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Solving cubic and quartic equations by radicals

C. T. C. WALL

Abstract. The rule for the solution of a cubic or quartic equation by radicals is
obtained from elementary considerations of the geometry of the projective line.

1. Introduction

The formula −b±
√
(b2−4ac)
2a for the roots of the quadratic equation ax2 + bx + c = 0

is well known and easy to establish. The search for a corresponding formula for a
cubic equation met with success in the 16th century, as can be found in one of the
more colourful chapters of the history of mathematics. A method for solving quartic
equations by radicals was also discovered in the 16th century, relatively soon after the
solution of cubics, and other methods were then found.

Our object is neither to present the history nor the early versions of these arguments,
but to give an account in the language of (projective) geometry to clarify the reasons
for the formulae. A related version was given in [1].

2. Cubic equations

A cubic equation may be written as ax3 + bx2 + cx + d = 0. We work over a field
K containing the coefficients a, b, c, d; to find a general formula, we may pick a field
k (my personal preference is the field C of complex numbers) and take K as the pure
transcendental extension K = k(a, b, c, d), or just take K = C; we will also discuss
the case K = R. Even the above rule for solving quadratic equations fails if k has
characteristic 2; for cubic and quartic equations we must further assume that k does
not have characteristic 2 or 3.

To know what to expect, we refer to Galois Theory. As the group of the equation
is the symmetric group S3, to pass from K to the root field of the cubic we need a
quadratic extension (taking a square root), and a cubic extension which, provided K
contains a cube root of unity, involves taking a cube root.

From now on, we view the situation geometrically, so write the equation in homoge-
neous form as h(x, y) := ax3 + 3bx2y + 3cxy2 + dy3, and regard the root α as defining
the point Pα = (α : 1) on the projective line P 1, and correspondingly for the roots β
and γ. We assume that the roots are distinct.

A homography of P 1 is a map of the form (x : y) → (px + qy : rx + sy); it is
determined by the images of any 3 distinct points. Thus there is a unique φ : P 1 → P 1

such that φ(Pα) = Pβ , φ(Pβ) = Pγ and φ(Pγ) = Pα; it follows that φ3 is the identity.
This φ has just 2 fixed points, which we denote by Q0 and Q1.

The cubic h(x, y) has Hessian H(h) := hxxhyy − h2xy, which is a quadratic covariant
of h. Explicitly, if we change coordinates by X = px + qy, Y = rx + sy and h(x, y) =
k(X,Y ), we find that hxxhyy − h2xy = (ps− qr)2(kXXkY Y − k2XY ).
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The key observation is that the roots of H(h) determine the points Q0, Q1 ∈ P 1.
To see this, we change coordinates in P 1 so that in the new coordinates (X : Y ),
Q0 = (0 : 1) and Q1 = (1 : 0). Since H(h) is a covariant, H(k) is a multiple of XY .
Thus φ has the form (X : Y ) → (ωX : Y ), where ω is a cube root of unity, the roots of
k may be written as (ξ : 1), (ωξ : 1), (ω2ξ : 1), so

k(X,Y ) = a(X − ξY )(X − ωξY )(X − ω2ξY ) = a(X3 − ξ3Y 3),

and H(k) = −36a2ξ3XY , which indeed has zeros at Q0 and Q1.

To solve the cubic h, we thus first factorise H(h) in the form (px+qy)(rx+sy) (which
involves solving a quadratic equation); then make the coordinate change (X,Y ) =
(px+ qy, rx+ sy), which puts h in the form k(X,Y ) = AX3 +DY 3. Then extracting
the cube root of −D/A allows us to factorise k, and changing coordinates back gives
the desired result.

Returning to our original coordinates, we calculate:

H(h) = 36(ax+ by)(cx+ dy)− (bx+ cy)2 = 36[(ac− b2)x2 + (ad− bc)xy+ (bd− c2)y2].

This quadratic (removing the factor 36) has discriminant

∆(h) := (ad− bc)2 − 4(ac− b2)(bd− c2) = a2d2 + 4ac3 + 4b3d− 3b2c2 − 6abcd,

which coincides with the usual formula for the discriminant of h. We remark that in
the case a = 1, b = 0 this formula reduces to ∆(h) = d2 + 4c3.

If the roots of h are α, β, γ, the quadratic extension is the one containing σ :=
(α−β)(β−γ)(γ−α), since σ2 is a symmetric function of α, β and γ. Since the vanishing
of ∆ is also the condition for h to have equal roots, σ2 agrees with ∆ up to a scalar factor.
To check the scalar, suppose b = c = 0. Then σ = (1−ω)(ω−ω2)(ω2−1)α3 = 3

√−3α3,
∆ = a2d2 and d = aα3. Thus a4σ2 = −27a4α6 = −27a2d2 = −27∆.

3. Quartic equations I

In this case, it is convenient to think of numbers as points on the conic S0, with
parametrisation (t2, t, 1) and equation g0 = 0 in the plane P 2, where g0(x, y, z) = y2−xz.
Write the quartic equation as f(t) = 0, where

f(t) ≡ at4 + 4bt3 + 6ct2 + 4dt+ e. (1)

The basic invariants of f are the transvectant

T (f) = ae− 4bd+ 3c2

and the catalecticant

K(f) =
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The roots of f correspond to the points of intersection of S0 with the conic given by
g = 0, where

g(x, y, z) = ax2 + 4bxy + c(4y2 + 2xz) + 4dyz + ez2.

Here we can replace g = 0 by any of the conics Sλ given by g− 2λg0 = 0. The equation
of Sλ has matrix





a 2b c+ λ
2b+ c 4c− 2λ 2d
c+ λ 2d e



 ,

and its determinant evaluates to

R(f) := 2(λ3 − λT (f) + 2K(f)).
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R(f) is called the cubic resolvent of f . If λ takes a value making R(f) vanish, the conic
Sλ is singular, and so breaks up into a pair of lines. Each of these lines meets S0 in
two points, and these points are the 4 points on S0 giving the roots of f . Thus we have
an arrangement of this set of 4 points in two pairs. Conversely, for each of the 3 such
arrangements, the two lines each joining one of the pairs form a line-pair giving one of
the singular conics Sλ.

The procedure for solving the quartic f = 0 is now
(i) Choose a value of λ such that R(f) = 0.
(ii) Factorise g − 2λg0 as ℓℓ′, where ℓ and ℓ′ are linear expressions.
(iii) Substitute x = t2, y = t, z = 1 in ℓ, and solve the resulting quadratic equation;
then do the same for ℓ′.

Step (i) involves the solution of a cubic, which we can achieve by taking a square
root, then a cube root.

A short calculation shows that step (ii) also reduces to solving a quadratic, hence
involves taking a square root; and step (iii) again involves solving a quadratic.

The first step in the solution involves taking the square root of the discriminant of
the resolvent cubic, which is ∆(f) := ∆(R(f)) = T (f)3 − 27K(f)2. The quadruple of
roots in P 1 is determined up to equivalence by the single invariant

j(f) :=
T (f)3

T (f)3 − 27K(f)2
.

4. Quartic equations II

In the same style as our treatment of cubic equations, we consider involutions, i.e.
homographies of P 1 of order 2. Here it is convenient to use the inhomogeneous coordi-
nate t on P 1. An involution I may be written as att′ + b(t+ t′) + c = 0, or equivalently
as I(t) = − bt+c

at+b . I has 2 fixed points on P 1 and is determined by them. Two points are

paired by I if and only if they harmonically separate the fixed points. An involution I ′

commuting with I must either preserve the fixed points of I (in which case it coincides
with I) or interchange them.

The four roots of a quartic equation f = 0 determine, as above, four points of
P 1. For each arrangement of these four points in two pairs, say (α, β)(γ, δ) there is
a unique involution of P 1 interchanging the pairs (α, β) and (γ, δ). These involutions
correspond to the singular conics Sλ just described: the above involution corresponds
to the conic which is the union of the lines PαPβ and PγPδ. The 3 such arrangements
yield 3 involutions, which form a group isomorphic to the four group. Since any two of
the involutions commute, the corresponding pairs of fixed points separate harmonically,
so the 6 fixed points (which can be found as the zeros of the jacobian of f with its
Hessian H(f)) form the vertices of a regular octahedron under a suitable identification
of P 1(C) with the 2-sphere. The symmetry group of the octahedron is S4, isomorphic
to the group of f .

The calculations simplify if I takes the form I(t) = −t. To achieve this, choose a
root λ of the resolvent cubic: then the quadratic Sλ is a line pair. The point P of
intersection of these lines can be found by solving the linear equations

∂(g − 2λg0)/∂x = ∂(g − 2λg0)/∂y = ∂(g − 2λg0)/∂z = 0

(that these are consistent follows since λ is a root of R). The corresponding involution
is cut on S0 by lines through P . If P has coordinates (x0, y0, z0), then the points with
parameters t and t′ lie on a line through P if the determinant
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vanishes, or equivalently, removing the factor (t− t′), if

x0 − y0(t+ t′) + z0tt
′ = 0.

Let ξ be a solution of ξ2x0 + 2ξy0 + z0 = 0, and set w = ξt+1
z0t/ξ+x0

; then indeed the

involution takes the form I(w) = −w, and now taking w as coordinate reduces f to the
form aw4 + 6cw2 + e. In this situation, the procedure for solving f = 0 reduces to first
solving the quadratic equation for w2, and then taking square roots of the solutions.

When b = d = 0, the invariants reduce to T (f) = ae + 3c2 and K(f) = c(ae − c2),
and R(f) factorises as R(g) = 2(λ−2c)(λ2+2cλ+c2−ae); the root λ = 2c corresponds
to the chosen involution.

5. Over the real numbers

For a cubic equation h = 0, if ∆(h) < 0, the quadratic equation H(h) has real roots,
we can reduce the Hessian H(h) to xy, and then require the 3 cube roots of a real
number, so only one of the roots of h is real.

If however ∆(h) > 0, the quadratic has conjugate complex roots, and we can reduce
H(h) to x2 + y2. Geometrically, the Hessian points are now (±i : 1) and φ is a real
rotation through 2π/3. In this case all 3 roots of h are real.

For a quartic equation, at each stage of the above procedure where the square root of
an expression E is taken, there are two cases according to the sign of E; this seems to
lead to huge numbers of cases. However there are just 3 cases for the quartic, according
as it has 0, 2 or 4 real roots.

If f has 4 real roots p, q, r, s , the resolvent cubic has 3 real roots, corresponding to
the arrangements of the roots in pairs as (p, q)(r, s), (p, r)(q, s) and (p, s)(q, r). In each
of these cases, the conic Sλ consists of 2 real lines, and each of these lines meets S0 in
2 real points.

If f has 2 real roots p, q and a conjugate complex pair z, z, then the conics corre-
sponding to the arrangements (p, z)(q, z) and (p, z)(q, z) are conjugate to each other,
so R has just 1 real root. For the arrangement (p, q)(z, z) we have 2 real lines, with one
line meeting S0 in 2 real points, the other in none.

If f has 0 real roots, the roots form 2 conjugate complex pairs (w,w) and (z, z), and
the conic corresponding to the arrangement (w,w)(z, z) consists of 2 real lines, neither
having a real point of intersection with S0, while each of the conics corresponding to
(w, z)(w, z) and (w, z)(z, w) is real, but consists of a pair of conjugate complex lines.
Here again R has 3 real roots.

We have seen that the sign of the discriminant determines whether R has 1 or 3 real
roots. If it has 3, deciding whether f has 0 or 4 real roots is less simple, but it can be
shown that f has 4 real roots if and only if both ac − b2 and a3e − 4a2bd − 9a2c2 +
24ab2c− 12b4 are negative.

We can rewrite the above in terms of involutions, following [2]. Write J for complex
conjugation on P 1: then an involution I is real, i.e. has real coefficients, if and only if
JI = IJ . If I is a real involution, then either

type (r): its fixed points are both real (an example is I0(t) = −t); or
type (c): its fixed points are complex conjugates (an example is Ii(t) = −t−1).
If f is a real quartic, the map J must preserve the octahedron O formed by the fixed

points of the 3 involutions. There are two cases:
(a) J interchanges a pair of opposite vertices of O and fixes the other vertices;
(b) J fixes one pair of opposite vertices and interchanges the other two pairs.
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In case (a), we can take the vertices as (0,∞)(±1)(±i) (with J the usual complex
conjugation); the involutions are then t → −t, t → 1/t, t → −1/t; all are real, the first
two of type (r), the other of type (c).

In case (b), we can take the involutions as t → −t, t → i/t, t → −i/t; the first is real of

type (r), the other two are complex conjugates; and the vertices are (0,∞)(±eiπ/4)(±e−iπ/4).
In each case there is at least one real involution of type (r) preserving f .
Conversely, given a real involution I preserving f , we seek to follow the above pro-

cedure for reducing I to the form t → −t. First we solve linear equations (so can work
over R), to find a point P0 with coordinates (x0, y0, z0). We then require the square
root of y20 − x0z0. The sign of y20 − x0z0 depends whether P0 is inside or outside the
conic S0, hence on whether the involution I has 0 or 2 real fixed points. We can thus
reduce I to t → −t provided I has type (r).

In case (a), the roots of f have the form ±α,±α−1, so f(z) = (z2 −α2)(z2 −α−2) =
z4 + 6cz2 + 1, with −6c = α2 + α−2. There are 3 cases:

(i) (c < −1
3) all roots are on the real axis,

(ii) (c > 1
3) all roots on the imaginary axis,

(iii) (|c| < 1
3) all roots on the unit circle.

However we could also have begun with the other real involution of type (r). The
involutions t → −t and t → 1/t are interchanged by the substitution u = t+1

t−1 ; making

this change replaces c by 1−c
1+3c , and interchanges cases (ii) and (iii).

In case (a), we have ∆ = T 3 − 27K2 = (1 − 9c2)2 > 0, and j = T 3

T 3−27K2 = (1+3c2)3

(1−9c2)2
,

which is > 1. If c = ±1
3 , j = ∞, if c = ±1, j = 1; if c = 0, j = 1. In each of the cases

(i)-(iii), j can take any value > 1; so j is of no use to distinguish these cases.
In case (b), the roots have the form ±α,±i/α; two are real and two are complex

conjugate, and f takes the form t4 + 6ct2 − 1. Here T = 3c2 − 1, K = −c(1 + c2), and
∆ = −(1 + 9c2)2 < 0.
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