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On the order of a smallest group with a given representation degree

ROBERT HEFFERNAN AND DESMOND MACHALE

Abstract. We consider the problem of finding the minimal order of a finite group
G that has an irreducible complex representation of degree n for small values of n.

It is well known that every finite group G with k(G) conjugacy classes has k(G)
inequivalent irreducible complex matrix representations of degrees di, 1 ≤ i ≤ k(G),
and that the degree equation

k(G)
∑

i=1

d2i = |G|

holds [3, Cor. 2.7]. In this note we ask the question: For each n, what is the order f(n)
of a smallest group G with an irreducible complex representation of degree n?

For small n, the answer is provided by the following table:

n 1 2 3 4 5 6 7 8 9 10
f(n) 1 6 12 20 55 42 56 72 144 110

n 11 12 13 14 15 16 17 18 19 20
f(n) 253 156 351 336 240 272 1751 342 3420 500

n 21 22 23 24 25 26 27 28 29 30
f(n) 672 506 1081 600 2525 702 1512 812 1711 930

n 31 32
f(n) 992 1440

The purpose of this note is to discuss and justify the entries in this table. For very
small values of n we can proceed by hand but, as n increases, more theory is needed. As
n becomes larger, we make extensive use of the Small Groups library, which we access
using GAP [1].

It is well known that each di is a divisor of |G| [3, Thm. 3.11], and the number of
di equal to 1 is precisely |G : G′|, the index of the commutator subgroup of G [3, Cor.
2.23]. Moreover, if A is an abelian normal subgroup of G, then di ≤ |G : A| [3, Thm.
6.15].

If n = 1, then the answer is clearly the trivial cyclic group C1. So f(1) = 1.
From now on all the groups we consider are nonabelian, since for all abelian groups,

di = 1 for all i.
If n = 2, then since di divides |G| and

∑

d2i = |G|, we have |G| ≥ 22+2 = 6. Luckily,
there is a nonabelian group of order 6, S3, with degree equation

6 = 12 + 12 + 22,

and so S3 has an irreducible representation of degree 2. S3 is the unique nonabelian
group of order 6 with this property. So f(2) = 6.

In general we can say that f(n) ≥ n2 + n as f(n) is a multiple of n, n2 < f(n) and
G has a trivial degree d1 = 1.
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Next, consider n = 3. We know that f(3) ≥ 32 + 3 = 12 and among the groups of
order 12 there is just one, A4, with degree equation

12 = 12 + 12 + 12 + 32.

So, f(3) = 12.
If n = 4, then f(4) ≥ 42 + 4 = 20, and there is a unique group of order 20, namely

Hol(C5), with degree equation

20 = 12 + 12 + 12 + 12 + 42

and so f(4) = 20.
If n = 5, then f(5) ≥ 52+5 = 30. But every group of order 30 has a normal subgroup

of order 15, which is abelian, so di ≤
30
15 = 2 for all i. However, 5 divides the minimal

|G|, so
|G| = 35, 40, 45, 50, 55, 60, · · ·

Now, Sylow theory easily gives that groups of order 35 and 45 are abelian, so

|G| = 40, 50, 55, 60, · · · .

Diophantine analysis can be used to rule out 40 and 50; For example, if 40 =
∑

d2i +52,
we can have only one representation of degree 5, and none of degree 4, since 25 + 16 =
41 > 40. Thus the other representations are of degrees 1 or 2, the only allowable divisors
of 40. Thus the degree equation becomes

x+ 4y + 25 = 40

or
x+ 4y = 15,

which turns out to have no viable solutions, given that di must divide 40. Similarly,
every group of order 50 has an abelian subgroup of order 25 and index 2, which forces
di to be at most 2, for all i. So, 50 is ruled out as a possibility.

Now consider in general the case where p < q are odd primes and p divides q − 1. It
is well known that in this case there is a unique nonabelian group G of order pq which
has k(G) = p + q−1

p
conjugacy classes, and |G : G′| = p. The degree equation of this

group is easily seen to be

pq = p+

[

q − 1

p

]

p2,

and G has a representation of degree p. This gives in general an upper bound for f(p)
where p is an odd prime: find a prime q with p dividing q − 1. Then f(p) ≤ pq. So we
see finally that f(5) = 55. In like manner we find that f(11) = 11 · 23 = 253.

In fact, according to James and Liebeck [4], we have the following: let q be a prime
and let p divide q − 1, where p is not necessarily a prime, and let r = (q − 1)/p. Then
there is a group G of order qp with |G : G′| = p and k(G) = p + r with r irreducible
representations of degree p. So, f(p) ≤ qp.

If n = 6, then f(6) ≥ 62 + 6 = 42. Luckily, there is a unique group of order 42 with
degree equation

42 = 6 · 12 + 62,

which has a representation of degree 6. So f(6) = 42.
Notice that f(5) = 55 > 42 = f(6), so that the function f(n) is not in general

increasing.
If n = 7, then f(7) ≥ 72 + 7 = 56 and there is a group of order 56 with degree

equation
56 = 7 · 12 + 72

and so f(7) = 56.
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If n = 8, then f(8) ≥ 82+8 = 72 and there is a group of order 72 with an irreducible
representation of degree 8. So, f(8) = 72.

Now we introduce some heavier machinery. See Sloane’s integer sequence A220470
[2] for details.

(i) f(n) = n2 + n if and only if n + 1 is a prime or a power of a prime. This is
consistent with the results above and means we can write down the values of f(n)
for n = 10, 12, 15, 16, 18, 22, 24, 26, 28, 30 and 31. See Harden [2].

(ii) An upper bound for f(n) in general is given by nqn where qn is the smallest prime
power which is congruent to 1 modulo n. This is because the group of affine
transformations x 7→ ax + b from the finite field GF(qn) to itself, where an = 1
and b is an arbitrary element of GF(qn), has order nqn and has a representation
of degree n.

(iii) f(n) is a sub-multiplicative function, i.e. f(ab) ≤ f(a)f(b) because if A has a
representation of degree a and B has a representation of degree b, then A×B has
a representation of degree ab.

Now, if n = 9, then since 10 is not a prime power, f(9) > 92+9 = 90. By the above,
f(9) ≤ f(3)f(3) = 12 · 12 = 144. GAP can be used to rule out values of |G| between 90
and 144, so f(9) = 144. We again note that f(9) = 144 > 110 = f(10). Indeed, there
are infinitely many instances of this phenomenon.

The remaining values in the table can be filled in using GAP, but the values for
n = 17 and n = 19 have also been derived by Harden [2] using representation theory
and extensive non-trivial calculations.

To find values of f(n) using GAP we can simply search through nonabelian groups in
the Small Groups library whose orders are multiples of n greater than or equal to n2+n
looking for a group with a character of degree n. For small n this works reasonably well
but in some cases, such as n = 32, the large number of groups to be considered becomes
an issue. For instance, there are 1,060,391 nonabelian groups of order 1280 and we must
compute the character degrees of each of these in turn to rule out 1280 as a possible
value for f(32). This computation does not take long for an individual group, but when
such a large number of groups must be checked this approach is impractical. However,
an elementary result in character theory [3, Cor. 2.30] says that d2i ≤ |G : Z(G)| and
so, in particular, n2 ≤ |G : Z(G)|. Checking this condition for a given group G is
generally much quicker than computing the character degrees, allowing us to find f(32)
in a reasonable amount of time. We know that f(32) ≥ 322 + 32 = 1056 and, by (iii)
above, we can also say f(32) ≤ f(4)f(8) = 20 · 72 = 1440. We can now inspect orders
that are multiples of 32 between these two bounds to find that f(32) = 1440.

We note that there exist n for which two or more groups realise f(n). For example,
small groups 72/39 and 72/41 both have a representation of degree 8. Other examples
occur for n = 20, 21, 24 and 32.

The result that if n + 1 is prime or a prime power then f(n) = n(n + 1), has some
interesting connections with several difficult and unsolved problems in number theory:

(a) Sophie Germain primes. If p is a prime such that 2p+1 is also prime, then f(2p) =
2p(2p+ 1). Since f(2p) ≤ f(2)f(p) = 6f(p), we have p(2p+ 1)/3 ≤ f(p).

(b) Mersenne primes. If p is a prime such that 2p − 1 is also prime, then f(2p − 1) =
(2p − 1)(2p). In fact in general, f(2n − 1) = (2n − 1)(2n).

(c) Fermat primes. If 2n+1 is prime, it is known that n = 2k, for some natural number
k. Then f(2n) = (2n)(2n + 1).

We conclude with a number of questions:

(1) Is it possible to have f(a) = f(b) for different values of a and b?
(2) Can we have arbitrarily long sequences where f(n) is decreasing?
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(3) Are there infinitely many primes p for which f(p) = pq, where q is the smallest
prime such that p divides q−1? We note that many of the values of f(n) which
we have found arise from Frobenius groups, such as these groups of order pq.
However, we do not know of any conceptual reason why this should be the case

(4) Is it true that a smallest group with a representation of degree n, will always
have trivial centre? This is true for all the cases we have presented.

Some of the results in this paper were presented at the Munster Groups conference
held at UCC, Cork in September 2018.
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