces.)

Theorem 6.2 ([16], Theorem 4.40; see also [3]). The class (M,P) of all kernel–cokernel
pairs in OMod∞

A is an exact structure on OMod∞
A .

Consequently, and since OMod∞
A has enough injectives, by Wittstock’s Hahn–Banach

theorem [8, Theorem 4.1.5], we can apply the ideas developed above. One is particularly
interested in an invariant for the C*-algebra A, and hence defines a ‘global dimension’
in analogy to the concept from ring theory.

Definition 6.3. The global C*-dimension of a (unital) C*-algebra A is defined by

C*- dim(A) = sup{M- dim(E) | E ∈ OMod∞
A }.

Recall, from Example 4.6, that a unital ring R is semisimple (in the classical sense)
if and only if every module in ModR is injective; that is, has global dimension equal
to zero. These rings are described by the Artin–Wedderburn theorem. One might hope
that a similar class of C*-algebras could also be identified; however, this is not the case!

Example 6.4. The unital C*-algebra C has global C*-dimension greater than 0. This
follows immediately from the fact that c0, viewed as a C-module in a canonical way,
is an operator module and is completely isometrically embedded into ℓ∞. The latter
is injective as an operator module (as every bounded linear map into ℓ∞ is completely
bounded [8, Proposition 2.2.6]) and thus, if c0 was injective, it would have to be a retract
of ℓ∞ (Proposition 2.4) which it is not (Example 2.5). Thus c0 is not M-injective in
OMod∞

C
.



Injectivity 43

In fact, the same statement holds for every unital C*-algebra A; one can use the
compact operators on an infinite-dimensional Hilbert space in place of c0. But let us
move on to dimension 1.

Proposition 6.5. The global C*-dimension of A is at most one if and only if every
complete quotient of an M-injective object in OMod∞

A is M-injective.

This follows immediately from the Injective Dimension Theorem (5.9) as a complete
quotient is nothing but the image F of a cokernel so we can apply the equivalence of

(a), (e) and (f) to an injective presentation E // µ // I
π // // F with I M-injective.

But it turns out that the condition in the above proposition always fails.

Theorem 6.6. The global C*-dimension of every unital C*-algebra is at least 2.

The details of the proof can be found in [16, Chapter 5]; an important ingredi-

ent is the injective presentation K(H) // // B(H) // // B(H)/K(H) for an infinite-

dimensional Hilbert spaceH and the classical fact that ℓ∞/c0 is not injective inBan∞ [2].
At this moment, no C*-algebra with global C*-dimension equal to 2 is known; in

fact, it is unclear whether there is any C*-algebra with finite dimension.
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Retraction

THE EDITOR

Abstract. We retract an article redundantly published in issue 79 of this Bulletin.

Elke Wolf: Composition operators between weighted Bergman spaces and weighted
Banach spaces of holomorphic functions Bulletin IMS 79 (2017) 75–85.

Retracted because of self-plagiarism. This paper was first published in Mathematica
57(80), No. 1–2, 126–134 (2015). The author has apologized.

The IMS Bulletin regrets its unintentional violation of Mathematica’s copyright in
the paper.

See http://www.irishmathsoc.org/bull85/editorial.pdf for more details.
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Annalisa Crannell, Marc Frantz and Fumiko Futamura: Perspective and

Projective Geometry, Princeton University Press, 2019.

ISBN:9780-6911-9655-8, USD 49.95, x+280 pp.

REVIEWED BY PETER LYNCH

This book, essentially a course text, has lofty aspirations. It opens with the claim
that it will “change the way that you look at the world, and we mean that literally”.
Seeing the world in new ways is mind-expanding and empowering, and this course may
open the doors of perception just a little wider.

The challenge addressed in the book is to elucidate techniques used in graphical art by
revealing the geometric principles underlying them. These techniques emerged from the
Italian Renaissance and enabled artists to create strikingly realistic images. Among the
most notable were Piero della Francesca and Leon Battista Alberti, who invented the
method of perspective drawing. Artists were ahead of mathematicians, who only later
codified the techniques in projective geometry. But the relationship became symbiotic,
with each group learning from and teaching the other.

The book comprises twelve chapters and three appendices. For centuries, artists have
painted scenes on a sheet of glass. In the opening lesson, students stick masking-tape
on a large window, guided by an “artist”, whose head is held in a fixed position. They
discover that some lines that are parallel in the physical scene converge when marked
on the window. There are many questions and exercises for the students to develop
the capacity to visualize on a plane scenes in space, and many practical exercises where
they must make drawings or take and use photographs, usually working together in
groups.

Chapter 2 includes exercises on drawing large block letters in three dimensions. Chap-
ter 3 answers the question “What is the image of a line?” The basics of Euclidean
geometry are introduced in Chapter 4, and several theorems relevant to perspective are
presented. In most cases, gaps are left in the proofs; this is deliberate and is intended
to lead the students to make discoveries themselves. Students are asked to prove Ceva’s
Theorem and Menelaus’s Theorem. Although generous hints are given, this will be
daunting for many.

Chapter 5 introduces extended Euclidean space, with points and lines at infinity.
This removes the need for special consideration of non-generic cases. In the context of
perspective, the extended space includes the vanishing points of parallel lines. Chapter 6
discusses meshes and maps. Chapter 7 introduces Desargues’s Theorem. Once again,
the proof is gappy. This reviewer suspects that most readers will not have the tenacity
(or inclination) to work through all the proofs and fill in all the gaps.

Collineations are considered in Chapter 8. The following two chapters are about
drawing boxes and cubes. In Chapter 11, the cross-ratio, of key importance in both
perspective drawing and projective geometry, is defined and applied. Eve’s Theorem
is proved (in outline) and Casey’s Angle, a projective invariant, is introduced and
illustrated by application to a perspective drawing. The invariance of this angle was
first proved by the Irish geometer John Casey. I found the discussion in this chapter
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less lucid than elsewhere in the book, and somewhat confusing. Students will probably
have the same reaction.

Chapter 12, on coordinate geometry, is more algebraic in character, enabling us to
do perspective “by the numbers”. The final chapter is on arcana like the topology of
the perspective plane and the shape of space in the large. It is more abstract and less
likely to assist artists directly, but perhaps it will give them a “broader perspective on
perspective”.

There are three appendices. The first gives complete beginners an introduction to
the GeoGebra graphics program. The second, for reference, collects all the main
definitions and results in one place. The third, on writing mathematical prose, has
practical advice that should benefit all students. A Bibliography with more than fifty
references and a two-page Index conclude the book.

⋆ ⋆ ⋆

It is difficult to know precisely who will benefit most from this book. There will be
little new to mathematicians interested in projective geometry. And most artists will be
strongly deterred by symbolic formulations of the type ∃P ∈ R

3 : P = {p ⊂ R
3 : P ∈ p}

occurring in the definition of a pencil of lines. Students will need to work hard to
benefit from the course. The absence of solutions means that they will struggle unless
they have the guidance of an instructor, so the book is not really suitable for self-study
except by especially talented readers.

The authors have undertaken a formidable task: to teach mathematics (geometry) to
artists and (graphic) art to geometers. They have been only partially successful. They
are not the first to struggle with such a task. We recall Euler’s book Tentamen novæ
theoræ musicæ, completed when he was 23 years old. This work was described as “too
mathematical for musicians and too musical for mathematicians”.

Peter Lynch is emeritus professor at UCD. His interests include all areas of mathematics and

its history. He writes an occasional mathematics column in The Irish Times and has published

a book of articles entitled Thats Maths. His blog is at http://thatsmaths.com.
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PROBLEMS

IAN SHORT

Problems

The first two problems this month come courtesy of Des MacHale of University
College Cork.

Problem 85.1. Dissect an equilateral triangle into four pieces that can be reassem-
bled, without flips, to form three equilateral triangles of different sizes. Can this be
accomplished with just three pieces?

Problem 85.2. An absent-minded professor of mathematics cannot remember her
debit card PIN. However, she remembers that the PIN lies between 4129 and 9985 and
it cannot be expressed as the sum of two or more consecutive integers. Can you help
her determine the PIN?

The third problem is a classic, which I encountered recently in the magazine of the
M500 Society, a mathematical society of the Open University.

Problem 85.3. Arrange the integers 1 to 27 in a 3 × 3 × 3 cube in such a way that
any row of three integers (excluding diagonals) has sum 42.

Solutions

Here are solutions to the problems from Bulletin Number 83.
The first problem was solved by Ibae Aedo of the Open University, Omran Kouba

of the Higher Institute for Applied Sciences and Technology, Damascus, Syria, and the
North Kildare Mathematics Problem Club. We present the solution of the Problem
Club.

Problem 83.1 . Find positive integers a, b, c, d, e such that

1

a−
1

b−
1

c−
1

d−
1

e

= 0,

and such that this equation remains true if a, b, c, d, e is replaced by any cyclic permu-
tation of those five letters in that order.

(Note that this problem uses arithmetic involving ∞, such as 1/∞ = 0).

Solution 83.1. One solution is

(a, b, c, d, e) = (2, 2, 1, 3, 1).

.
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To obtain this, observe that the continued fraction equation is equivalent to

bcde+ 1 = bc+ be+ de,

so we are asked for a solution in positive integers of the system of five equations obtained
by combining this with the other four equations obtained by cyclic permutation of
(a, b, c, d, e). Parity considerations show that exactly two of the variables must be even,
and they must be adjacent in cyclic order, so without loss of generality we may consider
a and b to be even and c, d, and e to be odd. Testing e = 1 in the equation, we see
that d 6= 1, so d ≥ 3, and we are led to the inequality b(2c− 1) ≤ 2, which forces b = 2,
c = 1, d = 3. Looking at the other permuted equations, we see that all are satisfied
if a = 2. �

The next problem was solved by Ibae Aedo, Henry Ricardo of the Westchester Area
Math Circle, New York, USA, Daniel Vǎcaru of Piteşti, Romania, Brendan and Ronan
Wallace, and the North Kildare Mathematics Problem Club. Solutions were similar; we
use the wording of Henry Ricardo.

Problem 83.2 . Prove that for each positive integer m,

tan−1m =
m−1∑

n=0

tan−1

(
1

n2 + n+ 1

)
.

Solution 83.2. The familiar identity tan(α−β) = (tanα− tanβ)/(1+tanα tanβ) leads
to the following identity for the principal value of the inverse tangent function:

tan−1 u− tan−1 v = tan−1

(
u− v

1 + uv

)
.

Let u = n+ 1 and v = n to give

tan−1

(
1

n2 + n+ 1

)
= tan−1(n+ 1)− tan−1 n.

Thus we have the telescoping series

m−1∑

n=0

tan−1

(
1

n2 + n+ 1

)
=

m−1∑

n=0

(tan−1(n+ 1)− tan−1 n)

= tan−1m− tan−1 0 = tan−1m. �

Henry points out that by taking limits we obtain
∞∑

n=1

tan−1

(
1

n2 + n+ 1

)
=

π

2

and other, similar results can be obtained by choosing special values of u and v in the
inverse tangent identity stated in the solution.

The third problem was solved by Ibai Aedo, Henry Ricardo, Brendan and Ronan
Wallace, and the North Kildare Mathematics Problem Club.

Problem 83.3 . Find all positive integers x and y such that xy = yx.

We offer a known solution, presented by some of the contributors, which gives the
full set of solutions for positive rationals x and y.

Solution 83.3. Naturally, x = y is a solution for any positive number x, so let us assume
that x < y.

We write the equation in the form y = xy/x. Dividing by x gives

xy/x−1 =
y

x
. (∗)
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We let m/n = y/x − 1, where m and n are coprime positive integers. Equation (∗)

becomes xm/n = (m+ n)/n, or, equivalently,

x =
(m+ n)n/m

nn/m
. (∗∗)

Since m and n are relatively prime, so are (m+ n)n and nn. It follows from (∗∗) that
x is rational if and only if both (m + n)n and nn are mth powers. So if x is rational,
then each of m+ n and n must be an mth power, because the exponents m and n are
relatively prime. Hence n = am and m + n = bm, where a and b are positive integers
and b > a. This is possible if and only if m = 1, because the difference between two
consecutive mth powers is greater than m if m > 1.

It follows from (∗) and (∗∗) that

x = (1 + 1/n)n and y = (1 + 1/n)n+1,

where n is any positive integer. The only pair of positive integer solutions with x < y
is obtained when n = 1, giving x = 2 and y = 4. �

Thanks to all those who provided references for papers written on this problem.
Henry Ricardo notes that the problem was first stated in a letter from Daniel Bernoulli
to Christian Goldbach in 1728, in which Bernoulli asserts (without proof) that the
equation has only one solution in positive integers and infinitely many rational solutions.
Euler later solved the equation over the positive reals and positive integers, and provided
rational solutions, without claiming that they were the only ones.

To finish this issue, it was incorrectly stated in Issue 84 that no solutions had been
received for the extended version of Problem 82.2, which asks for a proof of the integral
formula ∫ ∞

0

sinhx− x

x2 sinhx
e−x dx = log π − 1.

In fact, Omran Kouba had already submitted a correct solution. I apologise for the
error.

We invite readers to submit problems and solutions. Please email submissions to
imsproblems@gmail.com in any format (we prefer Latex). Submissions for the summer
Bulletin should arrive before the end of April, and submissions for the winter Bulletin
should arrive by October. The solution to a problem is published two issues after the
issue in which the problem first appeared. Please include solutions to any problems you
submit, if you have them.

School of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA,

United Kingdom
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Instructions to Authors

Papers should be submitted by email to the address:

ims.bulletin@gmail.com

In the first instance, authors may submit a pdf version of their paper. Other formats
such as MS/Word or RTF are not acceptable. The Bulletin is typeset using PDF files
produced from LATEX source; therefore, authors must be ready to supply LATEX source
files (and any ancillary graphics or other files needed) should their paper be accepted.
Source files should be suitable for processing using pdflatex.

Once a paper is accepted in final form, the author(s) will be responsible for producing
an output according to the Bulletin’s standard layout. Standard template files for
articles, abstracts and reviews, and the necessary class and style files may be downloaded
from the IMS website http://www.irishmathsoc.org, or obtained from the editor in
case of difficulty.

Since normally no proofs are sent out before publication, it is the author’s responsi-
bility to check carefully for any misprints or other errors.

The submission of a paper carries with it the author’s assurance that the text has
not been copyrighted or published elsewhere (except in the form of an abstract or as
part of a published lecture or thesis); that it is not under consideration for publication
elsewhere; that its submission has been approved by all coauthors and that, should it be
accepted by the Bulletin, it will not be published in another journal. After publication,
copyright in the article belongs to the IMS. The IMS will make the pdf file of the article
freely available online. The Society grants authors free use of this pdf file; hence they
may post it on personal websites or electronic archives. They may reuse the content
in other publications, provided they follow academic codes of best practice as these are
commonly understood, and provided they explicitly acknowledge that this is being done
with the permission of the IMS.








