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A reflection property in Minkowski planes

MOSTAFA GHANDEHARI AND HORST MARTINI

Abstract. With the reflection property investigated here we mean a generalization
of the following task, also called Heron’s problem: Minimize the length of a path
joining two points on one side of a line in the Euclidean plane such that this path
meets also this line. We present an extension of this reflection property to (normed or)
Minkowski planes and use this generalization to discuss also corresponding reflection
properties of Minkowskian conics.

1. Introduction

The concept of Minkowski distance defined by means of a convex body centered
at the origin was developed by H. Minkowski [21], yielding the notion of Minkowski
spaces; these are simply finite dimensional real Banach spaces with the planar sub-
case of Minkowski planes. The geometry of such spaces and planes is usually called
Minkowski geometry, see the monograph [31]. The articles [3] by Busemann, [26] by
Petty, the surveys [19] and [18], Chapter 6 from [2] and Chapter 4 from [32] as well as
the whole monograph [31] contain useful background material reflecting main directions
of Minkowski geometry and also those parts of classical convexity which are needed for
it.

In this paper we will deal with the extension of Heron’s problem to Minkowski planes
and conic sections there. In the Euclidean plane, Heron’s problem asks for minimizing
the length of a path that joins two points on one side of a line and should meet also
this line. Using Fermat’s principle of least time and the fact that in a homogeneous
medium the time travelled is proportional to the distance travelled one obtains the re-
flection principle as follows: Consider two points u, v lying in one of the open halfplanes
determined by a line L in the Euclidean plane. A point w on L such that the Euclidean
sum of distances ‖u− w‖e + ‖v − w‖e is minimum has the property that the reflection
of a light ray, say from u to w, will pass through v. The angle of incidence is equal to
the angle of reflection. Our main objective is it to extend this reflection property to
normed planes and to apply it to corresponding conics.

A convex body in the Euclidean plane is a compact, convex set having non-empty
interior. Any convex body E centered at the origin can be taken to define aMinkowskian
distance from x to y by

‖x− y‖ =
‖x− y‖e

r
.

Here ‖x− y‖e is the Euclidean distance from x to y, and r is the value of the Euclidean
radial function of E in the direction of the vector y−x. (The Euclidean radial function
is the function on R

2 whose value at each oint z depends only on the distance of z and
the origin o.) We will call the standard plane equipped with this new metric a (normed
or) Minkowski plane, having E as unit circle.
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2. Preliminaries

Assuming that the unit circle E of a Minkowski plane is smooth and strictly convex,
we give in the next section an extension of the reflection principle, and in Section 4
we will discuss the reflection property of conics in Minkowski planes. Note that E is
called smooth if through any boundary point of E a unique supporting line passes; and
it is called strictly convex if the boundary of E contains no line segments. Consider
a Minkowski plane with unit circle E. An E-ellipse is the locus of all points whose
sum of Minkowskian distances from two fixed points is constant. An E-hyperbola is
the locus of all points whose difference of Minkowskian distances from two fixed points
is constant, and an E-parabola is the locus of all points which are equidistant from a
given point and a given line. Both E-ellipses and E-parabolas bound convex regions.
Minkowskian analogues of the reflection properties for an ellipse and a hyperbola and
the focal property for a parabola are given in Section 4. We refer also to [12], [16], and
[14] for various results and properties of Minkowskian analogues of conics.

The following is needed in Section 4. Given a line L and a point u /∈ L, for v ∈ L
the direction v − u is called transversal to L provided ‖u − v‖ = min‖u − w‖ for all
w ∈ L. It is very easy to see that if a homothetic copy of the unit circle E centered
at u touches L at a point v, then u − v is transversal to L. (Note that homotheties
are transformations with a fixed point x sending each m 6= x to a point n such that
n− s is on the same line as m− s, but scaled by a real factor λ.) This natural type of
transversality is usually called Birkhoff orthogonality, see the related expository paper
[1].

We finish this preliminary part by proving a lemma needed in Section 4 and saying
that the sum of distances from m fixed points in a normed space is a convex function.

Lemma 2.1. Consider m points v1, v2, ..., vm in a normed space X. The function f

defined by f(x) =
m∑

i=1

‖x− vi‖ is convex.

Proof. The statement holds since the norm function is convex, and the sum of convex
functions is convex, too. �

We remark that the level sets of the function discussed here occur as so-called polyel-
lipses or multifocal ellipses and their higher-dimensional analogues, i.e., as respective
generalizations of ellipsoids having m foci (see [14]).

3. A reflection property

Our main objective in this section is to prove the following theorem giving the
Minkowskian analogue of Heron’s problem (see Figure 1, where the Euclidean subcase
is shown).

Theorem 3.1. Consider two points u, v lying in one of the open halfplanes determined
by a line L in a Minkowski plane with continuously differentiable boundary of the unit
circle E. A point p on L such that

‖u− p‖+ ‖v − p‖ = min
q∈L

{‖u− q‖+ ‖v − q‖}

has the following reflection property: Let a homothetic copy E′ of the unit circle E,
which is centered at the point p, intersect the line segments joining p to u and v in the
points u′ and v′, respectively. Let u′′ and v′′ be intersections of the tangent lines to E′

at u′ and v′ with L. Then

‖p− u′′‖e = ‖p− v′′‖e (and so ‖p− u′′‖ = ‖p− v′′‖) .
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Figure 1. E-reflection property

We will use the following Lemma 3.2 (the proof of which is a nice exercise in calculus)
to prove Theorem 3.1.

Lemma 3.2. Let r = g(ϑ) describe a differentiable curve C in polar coordinates. Then
the x-intercept of the tangent line at a point (r, ϑ) is given by

x =
r2

r cosϑ+ r′ sinϑ
,

where

r′ =
dg

dϑ
.

Proof of Theorem 3.1. The function f(q) = ‖q − u‖ + ‖q − v‖, q ∈ L, is convex and
unbounded. Hence f has a minimum on at least one point p ∈ L. That is, there
exists p ∈ L with f(p) ≤ f(q) for all q ∈ L. Since the boundary of E is of class C1,
f(q) = ‖q − u‖ + ‖q − v‖ = F (E, q − u) + F (E, q − v) is of class C1. Therefore the
function f = f |L is of class C1, and the method of Lagrange multipliers can be applied.
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Figure 2. For the proof of Theorem 3.1

Using some trigonometry and the definitions of the Minkowski metric, Theorem 3.1
is equivalent to the following constraint optimization problem (see Figure 2):

Minimize F (ϑ1, ϑ2) =
a cscϑ1

r(ϑ1)
+

b cscϑ2

r(ϑ2)
, (1)
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subject to G(ϑ1, ϑ2) = a cotϑ1 − b cotϑ2 − c = 0 , (2)

with a, b, c as shown in Figure 2.
The Lagrangian is denoted by J and given by

J(ϑ1, ϑ2, λ) =
a cscϑ1

r(ϑ1)
+

b cscϑ2

r(ϑ2)
− λ (a cotϑ1 − b cotϑ2 − c) . (3)

Setting ∂J
∂ϑ1

, ∂J
∂ϑ2

, and ∂J
∂λ

equal to zero, we obtain

∂J

∂ϑ1
=

−a cscϑ1 cotϑ1

r(ϑ1)
−

a cscϑ1r
′(ϑ1)

r2(ϑ1)
+ λa csc2ϑ1 = 0 , (4)

∂J

∂ϑ2
=

−b cscϑ2 cotϑ2

r(ϑ2)
−

b cscϑ2r
′(ϑ2)

r2(ϑ2)
− λb csc2ϑ2 = 0 , (5)

∂J

∂λ
= −a cotϑ1 + b cotϑ2 + c = 0 . (6)

Dividing equations (4) and (5) by a csc2ϑ1 and b csc2ϑ2, respectively, and using Lemma
3.2, we obtain

λ =
r(ϑ1) cosϑ1 + r′(ϑ1) sinϑ1

r2(ϑ1)
=

1

‖p− u′′‖e
, (7)

λ = −
r(ϑ2) cosϑ2 + r′(ϑ2) sinϑ2

r2(ϑ2)
=

1

‖p− v′′‖e
, (8)

where u′′ and v′′ are the x-intercepts of tangent lines to a copy of the unit circle centered
at p. Points of tangency are intersections of line segments joining p to u and v in the
points u′ and v′, with the unit circle. Hence ‖p − u′′‖e = ‖p − v′′‖e, and consequently
‖p− u′′‖ = ‖p− v′′‖. �

The reflection property for the Euclidean case is a special case of Theorem 3.1. If E
has a vertical axis of symmetry, then the angle of incidence will be equal to the angle
of reflection. In the next section we use the above reflection property to discuss the
reflection property of conics.

Hawkins [9] used variational techniques to find a generalization of Snell’s law of
refraction for media, where the speed of light depends only on the direction at each
point. He also used the method of Lagrange multipliers to generalize Snell’s law, taking
a constraint optimization problem similar to that in the proof of Theorem 3.1 into
consideration. Ghandehari and Golomb [8] have done similar work.

By methods from convex analysis, Heron’s problem was generalized in [22] where the
sum of distances to m given closed convex sets is studied. From the numerical point of
view, generalizations of Heron’s problem are investigated in [5]. An extension to Banach
spaces is presented in [23], and we also mention the paper [11] containing related results
for Hilbert spaces.

4. Conics

In this section we define conics in the Minkowski plane and analyze their reflection
properties. The excellent book by Hilbert and Cohn-Vossen has a good introduction to
conics in the Euclidean plane, and for Minkowskian conics we refer to [12] and [16].

Suppose E is a smooth, convex and compact body in the plane inducing a Minkowski
norm ‖ · ‖. If u and v are distinct points and L is a line, we say that a point p ∈ L has
the E-reflection property with respect to u, v, and L if ‖u − p‖ + ‖v − p‖ = min

z∈L
{‖u −

z‖+ ‖v − z‖}.
In the Euclidean plane, the line segments joining the two foci to a point on an ellipse

will make equal angles with the tangent line to the ellipse at the point of tangency. This
is called the reflection property of an ellipse. A short and elegant proof of the reflection
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property of an ellipse using derivatives is given in Schulz and Moore [28]. Recall that
we defined an E-ellipse in a Minkowski plane with unit circle E as the locus of all points
whose Minkowskian sum of distances from two fixed points is constant. We shall not
use the definition of an ellipse by using eccentricity here, but mention that Tamássy
and Bélteky [30] showed that if in a Minkowski plane the characterization of an ellipse
in terms of sums of distances coincides with that via eccentricity, then the plane is
Euclidean.

The following Theorem 4.2 concerns the Minkowskian analogue of the reflection prop-
erty of an E-ellipse. The proof is the same as in the Euclidean case. Before stating and
proving Theorem 4.2, we need the following lemma.

Lemma 4.1. The region bounded by an E-ellipse is convex.

Proof. Let D = {x ∈ R
2| ‖x − u‖ + ‖x − v‖ ≤ d}, where u and v are the foci and d

is the constant sum of distances of points of the E-ellipse from u and v. Let f(x) =
‖x− u‖+ ‖x− v‖. By Lemma 2.1 we have that if x ∈ D, y ∈ D, then, for 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λd+ (1− λ)d = d .

Hence D is convex. �

We note that the unit circle E is strictly convex if and only if E-ellipses are strictly
convex (see [12]).

Theorem 4.2. Let u and v be foci of an E-ellipse in a Minkowski plane with smooth
and strictly convex unit circle E. Let L be the tangent line to the E-ellipse at a point
p. Then p has the E-reflection property with respect to u, v, and L (see Figure 3 for the
Euclidean subcase).

u v

p
L

q

Figure 3. Reflection property of an E-ellipse

Proof. Since the E-ellipse is a convex curve, any point q ∈ L, q 6= p, lies outside of the
E-ellipse. Then ‖q − u‖ + ‖q − v‖ ≥ ‖p − u‖ + ‖p − v‖. Hence p has the E-reflection
property. �

In what follows, Theorem 4.3 deals with a property of a point p on the unit circle
such that ‖p − u‖ + ‖p − v‖ is a minimum for given points u, v in a Minkowski plane.
Theorem 4.4 is based on Theorem 4.3 and gives a property of the Fermat-Torricelli
point for three given points u, v, and w (i.e., of the unique point having minimal sum
of distances to u, v, and w). Theorem 4.5 is a generalization of Theorem 3.1 where,
given a point u and two lines L1 and L2, we find points p ∈ L1 and v ∈ L2 such that
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‖p−u‖+‖p−v‖ is minimum. We then use Theorem 4.5 to prove Theorem 4.7, which is
the focal property for an E-parabola. Theorem 4.8 gives the reflection property for an
E-hyperbola, and we finish the article with a conjecture referring to confocal ellipses.

Theorem 4.3. Consider two points u and v such that the line segment connecting u
and v lies outside of a homothetic copy of the strictly convex unit circle E. A point
p on the copy of E minimizes ‖u − p‖ + ‖v − p‖ if and only if p has the E-reflection
property with respect to u, v, and the line L tangent to the copy of E at p (see Figure
4).

u

v

p

E

Lp

q

w

Figure 4. p minimizes ‖p− u‖+ ‖p− v‖

Proof. We first prove that if p ∈ E such that ‖u−p‖+‖v−p‖ = min
z∈Lp

{‖u−z‖+‖v−z‖}

with Lp tangent to E at p, then ‖u − p‖ + ‖v − p‖ = min
q∈E

{‖u − q‖ + ‖v − q‖}. For

any q ∈ E, let w be the intersection of the line segment, connecting q and v outside
of E, with the tangent line Lp at p (see again Figure 4). Then ‖u − q‖ + ‖q − v‖ =
‖u− q‖+ ‖q − w‖+ ‖w − v‖, since Lp meets the line segment [q, v]. This follows from
the assumption on p formulated at the beginning of the proof. Further on, we have
‖u − q‖ + ‖q − w‖ + ‖w − v‖ ≥ ‖u − w‖ + ‖w − v‖ ≥ ‖u − p‖ + ‖v − p‖, where the
last inequality follows since w ∈ Lp and ‖p− u‖+ ‖v − p‖ = min

z∈Lp

{‖z − u‖+ ‖v − z‖}.

Hence, if p has the E-reflection property with respect to u, v, and the tangent line Lp

at p, then ‖u− p‖+ ‖v − p‖ = min
q∈E

{‖u− q‖+ ‖v − q‖}.

If ‖u− p‖+ ‖v − p‖ = min
q∈E

{‖u− q‖+ ‖v − q‖}, then ‖u− p‖+ ‖v − p‖ = min
z∈Lp

{‖u−

z‖ + ‖v − z‖} as follows: The E-ellipse, with foci u and v and the constant sum of
distances equal to the minimum, intersects E at only one point. If there are two points
of intersection, then for any x inside the line segment joining two points of intersection,
x is inside E since E is strictly convex. Then ‖u − x‖ + ‖v − x‖ ≤ ‖u − p‖ + ‖v − p‖
since E is strictly convex. Let y be some chosen point from the intersection of the line
segment joining x to v with E. Then ‖u−x‖+ ‖v−x‖ = ‖u−x‖+ ‖x− y‖+ ‖y− v‖ >
‖u− y‖+ ‖u− v‖ ≥ ‖u− p‖+ ‖v− p‖, a contradiction. Hence there is only one point p
of intersection. The tangent line to E at p is also tangent to the E-ellipse. By Theorem
4.2, p has the E-reflection property with respect to u, v, and the tangent line Lp. �

A problem related to the reflection property is the so-called Fermat-Torricelli prob-
lem. In its simplest form, it asks for a point in the Euclidean plane minimizing the sum
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of the distances to three given points. In the article [4] the Fermat-Torricelli problem
in Minkowski spaces is investigated, see also [20].

Theorem 4.4. Consider three points u, v, and w in a given Minkowski plane with
smooth and strictly convex unit circle E. Let p be the Fermat-Torricelli point, assuming
it exists and is different from u, v, or w. Let u′, v′ and w′ be the intersections of a copy
of E centered at p with the line segments joining p to u, v,, and w. Then the triangle
formed by drawing tangents to E at u′, v′, and w′ has p as its centroid.

Proof. Consider a copy of the unit circle E centered at w and passing through p. Since
‖u − p‖ + ‖v − p‖ is minimized as p varies on this copy of the unit circle, p has the
E-reflection property with respect to u, v, and the tangent line L1 to this copy of the
unit circle. We now consider another copy of the unit circle, centered at p and passing
through w. Let u′ and v′ be the intersection with line segments joining p to u and v,
respectively. Let L2 be a line tangent to a copy of the unit circle at w with L2‖L1.
By the E-reflection property (Theorem 3.1), the line segment passing through p and
parallel to L2 is bisected by the sides of the triangle formed by the tangents. Using the
same argument for u and v we see that the line segment passing through p and being
parallel to L2 is bisected by the sides of the triangle formed by tangents. Using the
same argument for u and v we see that the line segments passing through p and parallel
to the sides of the triangle formed by the tangents are bisected. It is an elementary but
interesting exercise to show that the point p has to be the centroid. �

The excellent book by Courant and Robbins [6] has a treatment of extremal distances
in the Euclidean plane. Similar results for Minkowski planes can be obtained. We will
use the following theorem to discuss the focal property of parabolas.

Theorem 4.5. Consider a point u and two lines L1 and L2 in a Minkowski plane with
smooth and strictly convex unit circle E. If ‖v− p‖+ ‖u− p‖ is a minimum for p ∈ L1

and v ∈ L2, then p has the E-reflection property with respect to u, v, and L1.

Proof. If p ∈ L1 and v ∈ L2 attain this minimum, then the minimum of ‖u−z‖+‖v−z‖
as z runs along L1 is attained at z = p.

Hence p has the E-reflection property with respect to u, v, and L1. �

For a parabola in the Euclidean plane, the path of reflection of a light ray starting
from the focus and going to the boundary is called its focal property. Theorem 4.7 below
gives an analogue of this focal property in the Minkowski plane. Before this, we show
that the region bounded by an E-parabola is convex.

Lemma 4.6. An E-parabola bounds a convex region.

Proof. Let L and u be the line and the point generating the E-parabola in the classical
way. Let D = {x|‖x − u‖ ≤ ρ(x,L)} where ρ(x,L) is the distance of x from L. If
x, y ∈ D and 0 ≤ λ ≤ 1, then ‖λx + (1 − λ)y − u‖ ≤ λ‖x − u‖ + (1 − λ)‖y − u‖ ≤
λρ(x,L) + (1− λ)ρ(y,L) = ρ(λx+ (1− λ)y,L). The last equality follows from the fact
that transversal directions to L are all parallel. �

Laatsch [17] gave an interesting treatment of pyramidal sections in taxicab geometry
which is a special case of Minkowski geometry, with unit circle E a square centered at
the origin and diagonals on the x- and y-axes. For other references on conics in Taxicab
geometry see the articles by Iny [13], Moser and Kramer [24], Reynolds [27], and Sowell
[29]. For a computerized approach to conics with Taxicab metric we refer to Natsoulas
[25].

The following theorem gives the focal property of a Minkowskian parabola, which is
generated as locus of all points equidistant from a given point (focus) and a given line
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(directrix). For a short geometric proof of the focal property of the parabola in the
Euclidean plane, see Williams [33].

Theorem 4.7. (Focal property). For an E-parabola with focus u and directrix L, let
L′ be any line parallel to L such that u is between L and L′. For any point p on the E-
parabola, choose v ∈ L′ such that p−v is transversal to L′. Then p has the E-reflection
property with respect to u, v, and the tangent line to the E-parabola at p.

Proof. Let L′′ be the tangent line to the E-parabola at p. For q ∈ L′′, choose w ∈ L′

such that q−w is transversal to L′. Let q′ be the intersection of the line segment joining
q to u with the E-parabola. Choose w′ on L′ such that q′ − w′ is transversal to L′.
Then

‖u− q‖+ ‖q − v‖ ≥ ‖u− q‖+ ‖q − w‖ ≥ ‖u− q′‖+ ‖q′ − w‖ ≥
‖u− q′‖+ ‖q′ − w′‖ = ‖u− p‖+ ‖p− v‖ ,

where the first inequality follows from the triangle inequality for the points q′, q, w, and
the second inequality follows since q′w′ is transversal to L′. The last equality holds since
the points p and q′ both lie on the E-parabola. Thus, p has the E-reflection property
with respect to u, v, and L′′. �

The following theorem gives the reflection property of an E-hyperbola. Chapter 3
of the book by Kazarinoff [15] contains a good treatment of reflection properties in the
Euclidean plane. In particular, a proof of the reflection property for a hyperbola is
given there. The book by Courant and Robbins [6] contains a treatment of extremal
distances in the Euclidean plane and a nice discussion of Heron’s reflection principle
and the reflection property of conics.

Theorem 4.8. Let u and v be two foci of an E-hyperbola in a Minkowski plane with
smooth and strictly convex unit circle E. Let p be a point on a branch of the hyperbola
containing the focus v. Assume v′ is the reflection of v through p. Consider a line L
through p such that p has the E-reflection property with respect to u, v′, and L. Then
L is tangent to the hyperbola at p (see Figure 5 for the Euclidean subcase).

vu

p

L

v′

Figure 5. The tangent property of the hyperbola

Proof. Suppose the line L intersects the hyperbola in another point q. Then

‖u− q‖+ ‖q − v′‖ = ‖u− q‖ − ‖v − q‖+ ‖v − q‖+ ‖q − v′‖
= ‖p− u‖ − ‖p− v‖+ ‖v − q‖+ ‖q − v′‖
> ‖p− u‖ − ‖p− v‖+ 2‖p− v‖
= ‖p− u‖+ ‖p− v‖ ,
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where we have used the definition of an E-hyperbola and the triangle inequality for the
triangle vqv′. Thus

‖u− q‖+ ‖q − v′‖ > ‖p− u‖+ ‖p− v‖ ,

giving a contradiction to the fact that p has the E-reflection property with respect to
u, v′ and L. Hence L is tangent to the hyperbola. �

We conclude the paper by a conjecture which would generalize the following result on
Euclidean reflections for confocal ellipses (see Figure 6): Consider two confocal ellipses
with foci f1 and f2. Assume that p is a point on the larger ellipse. Draw the tangent
line L to the larger ellipse at p. From p draw two tangents to the smaller ellipse, with a
and b as points of tangency, respectively. Then ap and bp have the reflection property
with respect to L. That is, in Figure 6 the angles α and β are equal.

α
β

f1 f2

p

L

a

b

Figure 6. Confocal ellipses

Conjecture. Consider an analogous construction of confocal ellipses in a Minkowski
plane with smooth unit circle. Then the Minkowskian reflection property holds between
ap, bp, and L.
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Publishing Company, New York, 1952. (pp. 1-11)



30 GHANDEHARI AND MARTINI

[11] F. Holland, A. Mustata: A Hilbert space analogue of Heron’s reflection principle. Irish Math. Soc.

Bull. 67 (2011), 57-65.
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