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Modular Metric Spaces

HANA ABOBAKER AND RAYMOND A. RYAN

Abstract. We give a short introduction to the theory of mod-
ular metric spaces, including some fixed point theorems due to
Chistyakov. We give new proofs of these theorems, inspired by
Palais’s approach to the Banach fixed point theorem

1. Introduction

We begin with a simple motivating example. Let X be the set of
all points above water on the earth’s surface. For two points x, y,
let us denote by vt(x, y) the average speed required to travel directly
over land from x to y in a time t. What are the properties of the
function vt(x, y)?

Clearly, if we fix x and y, then vt(x, y) takes nonnegative values
and is a non-increasing function of t. And of course, this function is
symmetric in x and y. But there is an issue we have glossed over —
what if x and y lie in different landmasses? Since we are required
to travel by land, it is impossible to get from x to y in a time t, no
matter how fast we travel. As we would like our speed function to
be defined in all circumstances, it is reasonable to allow extended
real values and to assign the value vt(x, y) =∞ in this case.

To summarize, we now have a function taking t > 0 and x, y ∈ X
to vt(x, y) ∈ [0,∞] that is symmetric in x, y and non-increasing in t.
There is one further property worthy of note. A simple calculation
with average speeds shows that

vs+t(x, y) ≤ vs(x, z) + vt(z, y)

for all s, t > 0 and all x, y, z ∈ X.
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In 2006, Vyacheslav Chistyakov [4, 2] introduced the concept of
a metric modular on a set, inspired partly by the classical linear
modulars on function spaces employed by Nakano and other in the
1950s. Our average speed function is an example of a modular in
the sense of Chistyakov.

The concept of a modular on a vector space was introduced by
Nakano in 1950 [10] and refined by Musielak and Orlicz in 1959 [9].
In the formulation given by Kowzslowski [7, 6], a modular on a
vector space X is a function m : X → [0,∞] satisfying

(1) m(x) = 0 if and only if x = 0;
(2) m(ax) = m(x) for every a ∈ R with |a| = 1;
(3) m(ax+ by) ≤ m(x) +m(y) if a, b ≥ 0 and a+ b = 1.

A modular m is said to be convex if, instead of (3), it satisfies the
stronger property

(3’) m(ax+ by) ≤ am(x) + bm(y) if a, b ≥ 0 and a+ b = 1.

Given a modular m on X, the modular space is defined by

Xm = {x ∈ X : m(ax)→ 0 as a→ 0}

It is possible to define a corresponding F-norm (or a norm when m
is convex) on the modular space. The Orlicz spaces Lϕ are examples
of this construction [12].

The notion of a metric modular on an arbitrary set was intro-
duced in 2006 by Chistyakov as a generalization of these ideas.
Chistyakov’s formulation provides a good framework in which to
study fixed point phenomena.

2. Modular metric spaces

We start with the definition given by Chistyakov.

Definition 1. Let X be a nonempty set. A metric modular on
X is a function

w : (0,∞)×X ×X → [0,∞] ,

written as (λ, x, y) 7→ wλ(x, y), that satisfies the following axioms:

(1) wλ(x, y) = 0 if and only if x = y for all λ > 0 and x, y ∈ X
(2) wλ(x, y) = wλ(y, x) for all λ > 0 and x, y ∈ X
(3) wλ+µ(x, y) ≤ wλ(x, z) + wµ(y, z) for all λ, µ > 0 and x, y, z ∈

X.
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If the context is clear, we refer to a metric modular simply as a
modular. A modular w is said to be strict if it has the following
property: given x, y ∈ X with x 6= y, we have wλ(x, y) > 0 for all
λ > 0.

A modular w on X is said to be convex if, instead if (3), it satisfies
the stronger inequality

wλ+µ(x, y) ≤ λ

λ+ µ
wλ(x, z) +

µ

µ+ λ
wµ(z, y), (1)

for all λ, µ > 0 and x, y, z ∈ X.

Let (X, d) be a metric space with at least two points. There are
several ways to define a metric modular on X.

Example 2.1.

wλ(x, y) = d(x, y)

In this case, property (3) in the definition of a modular is just the
triangle inequality for the metric. This modular is not convex - just
take z = y and µ = λ in (1).

Example 2.2.

wλ(x, y) =
d(x, y)

λ
In this case, we can think of wλ(x, y) as the average velocity required
to travel from x to y in time λ. A simple calculation with the triangle
inequality shows that this modular is convex.

Example 2.3.

wλ(x, y) =

{
∞ if λ < d(x, y),

0 if λ ≥ d(x, y)

This simple example could be seen as an extreme case of the velocity
metaphor — if the time available is less than d(x, y), then it is
impossible to travel from x to y, but if the time is at least d(x, y)
then we can travel instantaneously. This modular is also convex.

We now look at some of the basic properties of modulars.

Proposition 2.4. Let w be a modular on the set X.

(a) For every x, y ∈ X, the function λ 7→ wλ(x, y) is non-increasing.
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(b) Let w be a convex modular. For x, y ∈ X, if wλ(x, y) is finite
for at least one value of λ, then wλ(x, y)→ 0 as λ→∞ and
wλ(x, y)→∞ as λ→ 0+.

(c) If w is a convex modular, then the function vλ(x, y) =
wλ(x, y)

λis a modular on X.

Proof.
(a) follows from property (3) of modulars, taking z = y.
(b) Taking z = y in equation (1) gives

wλ′(x, y) ≤ λ

λ′
wλ(x, y)

whenever λ′ > λ. Choosing λ for which wλ(x, y) is finite, we see that
wλ′(x, y)→ 0 as λ′ →∞. And if we fix λ′ such that wλ′(x, y) <∞,
we get wλ(x, y)→∞ as λ→ 0+.
(c) It is obvious that v satisfies the first two properties of a modular
Property (3) for v follows easily from the convexity condition on
wλ. �

3. Modular sets and modular convergence

Given a modular w on X and a point x0 in X, the two sets

Xw(x0) = {x ∈ X : wλ(x, x0)→ 0 as λ→∞}
and

X∗w(x0) = {x ∈ X : ∃λ > 0 such that wλ(x, x0) <∞}
are each known as Modular Sets around x0. These sets can be
thought of as comprising all the points that are “accessible” in some
sense from x0. In both cases, the modular sets form a partition of
X. In our motivating example, the modular sets are the individual
land masses.

It is clear that Xw(x0) ⊂ X∗w(x0) in general and Example 1 shows
that this inclusion may be strict. While there is some ambiguity in
using the same term for these two types of sets, in the sequel we
shall only be working with modular sets of the form X∗w(x0).

Proposition 3.1. If w is convex then

Xw(x0) = X∗w(x0) .

Proof. This follows immediately from Proposition 2.4 (b). �

We now turn our attention to some notions of convergence.
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Definition 2. Let w be a modular on X. A sequence (xn) in X is
said to be w-convergent (or modular convergent) to an element
x ∈ X if there exists a number λ > 0, possibly depending on (xn)
and x, such that limn→∞wλ(xn, x) = 0 A sequence (xn) in X is said
to be w–Cauchy if there exists λ > 0, possibly depending on the
sequence, such that wλ(xm, xn) → 0 as m,n → ∞. X is said to be
w–complete if every w–Cauchy sequence is w–convergent.

Metrics on the modular set
Let w be a modular on X and let Xw be any one of the modular

sets defined by w. Then the formula

dw(x, y) = inf{λ > 0 : wλ(x, y) ≥ λ}, ∀x, y ∈ Xw

defines a metric on Xw [4].
If the modular w is convex, then the modular space can be en-

dowed with another a metric d∗w given by

d∗w(x, y) = inf{λ > 0 : wλ(x, y) ≤ 1} .

These metrics on the modular set are strongly equivalent:

dw ≤ d∗w ≤ 2dw .

We refer to [4] for details.

The following result shows the relationship between modular and
metric convergence. The proof can be found in [4].

Proposition 3.2. Let w be a convex modular on X. Given a se-
quence xn for X∗w and an element x ∈ X∗w, we have:

lim
n→∞

d∗w(xn, x) = 0 ⇐⇒ lim
n→∞

wλ(xn, x) = 0 for every λ > 0.

Chistyakov gives an example to show that modular convergence is
strictly weaker than metric convergence in general [3]

4. Fixed Point Theorems

In 2011, Chistyakov generalized the Banach fixed point theorem
to the setting of modular metric spaces. Consider the definition of
a contraction on a metric space: d(Tx, Ty) ≤ kd(x, y) for all x, y,
where k is some constant between 0 and 1. Looking at Examples 1
and 2, we see that there are at least two ways to generalise this to
modular metric spaces. Chistyakov gives two definitions:
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Definition 3. Let w be a modular on a set X and let X∗w be a
modular set. A mapping T : X∗w → X∗w is said to be modular
contractive (or a w-contraction) if there exist numbers k ∈ (0, 1)
and λ0 > 0 such that

wkλ(Tx, Ty) ≤ wλ(x, y)

for all 0 < λ ≤ λ0 and all x, y ∈ X∗w.

His second definition is stronger:

Definition 4. A mapping T : X∗w → X∗w is said to be strongly
modular contractive (or a strong w-contraction)if there exist num-
bers 0 < k < 1 and λ0 > 0 such that

wkλ(Tx, Ty) ≤ kwλ(x, y)

for all 0 < λ ≤ λ0 and all x, y ∈ X∗w.

Chistyakov proved fixed point theorems for modular contractive
and strongly modular contractive mappings. Rather than follow his
proofs, our approach to these results is inspired by Richard Palais’s
proof of the Banach fixed point theorem [11].

Suppose that T is a contraction on a metric space (X, d) with
contraction constant k. Thus, we have d(Tx, Ty) ≤ kd(x, y) for
all x, y ∈ X. Combining this with an application of the triangle
inequality to the points x, y, Tx and Ty, we get the inequality

d(x, y) ≤ d(x, Tx) + d(y, Ty)

1− k
.

Palais called this the Fundamental Contraction Inequality. It is
a key ingredient in his proof, where it is used to establish the Cauchy
property for the sequence generated by iterating the mapping T on
some initial point.

We begin with a variant of Palais’s inequality for modular con-
tractive mappings.

Proposition 4.1 (Fundamental Modular Contraction Inequality).
Let w be a convex modular in X, let T : X∗w → X∗w be a modular
contractive mapping, with wkλ(Tx, Ty) ≤ wλ(x, y) for 0 < λ ≤ λ0.
Let λ1, λ2 ≥ 0, λ1 + λ2 = (1− k)λ, where 0 < λ < λ0. Then

wλ(x, y) ≤ λ1wλ1(x, Tx) + λ2wλ2(y, Ty)

λ(1− k)
(2)

for every x, y ∈ X∗w
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Proof. By the convex property, taking λ = λ1 + kλ+ λ2, we get

wλ1+kλ+λ2(x, y) ≤ λ1
λ
wλ1(x, Tx) + kwkλ(Tx, Ty) +

λ2
λ
wλ2(y, Ty)

since λ1 + λ2 = (1− k)λ and wkλ(Tx, Ty) ≤ wλ(x, y).
Therefore,

wλ(x, y) ≤ λ1
λ
wλ1(x, Tx) + kwλ(x, y) +

λ2
λ
wλ2(y, Ty) .

Hence

wλ(x, y) =
λ1wλ1(x, Tx) + λ2wλ2(y, Ty)

λ(1− k)
.

�

We now give the first fixed point theorem on modular metric
spaces by Chistyakov, but our proof uses the Fundamental Mod-
ular Contraction Inequality given in the preceding proposition.

Theorem 4.2 ([3]). Let w be a strict convex modular on X such
that the modular space X∗w is w–complete and let T : X∗w → X∗w
be a w-contractive map such that for each λ > 0 there exists an
x = x(λ) ∈ X∗w such that wλ(x, Tx) < ∞.Then T has a fixed point
x∗ in X∗w. If the modular w assumes only finite values on X∗w, then
the condition wλ(x, Tx) < ∞ is redundant, the fixed point x∗ of T
is unique and for each x0 ∈ X∗w the sequence of iterates T nx0 is
modular convergent to x∗.

Proof. If x, y are both fixed point then wλ(x, y) = 0 so x = y. Hence
a contraction mapping can have at most one fixed point. Its remains
to show that for any x0 in X the sequence T n(x0) is Cauchy. Taking
x = T (x0) and y = T n(x0) and using the Main Contraction Modular
Inequality, we get

wλ(T
n(x0), T

m(x0)) ≤

λ1wλ1(T (T n(x0), T
n(x0)) + λ2wλ2(T (Tm(x0), T

m(x0))

1− k

=
λ1wλ1(T

n(T (x0), T
n(x0)) + λ2wλ2(T

m(T (x0), T
m(x0))

1− k

≤ λ1wk−nλ1(T (x0, x0)) + λ2wk−mλ2T (x0, x0)

1− k
.
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Since k−nλ1 → ∞ as n → ∞ then k−nλ1 > λ if n big enough.
Similar k−mλ2 > λ if n big enough. Since the function λ 7→ wλ(x, y)
is non-increasing, and 0 < k < 1 we have

wk−mλ2(Tx0, x0), wk−nλ1(Tx0, x0) ≤ wλ(Tx0, x0) <∞ .

Hence
wλ(T

n(x0), T
m(x0))→ 0 .

Therefore T n(x0) is Cauchy. �

Chistyakov’s second fixed point theorem drops the convexity as-
sumption on the modular, replacing it with the requirement that the
mapping be strongly contractive. We start with another variation
of Palais’s inequality for these mappings.

Proposition 4.3 (Fundamental Strong Modular Contraction In-
equality). Let w be a modular on X and let T : X∗w → X∗w be strongly
modular contractive mapping, with wkλ(Tx, Ty) ≤ kwλ(x, y) for
0 < λ ≤ λ0. Let λ1, λ2 ≥ 0, λ1 + λ2 = (1 − k)λ, 0 < λ < λ0.
Then

wλ(x, y) ≤ wλ1(x, Tx) + wλ2(y, Ty)

1− k
(3)

for all x, y ∈ X∗w.

Proof. By property (3) in the definition of a modular, we get

wλ1+kλ+λ2(x, y) ≤ wλ1(x, Tx) + wkλ(Tx, Ty) + wλ2(y, Ty)

Using λ1 + λ2 = (1− k)λ with the strong contractive property of T ,

wλ(x, y) ≤ wλ1(x, Tx) + kwλ(x, y) + wλ2(y, Ty)

and so

wλ(x, y) ≤ wλ1(x, Tx) + wλ2(y, Ty)

1− k
for all x, y ∈ X∗w. �

We the Fundamental Strong Contraction Modular Inequality (3)
to prove the second fixed point theorem.

Theorem 4.4 ([3]). Let w be a strict modular on X such that Xw

is w-complete, let T : X∗w → X∗w be a strongly w-contractive map
such that for each λ > 0 there exists an x = x(λ) ∈ X∗w such that
wλ(x, Tx) < ∞ holds. Then T has a fixed point x∗ in X∗w. If, in
addition, w is finite valued on X∗w, then the condition wλ(x, Tx) <∞
is redundant, the fixed point x∗ of T is unique and for each x0 ∈ X∗w
the sequence of iterates T nx0 is modular convergent to x∗ [3].
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Proof. If x, y are both fixed points then wλ(x, y) = 0 so x = y.
Hence a contraction mapping can have at most one fixed point. Its
remains to show that for any x0 in X the sequence T n(x0) is Cauchy.
Taking x = T (x0) and y = T n(x0),

wλ(T
n(x0), T

m(x0)) ≤

wλ1(T (T n(x0), T
n(x0)) + wλ2(T (Tm(x0), T

m(x0))

1− k

=
wλ1(T

n(T (x0), T
n(x0)) + wλ2(T

m(T (x0), T
m(x0))

1− k

≤ knwk−nλ1(T (x0, x0)) + kmwk−mλ2(T (x0, x0))

1− k
.

If k−nλ1 →∞ then k−nλ1 > λ if n is big enough. Similarly, k−mλ2 >
λ if n also is big enough.

Since the function λ 7→ wλ(x, y) is non-increasing, and 0 < k < 1
we have

wk−mλ2(Tx0, x0), wk−nλ1(Tx0, x0) ≤ wλ(Tx0, x0) <∞ .

Hence wλ(T
n(x0), T

m(x0))→ 0. Therefore T n(x0) is Cauchy. �

5. Applications

Electrorheological fluids are liquids that rapidly solidify in the
presence of an electric field. They are often studied using Sobolev
spaces with a variable exponent [8]. It has been suggested that
modular metric spaces may be useful in modelling them [1].

Recent work indicates that modular metric space fixed point re-
sults are well adapted to certain types of differential equations [4].
Finally, we refer to [5] for a detailed study of nonlinear superposition
operators on modular metric spaces of functions.
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