Irish Math. Soc. Bulletin
Number 79, Summer 2017, 5-29
ISSN 0791-5578

Homogeneous manifolds whose geodesics are orbits.
Recent results and some open problems

ANDREAS ARVANITOYEORGOS

ABSTRACT. A homogeneous Riemannian manifold (M = G/K, g)
is called a space with homogeneous geodesics or a G-g.o. space if
every geodesic y(t) of M is an orbit of a one-parameter subgroup
of G, that is y(t) = exp(tX) - o, for some non zero vector X in the
Lie algebra of G. We give an exposition on the subject, by present-
ing techniques that have been used so far and a wide selection of
previous and recent results. We discuss generalization to two-step
homogeneous geodesics. We also present some open problems.

1. INTRODUCTION

The aim of the present article is to give an exposition on devel-
opments about homogeneous geodesics in Riemannian homogeneous
spaces, to present various recent results and discuss some open prob-
lems. One of the demanding problems in Riemannian geometry is
the description of geodesics. By making some symmetry assump-
tions one could expect that certain simplifications may accur. Let
(M, g) be a homogeneous Riemannian manifold, i.e. a connected
Riemannian manifold on which the largest connected group G of
isometries acts transitively. Then M can be expressed as a homo-
geneous space (G/K,g), where K is the isotropy group at a fixed
point o of M.

Motivated by well known facts such that, the geodesics in a Lie
group GG with a bi-invariant metric are the one-parameter subgroups
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of G, or that the geodesics in a Riemannian symmetric space G/K
are orbits of one-parameter subgroups in G/ K, it is natural to search
for geodesics in a homogeneous space, which are orbits. More pre-
cisely, a geodesic ~(t) through the origin o of M = G/K is called
homogeneous if it is an orbit of a one-parameter subgroup of GG, that
is

v(t) =exp(tX) o, teR, (1)

where X is a non zero vector in the Lie algebra g of G. A non zero
vector X € g is called a geodesic vector if the curve (1)) is a geodesic.
A homogeneous Riemannian manifold M = G/K is called a g.0.
space if all geodesics are homogeneous with respect to the largest
connected group of isometries [,(M). Since their first systematic
study by O. Kowalski and L. Vanhecke in [45], there has been a lot
of research related to homogeneous geodesics and g.o spaces and in
various directions.

Homogeneous geodesics appear quite often in physics as well. The
equation of motion of many systems of classical mechanics reduces
to the geodesic equation in an appropriate Riemannian manifold M.
Homogeneous geodesics in M correspond to “relative equilibriums”
of the corresponding system (cf. [6]). For further information about
relative equilibria in physics we refer to [36] and references therein.
In Lorentzian geometry in particular, homogeneous spaces with the
property that all their null geodesics are homogeneous, are candi-
dates for constructing solutions to the 11-dimensional supergravity,
which preserve more than 24 of the available 32 supersymmetries.
In fact, all Penrose limits, preserving the amount of supersymmetry
of such a solution, must preserve homogeneity. This is the case for
the Penrose limit of a reductive homogeneous spacetime along a null
homogeneous geodesic ([35], [50], [55]). For a recent mathematical
contribution in this topic see [28].

All naturally reductive spaces are g.o. spaces ([41]), but the con-
verse is not true in general. In [39] A. Kaplan proved the existence of
g.o. spaces that are in no way naturally reductive. These are gen-
eralized Heisenberg groups with two dimensional center. Another
important class of g.o. spaces are the weakly symmetric spaces.
These are homogeneous Riemannian manifolds (M = G/K,g) in-
troduced by A. Selberg in [57], with the property that every two
points can be interchanged by an isometry of M. In [15] J. Berndt,
O. Kowalski and L. Vanhecke proved that weakly symmetric spaces
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are g.o. spaces. In [42] O. Kowalski, F. Priifer and L. Vanhecke
gave an explicit classification of all naturally reductive spaces up
to dimension five, and in [I] the authors classified naturally reduc-
tive homogeneous spaces up to dimension six. The classification in
dimensions seven and eight was recently completed ([58]).

The term g.0. space was introduced by O. Kowalski and L. Van-
hecke in [45], where they gave the classification of all g.o. spaces
up to dimension six, which are in no way naturally reductive. Con-
cerning the existence of homogeneous geodesics in a homogeneous
Riemannian manifold, we recall the following. In ([38]) V.V. Ka-
jzer proved that a Lie group endowed with a left-invariant metric
admits at least one homogeneous geodesic. O. Kowalski and J. Szen-
the extended this result to all homogeneous Riemannian manifolds
([44]). An extension of this result to reductive homogeneous pseudo-
Riemannian manifolds was obtained ([31], [55]).

In [37] C. Gordon described g.o. spaces which are nilmanifolds
and in [63] H. Tamaru classified homogeneous g.o. spaces which are
fibered over irreducible symmetric spaces. In [26] and [30] O. Kowal-
ski and Z. Dusek investigated homogeneous geodesics in Heisenberg
groups and some H-type groups. Examples of g.0. spaces in dimen-
sion seven were obtained by Dusek, O. Kowalski and S. Nikc¢evi¢ in
[32].

In [3] the author and D.V. Alekseevsky classified generalized flag
manifolds which are g.o. spaces. Further, D.V. Alekseevsky and Yu.
G. Nikonorov in [4] studied the structure of compact g.o. spaces and
gave some sufficient conditions for existence and non existence of
an invariant metric with homogeneous geodesics on a homogeneous
space of a compact Lie group. They also gave a classification of
compact simply connected g.o. spaces of positive Euler characteris-
tic.

In [40] O. Kowalski, S. Nikcevi¢ and Z. Vlasek studied homoge-
neous geodesics in homogneous Riemannian manifolds, and in [49],
[20] G. Calvaruso and R. Marinosci studied homogeneous geodesics
in three-dimensional Lie groups. Homogeneous geodesics were also
studied by J. Szenthe in [59], [60], [61], [62]. Also, D. Latifi stud-
ied homogeneous geodesics in homogeneous Finsler spaces ([46]),

and the first author investigated homogeneous geodesics in the flag
manifold SO(20 + 1)/ U(l —m) x SO(2m + 1) ([7]).
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Homogeneous geodesics in the affine setting were studied in [26]
and [33] (and in particular for any non reductive pseudo-Riemannian
manifold).

Finally, a class of homogeneous spaces which satisfy the g.o. prop-
erty are the d-homogeneous spaces, which were introduced by V.
Berestovskii and C. Plaut in [14]. These spaces have interesting ge-
ometrical properties, but we will not persue here. We refer to the
paper [13] by V. Berestovskii and Yu.G. Nikonorov for more infor-
mation in this direction. Further useful information about geodesic
orbit spaces can be found in the recent work [53].

The paper is organized as follows. In Section 2 we present the
basic techniques for finding homogeneous geodesics and detecting if
a homogeneous space is a space with homogeneous geodesics (g.o.
space). In Section 3 we present the classification up to dimension
6 and give examples in dimension 7. In Section 4 we discuss ho-
mogeneous g.o. spaces which are fibered over irreducible symmetric
spaces and in Section 5 we present the classification of generalized
flag manifolds which are g.o. spaces. In Section 6 we present results
about another wide class of homogeneous spaces, the generalized
Wallach spaces, and in Section 6 we discuss results related to M-
spaces. These are homogeneous spaces G/K; so that G/(S x K3) is
a generalized flag manifold, where S a torus in a compact simple Lie
group GG. The pseudo-Riemannian setting is presented in Section 8.
In Section 9 we discuss a generalization of homogeneous geodesics
which we call two-step homogeneous geodesics. These are orbits of
the product of two exponential factors. Finally, in Section 10 we
present some open problems.

2. HOMOGENEOUS GEODESICS IN HOMOGENEOUS RIEMANNIAN
MANIFOLDS - TECHNIQUES

A homogeneous Riemannian manifold is a Riemannian manifold
M for which there exists a connected Lie group G C Iy(M) which
acts transitively on M as a group of isometries. Let p € M be a
fixed point. If we denote by K the isotropy group at p, then M can
be identified with the homogeneous space G/K. Note that there
may exist more than one transitive isometry groups G C Iy(M) so

that M is represented as a coset space in more than one ways. For
any fixed choice M = G/K, G acts effectively on G/K from the
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left. A G-invariant metric g on M = G/K is a Riemannian metric
so that the diffeomorphism p — a - p is an isometry.

It is known ([41]) that a Riemannian homogeneous space is always
reductive. This means that if g, £ are the Lie algebras of G and K
respectively, then there is a direct sum decomposition

g=tem, (2)

with Ad(K)(m) C m. The canonical projection 7 : G — G/K in-
duces an isomorphism between the subspace m of g and the tangent
space T, M at the identity o = eK.

A G-invariant Riemannian metric g defines a scalar product (-, -)
on m which is Ad(K)-invariant and vice-versa. If G is semisim-
ple and compact and B denotes the negative of the Killing form
of g, then any Ad(K)-invariant scalar product (-,-) on m can be
expressed as (z,y) = B(Az,y) (z,y € m), where A is an Ad(K)-
equivariant positive definite symmetric operator on m. Conversely,
any such operator A determines an Ad(K)-invariant scalar product
(r,y) = B(Az,y) on m, which in turn determines a G-invariant
Riemannian metric ¢ on m. A Riemannian metric generated by the
scalar product product B is called standard metric.

Definition 1. A homogeneous Riemannian manifold (M = G/K, g)
18 called a space with homogeneous geodesics, or G-g.o. space if every
geodesic v of M is an orbit of a one-parameter subgroup of G, that
is y(t) = exp(tX)-o, for some non zero vector X € g. The invariant
metric g 1s called G-g.0. metric. If G is the full isometry group, then
the G-g.0. space is called a manifold with homogeneous geodesics,
or a g.o. manifold.

Notice that if all geodesics through the origin o = eK are of the
form ~(t) = exp(tX) - 0, then the geodesics through any other point
a-p(ae€G,peM)is of the form avy(t) = exp(t Ad(a)X) - (a - p).

Definition 2. A non zero vector X € g is called a geodesic vector
iof the curve 1S a geodesic.

All calculations for a g.o. space G/K can be reduced to algebraic
computations using geodesic vectors. These can be computed by
using the following fundamental result of the subject, still call it
“lemma’” by tradition:

Lemma 2.1 (Geodesic Lemma [45]). A non zero vector X € g is a
geodesic vector if and only if
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<[X, Y]ma Xm> = 0; (3)
for allY € m. Here the subscript m denotes the projection into
m.

A useful description of homogeneous geodesics is provided by
the following :

Proposition 2.2. ([3]) Let (M = G/K,g) be a homogeneous Rie-
mannian manifold and A be the associated operator. Let a € € and
x €m. Then the following are equivalent:

(1) The orbit y(t) = expt(a+x) - 0 of the one-parameter subgroup
expt(a + x) through the point o = eK is a geodesic of M.

(2) [a+ x,Az] € ¢.

(3) (la,z].y) = (z,[z,ylw) for all y € m.

(4) (la+x,ylm,x) =0 for all y € m.

As a consequence, we obtain the following characterization of g.o.
spaces:

Corollary 2.3 ([3]). Let (M = G/K,g) be a homogeneous Rie-
mannian manifold. Then (M = G/K, g) is a g.o. space if and only
if for every x € m there exists an a(x) € € such that

la(x) 4+ z, Azx] € L.

Therefore, the property of being a g.o. space G/K, depends only
on the reductive decomposition and the G-invariant metric metric
g on m. That is, if (M = G/H,g) is a g.o. space, then any locally
isomorphic homogeneous Riemannian space (M = G/H, ¢') is a g.o.
space. Also, a direct product of Riemannian manifolds is a manifold
with homogeneous geodesics if and only if each factor is a manifold
with homogeneous geodesics.

In order to find all homogeneous geodesics in a homogeneous Rie-
mannian manifold (M = G/ K, g) it suffices to find a decomposition
of the form and look for geodesic vectors of the form

s l
X = Z Ti€; + Z CLjAj. (4)
1=1 j=1

Here {e; : ¢ = 1,2,...,s} is a convenient basis of m and {4, : j =
1,2,...,1} is a basis of £. By substituting X =e¢; (i =1,...,s) into
equation we obtain a system of linear algebraic equations for the
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variables x; and a;. The geodesic vectors correspond to those solu-
tions for which x1, ..., x, are not all equal to zero. For some applica-
tions of this method we refer to [40] and [49]. Also, (M = G/K,g) is
a g.o. space if and only if for every non zero s-tuple (x1, ..., xs) there
is an [-tuple (ay, ..., q;) satisfying all quadratic equations. A useful
technique used for the characterization of Riemannian g.o. spaces
is based on the concept of the geodesic graph, originally introduced
in [59]. We first need the following definition.

Definition 3. A Riemannian homogeneous space (G/K, g) is called
naturally reductive if there exists a reductive decomposition (3) of g
such that

(X, Z]m, Y) + (X, [Z,Y]n) =0, foral X, Y,Zem. (5

It is well known that condition implies that all geodesics in
G /K are homogeneous (e.g. [54]).

Definition 4. A homogeneous Riemannian manifold (M, g) is nat-
urally reductive if there exists a transitive group G of isometries for
which the correseponding Riemannian homogeneous space (G/K, g)
is naturally reductive in the sense of Definition [3.

Therefore, it could be possible that a homogeneous space M =
G/K is not naturally reductive for some group G € [y(M) (the
connected component of the full isometry group of M), but it is
naturally reductive if we write M = G’/ K’ for some larger group of
isometries G' C Iy(M).

Let (M = G/K,g) be a g.o. space and let g = €@ m be an
Ad(K)-invariant decomposition. Then

(1) There exists an Ad(H )-equivariant map 1 : m — £ (a geodesic
graph) such that for any X € m\{0}, the curve expt(X +n(X)) -0
is a geodesic.

(2) A geodesic graph is either linear (which is equivalent to natu-
ral reductivity with respect to some Ad(K)-invariant decomposition
g = t@m’) or it is non differentiable at the origin o.

It can be shown ([43]) that a geodesic graph (for a g.o. space)
is uniquely determined by fixing an Ad(H )-invariant scalar product
on . Examples of g.o. spaces by using geodesic graphs are given in
[29], [32], and [43]. Conversely, the property (1) implies that G/K
s a g.0. space.
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Another technique for producing g.o. metrics was given by C.
Gordon as shown below:

Proposition 2.4. ([37], [63]) Let G be a connected semisimple Lie
group and H D K be compact Lie subgroups in G. Let My and Me
be the tangent spaces of F = H/K and C' = G/H respectively. Then
the metric gop = aB |y, +0B |, (a,b € RY) is a g.o. metric on
G/K if and only if for any vp € Mp, ve € Mc there exists X € ¢
such that

(X, vp] = [ X +vp,vc] = 0.

Actually, Gordon proved a more general result based on descrip-
tion of naturally reductive left-invariant metrics on compact Lie
groups given by J.E. D’Atri and W. Ziller in [24].

3. LOW DIMENSIONAL EXAMPLES

The problem of a complete classification of g.o. manifolds is open.
Even the classification all g.o. metrics on a given Riemannian ho-
mogeneous space is not trivial (cf. for example [51]). A complete

classification is known up to dimesion 6, given by O. Kowalski and
L. Vanhecke:

Theorem 3.1. ([45]) 1) All Riemannian g.o. spaces of dimension
up to 4 are naturally reductive.

2) Every 5-dimensional Riemannian g.o. space is either naturally
reductive, or of isotropy type SU(2).

3) Every 6-dimensional Riemannian g.o. space is either naturally
reductive or one of the following:

(a) A two-step nilpotent Lie group with two-dimensional center,
equipped with a left-invariant Riemannian metric such that the maz-
imal connected isotropy subgroup is isomorphic to SU(2) or U(2).
Corresponding g.o. metrics depend on three real parameters.

(b) The universal covering space of a homogeneous Riemannian
manifold of the form (M = SO(5)/ U(2),g) or (M = S0O(4,1)/U(2), 9),
where SO(5) or SO(4, 1) is the identity component of the full isom-
etry group, respectively. In each case, all corresponding invariant
metrics g.o. metrics g depend on two real parameters.

As pointed out by the authors in [45, p. 190], the g.o. spaces (a)
and (b) are in no way naturally reductive in the following sence:
whatever the representation of (M, g) as a quotient of the form
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G'/K', where G’ is a connected transitive group of isometries of
(M, g), and whatever is the Ad(K)-invariant decomposition g’ =
' @m', the curve y(t) = exp(tX) - 0 is never a geodesic (for any
X e m\{0}).

The first 7-dimensional example of a g.0o. manifold was given by C.
Gordon in [37]. This is a nilmanifold (i.e. a connected Riemannian
manifold admitting a transitive nilpotent group of isometries), and
it was obtained under a general construction of g.o. nilmanifolds.
It took some time until some more 7-dimensional examples were
given. In [32] Z. Dusek, O. Kowalski and S. Nikcevi¢ gave families
of 7-dimensional g.o. metrics. Their main result is the following:

Theorem 3.2. ([32]) On the 7-dimensional homogeneous space G| K
= (SO(5)xS0(2))/ U(2) (or G/H = (SO(4,1)xSO(2))/ U(2) ) there
is a family g, 4 of invariant metrics depending on two parameters p, q
(where the pairs (p,q) fill in an open subset of the plane) such that
each homogeneous Riemannian manifold (G/H, g,,) is a locally ir-
reducible and not naturally reductive Riemannian g.o0. manifold.

4. FIBRATIONS OVER SYMMETRIC SPACES

In the work [63] H. Tamaru classified homogeneous spaces M =
G /K satistying the following properties: (i) M is fibered over irre-
ducuble symmetric spaces G/H and (ii) certain G-invariant metrics
on M are G-g.o. metrics. More precisely, for G connected and
semisimple, and H, K compact with G D H D K, he considered the
fibration

F=H/K—+M=G/K— B=G/H

and the G-invariant metrics g, on M determined by the scalar
products

(,)=aBl;+bBl,, ab>0.

Here § and b are the tangent spaces of F' and B respectively, so
that the tangent space of M at the origin is identified with § & b.
By using results from polar representations, he classifed all triplets
(G, H, K) so that the metrics g,; are G-g.o. metrics. The triplets
of Lie algebras (g, b,£) so that (g,h) is a symmetric pair and (g, £)
corresponds to a G-g.o. space G/K, are listed in Table .



14 ARVANITOYEORGOS

g b ¢
1 so(2n+1),n > 2 s0(2n) u(n)
2 so(dn+1),n>1 50(4n) su(2n)
3 50(8) 50(7) 92
4 s0(9) 50(8) s0(7)
5 su(n+1),n>2 u(n) su(n)
6 su(2n+1),n > 2 u(2n) u(l) @ sp(n)
7 su(2n+1),n > 2 u(2n) sp(n)
8 sp(n+1),n>1 sp(1) ® sp(n) u(l) @ sp(n)
9 sp(n+1),n>1 sp(1) @ sp(n) sp(n)
10 | su(2r +n),r >2,n>1|su(r) ®su(r +n) ®R|su(r) & su(r +n)
11 so(dn+2),n > 2 u(2n +1) su(2n + 1)
12 ¢6 R @ s0(10) 50(10)
13 50(9) s0(7) @ s0(2) g2 @ s0(2)
14 s0(10) s0(8) @ s0(2) spin(7) & so(2)
15 so(11) 50(8) @ s0(3) spin(7) & so(3)

TABLE 1. Riemannian g.o. spaces G/K fibered over
irreducible symmetric spaces G/H ([63]).

5. GENERALIZED FLAG MANIFOLDS

In the work [3] D.V. Alekseevsky and the author classified gen-
eralized flag manifolds with homogeneous geodesics. Recall that a
generalized flag manifold is a homogeneous space G /K which is an
adjoint orbit of a compact semisimple Lie group G. Equivalently,
the isotropy subgroup K is the centralizer of a torus (i.e. a maximal
abelian subgroup) in G. We assume that G acts effectively on M. A
flag manifold M = G/ K is simply connected and has the canonically
defined decomposition M = G/K = G/ K1 xGy/ Ky x -+ - X G,/ K,
where G, . .., G, are simple factors of the (connected) Lie group G.
This decomposition is the de Rham decomposition of M equipped
with a G-invariant metric ¢g. In particular, (M, g) is a g.o. space
if and only if each factor (M; = G;/Ki,g; = gl,;) is a g.o. space.
This reduces the problem of the description of G-invariant metrics
with homogeneous geodesics in a flag manifold M = G/K to the
case when the group G is simple.

Flag manifolds M = G/K with G a simple Lie group can be
classified in terms of their painted Dynkin diagrams. It turns out
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that for each classical Lie group there is an infinite series of flag
manifolds, and for each of the exceptional Lie groups G, Fy, Eg, E7,
and FEg there are 3, 11, 16, 31, and 40 non equivalent flag manifolds
respectively (eg. [2], [LI6]). An important invariant of flag manifolds
is their set of T-roots Rp. This is defined as the restriction of the
root system R of g to the center t of the stability subalgebra € of K.
In [3] we defined the notion of connected component of Ry, namely
two T-roots are in the same component if they can be connected by
a chain of T-roots whose sum or difference is also a T-root. The set
Ry is called connected if it has only one connected component.

Theorem 5.1. ([3]) If the set of T-roots is connected then the stan-
dard metric on M = G/K is the only G-invariant metric (up to
scalar) which is a g.o. metric.

Hence, for a flag manifold M = G/K (G simple), a G-invariant
g.0. metric may exist, only when Rp is not connected, so we only
need to study those flag manifolds. It turns out that the system of
T-roots is not connected only for three infinite series of a classical
Lie group (namely the spaces SO(2¢ + 1)/ U({ —m) - SO(2m + 1),
Sp(¢)/ U(¢ —m) - Sp(m), and SO(2¢)/ U(¢ —m) - SO(2m)), and for
10 flag manifolds of an exceptional Lie group. An perpective of the
above theorem is given by the following theorem:

Theorem 5.2. ([3]) Let M = G/K be a flag manifold of a simple
Lie group. Then the set of T-roots is not connected if and only if
the isotropy representation of M consists of two irreducible (non-
equivalent) components.

Therefore, the problem of the description of G-invariant metrics on
flag manifolds with homogeneous geodesics reduces substantially to
the study of this short list of prospective flag manifolds. To this end,
we used the classification Table |1| of the work of H. Tamaru ([63]).
Since any flag manifold can be fibered over a symmetric space ([17]),
then by using Theorem we obtain that the only flag manifolds
which are in Table[l]are SO(2¢+41)/ U(¢) and Sp(¢)/ U(1)-Sp(¢—1).

On the other hand, in [5] D.N. Akhiezer and E.B. Vinberg classi-
fied all compact weakly symmetric spaces. Their classification shows
that the only flag manifolds which are weakly symmetric spaces are
SO(2¢ +1)/U(¢) and C(1,£ — 1) = Sp(¢)/U(1) - Sp(¢ — 1). This
implies that any SO(2¢ + 1)-invariant metric gy on SO(2¢+ 1)/ U(¥)
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(depending, up to scale, on one real parameter \) is weakly sym-
metric, hence it has homogeneous geodesics. Similarly for any Sp(¢)-
invariant metric g, on Sp(¢)/U(1) - Sp(¢ — 1). In fact, the action of
the group SO(2¢ + 1) on SO(2¢ + 1)/ U(¢) can be extended to the
action of the group SO(2¢ + 2) with isotropy subgroup U (¢ + 1),
which preserves the complex structure and the standard invariant
metric gy (which corresponds to A = 1). Hence, the Riemannian
flag manifold (SO(2¢ + 1)/ U(¥), go) is isometric to the Hermitian
symmetric space Com(R?**2) = SO(2¢ + 2)/U({ 4 1) of all com-
plex structures in R**2. Similarly, the action of the group Sp(¢) on
Sp(¢)/U(1) - Sp(¢ — 1) can be extended to the action of the group
SU(2¢) with isotropy subgroup S(U(1) x U(2¢ — 1)). As a conse-
quence of the above we obtain the following:

Theorem 5.3. ([3]) The only flag manifolds M = G/K of a simple
Lie group G admiting a non naturally reductive G-invariant metric
g with homogeneous geodesics are the manifolds SO(2¢ + 1)/U(¢)
and Sp(¢)/ U(1)-Sp(£—1) (¢ > 2), which admit (up to scale) a one-
parameter family of SO(20 + 1) (resp. Sp({) )-invariant metrics gy.
Moreover, these manifolds are weakly symmetric spaces for A > 0,
and they are symmetric spaces with respect to Isom(gy) if and only
if A =1, 1.e. gx 15 a multiple of the standard metric.

Note that for ¢ = 2 we obtain Sp(2)/U(1) - Sp(1) = SO(5)/ U(2),
where the second quotient is an example of g.o. space in [45] which
is not naturally reductive.

Finally, we mention a remarkable coincidence between Theorem
and a result by F. Podesta and G. Thorbergsson in [56], where
they studied coisotropic actions on flag manifolds. One of their
theorems states that if M = G/K is a flag manifold of a simple Lie
group then the action of K on M is coisotropic, if and only if M is
up to local isomorphic either a Hermitian symmetric space, or one
of the spaces obtained in Theorem [5.3]

6. GENERALIZED WALLACH SPACES

Let G/K be a compact homogeneous space with connected com-
pact semisimple Lie group G and a compact subgroup K with re-
ductive decomposition g = ¢dm. Then G/K is called generalized
Wallach space (known before as three-locally-symmetric spaces, cf.
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[47]) if the module m decomposes into a direct sum of three Ad(K)-
invariant irreducible modules pairwise orthogonal with respect to
B, ie. m = my @ my ® mg, such that [m;,m;] C ¢ =123 Ev-
ery generalized Wallach space admits a three parameter family of
invariant Riemannian metrics determined by Ad(K)-invariant inner
products (-,-) = MB(+,*) |m, +XB(-,") |my, TA3B(,+) |ms, wWhere
A1, A, A3 are positive real numbers. The classification of generalized
Wallach spaces was recently obtained by Yu.G. Nikoronov ([52]) (G
semisimple) and Z. Chen, Y. Kang, K. Liang ([I8]) (G simple) as
follows:

Theorem 6.1 ([52]). Let G/K be a connected and simply connected
compact homogeneous space. Then G/K is a generalized Wallach
space if and only if it is one of the following types:

1) G/K s a direct product of three irreducible symmetric spaces
of compact type.

2) The group is simple and the pair (g,€) is one of the pairs in
Table 2.

3)G=FxFxFxF and K = diag(F) C G for some connected,
compact, simple Lie group F, with the following description on the
Lie algebra level:

(gvé) = (f@f@f@f,diag(f)) = {(X7X7X7X) | X € f}7

where § is the Lie algebra of F, and (up to permutation) m; =
{(X, X, -X,—-X) | X e f}, my = {(X,-X,X,-X) | X € f},
my = {(X,—X,~X,X) [ X € f}.

g ¢ g ¢
so(k+1+m)|so(k)®so(l) ®so(m) er| s0(8) ®3sp(l)
su(k +1+m)|su(k) ®su(l) ®su(m)|er | su(6) ®sp(l) DR
sp(k+1+m) |sp(k)®sp(l) Dsp(m) |er 50(8)

su(2l),0> 2 u(l) es| s0(12) @ 2sp(1)

s0(20),1 > 4 u(l)du(l—1) es| 50(8) Dso(8)
e6 su(4) ®2sp(1) ®R |f4| s0(5) ® 2sp(1)
e 50(8) & R* 4 50(8)
¢ 5p(3) ® sp(1)

Table 2. The pairs (g, €) corresponding to generalized Wallach spaces G/K
with G simple ([52]).
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In [10] Yu Wang and the author investigated which of the families
of spaces listed in Theorem are g.0. spaces. By applying the
method of searching for geodesics vectors shown at the end of Section
2 we obtained the following:

Theorem 6.2. ([10]) Let (G/K,g) be a generalized Wallach space
as listed in Theorem [6.1. Then

1) If (G/K,g) is a space of type 1) then this is a g.o. space for
any Ad(K)-invariant Riemannian metric.

2) If (G/K,g) is a space of type 2) or 3) then this is a g.o. space
if and only if g 1s the standard metric.

However, in order to find all homogeneous geodesics in G/ K it suf-
fices to find all the real solutions of a system of dimm; 4+ dimmy +
dim mg quadratic equations. By Theorem we only need to con-
sider homogeneous geodesics for spaces of types 2) and 3) given
in Theorem [6.1] for the metric (A, A9, A3), where at least two of
A1, A9, Az are different. This is not easy in general. We obtained
all homogeneous geodesics (for various values of the parameters
A1, A2, Az for the generalized Wallach space SU(2)/{e}, hence recov-
ering a result on R.A. Marinosci ([49, p. 266]), and for the Stiefel
manifolds SO(n)/SO(n — 2), (n > 4).

7. M-SPACES

Let G/K be a generalized flag manifold with K = C(S5) = S x Kj,
where S is a torus in a compact simple Lie group G and K; is the
semisimple part of K. Then the associated M -space is the homo-
geneous space G/ K;. These spaces were introduced and studied by
H.C. Wang in [64].

In the works [11] and [12]Y. Wang, G. Zhao and the author investi-
gated homogeneous geodesics in a class of homogeneous spaces called
M-spaces. We proved that for various classes of M-spaces, the only
g.0. metric is the standard metric. For other classes of M-spaces we
give either necessary or necessary and sufficient conditions so that a
G-invariant metric on G/K; is a g.o. metric. The analysis is based
on properties of the isotropy representation m = m; & --- @ m, of
the flag manifold G/K, in particular on the dimension of the sub-
modules m;. We summarize these results below.

Let g and € be the Lie algebras of the Lie groups G and K respec-
tively. Let g = ¢®&m be an Ad(K)-invariant reductive decomposition
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of the Lie algebra g, where m = T,(G/K). This is orthogonal with
respect to B = —Killing from on g. Assume that

m=m; P Dmy (6)

is a B-orthogonal decomposition of m into pairwise inequivalent ir-
reducible ad(€)-modules.

Let G/K; be the corresponding M-space and s and ¢; be the Lie
algebras of S and K; respectively. We denote by n the tangent
space T,(G /K1), where o = eK;. A G-invariant metric g on G/K;
induces a scalar product (-,-) on n which is Ad(K;)-invariant. Such
an Ad(K)-invariant scalar product (-,-) on n can be expressed as
(x,y) = B(Az,y) (z,y € n), where A is the Ad(K)-equivariant
positive definite symmetric operator on n.

The main results are the following:

Theorem 7.1. ([I1]) Let G/K be a generalized flag manifold with
s > 3 in the decomposition (@) Let G/K; be the corresponding
M -space.

1) Ifdimm; #2 (i=1,...,s) and (G/Ky,g) is a g.o. space, then

g = <'7 > - ,LLB(-, ) |5 +>\B('7 ) ‘ml@mz@-@msa (Ma A > 0)'
2) If there exists some j € {1,...,s} such that dimm; = 2, then
(G/K1,g) is a g.o. space if and only if g is the standard metric.

Theorem 7.2. ([12]) Let G/K be a generalized flag manifold with
two isotropy summands given by (6), and (G/Ki,g) be the corre-
sponding M -space. Then

1) If dimmy = 2, then the standard metric is the only g.o. metric
on M-space (G/Ky,g), unless G/K; = SO(5)/SU(2) or
Sp(n)/Sp(n —1), (n > 2).

2) If dimmy # 2 and the M-space (G/Ki,g) is a g.o. space,
then g = <7> = MB('7'> ‘s +>\B('7'> ‘m1@m27 (,LL,)\ > 0)7 unless
G/K1=5S02n+1)/SU(n), (n > 2).

However, the spaces SO(5)/SU(2) and Sp(n)/Sp(n — 1) are in-
cluded in Tamaru’s Table [T} therefore they admit g.o. metrics. For
the generalized flag manifolds with s = 1 or 2 in the decomposition
() we use Theorem [6.2] and Tamaru’s results in [63] to prove exis-
tence of non naturally reductive g.o. metrics in certain M-spaces,
including the three isolated classes listed in parts 1) and 2) of The-
orem [6.2]
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We prove the following:

~

Theorem 7.3. ([12]) The M-spaces SU(n + 1)/SU(n), (n > 2)
SU2r+n)/SU(r)xSU(r+n), (r >2,n>1), SO(4n+1)/SU(2n),
(n>1), Sp(n)/Sp(n—1),(n > 2), SO(4n+2)/SU(2n+1), (n > 2)
and FEg/SO(8) admit non naturally reductive g.o. metrics.

Finally, by using techniques from [I1] we can prove the following:

Theorem 7.4. ([I1]) Let G/K be a generalized flag manifold with
corresponding M -space (G/ K7, g).

1) If G = Gy, then (Go/ K1, g) is a g.o. space if and only if g is
the standard metric.

2) If G = Fy, then the standard metric is the only g.o. metric on
Fy/ Ky, unless K1 = SU(2) x SU(3), or K1 = SO(7).

3) If G = Eg, then the standard metric is the only g.o. metric on
Es/ K1, unless K1 is one of SU(3) x SU(3) x SU(2), SU(5) x SU(2),
SU(2) x SU(2) x SU(3), SO(8), or SO(10).

By a result of H. Tamaru [63] it follows that the M-space
FEs/SO(10) admits non-naturally reductive g.o. metrics.

8. HOMOGENEOUS GEODESICS IN PSEUDO-RIEMANNIAN
MANIFOLDS

It is well known that any homogeneous Riemannian manifold is re-
ductive, but this is not the case for pseudo-Riemannian manifolds in
general. In fact, there exist homogeneous pseudo-Riemannian man-
ifolds which do not admit any reductive decomposition. Therefore,
there is a dichotomy in the study of geometrical problems between
reductive and non reductive pseudo-Riemannian manifolds. Due to
the existence of null vectors in a pseudo-Riemannian manifold the
definition of a homogeneous geodesic y(t) = exp(tX) - 0 needs to be
modified by requiring that V:y = k()% (see also relevant discus-
sion in [48, pp. 90-91]). It turns out that k() is a constant function
(cf. [31]. Even though an algebraic characterization of geodesic vec-
tors (that is an analogue of the geodesic Lemma was known to
physicists ([35], [55]), a formal proof was given by Z. Dusek and O.
Kowalski in [31].

Lemma 8.1 ([31]). Let M = G/H be a reductive homogeneous
pseudo-Riemannian space with reductive decomposition g = m @ b,
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and X € g. Then the curve y(t) = exp(tX) - 0 is a geodesic curve
with respect to some parameter s if and only if

([X, Z)m, Xm) = k{ X, Zu), forall Z € m,

where k is some real constant. Moreover, if k = 0, then t is an
affine parameter for this geodesic. If k # 0, then s = e is an affine
parameter for the geodesic. This occurs only if the curve y(t) is a
null curve in a (properly) pseudo-Riemannian space.

For applications of this lemma see [28]. The existence of homo-
geneous geodesics in homogeneous pseudo-Riemannian spaces (for
both reductive and non reductive) was answered positively only re-
cently by Z. Dusek in [27].

Two-dimensional and three-dimensional homogeneous pseudo Rie-
mannian manifolds are reductive ([19], [34]). Four-dimensional non
reductive homogeneous pseudo-Riemannian manifolds were classi-
fied by M.E. Fels and A.G. Renner in [34] in terms of their non
reductive Lie algebras. Their invariant pseudo-Riemannian metrics,
together with their connection and curvature, were explicitly de-
scribed in by G. Calvaruso and A. Fino in [22].

The three-dimensional pseudo-Riemannian g.o. spaces were clas-
sified by G. Calvaruso and Marinosci in [2I]. In the recent work
[23], G. Calvaruso, A. Fino and A. Zaeim obtained explicit ex-
amples of four-dimensional non reductive pseudo-Riemannian g.o.
spaces. They deduced an explicit description in coordinates for all
invariant metrics of non reductive homogeneous pseudo-Riemannian
four-manifolds. For those four-dimensional non reductive pseudo-
Riemannia spaces which are not g.o., they determined the homoge-
neous geodesics though a point.

9. TWO-STEP HOMOGENEOUS GEODESICS

In the work [9] N.P. Souris and the author considered a generali-
sation of homogeneous geodesics, namely geodesics of the form

v(t) = exp(tX)exp(tY)-o, X,Y €g, (7)

which we named two-step homogeneous geodesics. We obtained suf-
ficient conditions on a Riemannian homogeneous space G /K, which
imply the existence of two-step homogeneous geodesics in G/K. A
Riemannian homogeneous spaces G/K such that any geodesic of
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G /K passing through the origin is two-step homogeneous is called
two-step g.o. spaces.

Geodesics of the form had appeared in the work [65] of H.C.
Wang as geodesics in a semisimple Lie group G, equipped with a
metric induced by a Cartan involution of the Lie algebra g of G.
Also, in [25] R. Dohira proved that if the tangent space T,(G/K)
of a homogeneous space splits into submodules m;, my satisfying
certain algebraic relations, and if G/K is endowed with a special
one parameter family of Riemannian metrics g., then all geodesics
of the Riemannian space (G/K, g.) are of the form (7). The main
result of [9] is the following:

Theorem 9.1. ([9]) Let M = G/K be a homogeneous space admit-
ting a naturally reductive Riemannian metric. Let B be the corre-
sponding inner product onm = T,(G/K). We assume that m admits
an Ad(K)-invariant orthogonal decomposition

m=m emao- - Om,, (8)
with respect to B. We equip G/K with a G-invariant Riemann-
ian metric g corresponding to the Ad(K)-invariant positive definite
inner product (-,-) = M Bl + -+ A Bl , Ar,.o A > 00 Uf
(mq, my) is a pair of submodules in the decomposition (8) such that

[mg, my| C my, 9)
then any geodesic v of (G/K, g) with v(0) = o and ¥(0) € m,Bmy, is
a two-step homogeneous geodesic. In particular, if ¥(0) = X, + X, €
m, & my, then for every t € R this geodesic is given by

v(t) = expt(Xy + AXp) expt(l — N) Xy -0, where A = N/ )\,

Moreover, if either A\, = Ay or [mg,mp] = {0} holds, then v is a
homogeneous geodesic, that is y(t) = expt(X, + X3) - 0, for any
teR.

The following corollary provides a method to obtain many exam-
ples of two-step g.o. spaces.

Corollary 9.2. Let M = G/K be a homogeneous space admitting
a naturally reductive Riemannian metric. Let B be the correspond-
ing inner product of m = T,(G/K). We assume that m admits an
Ad(K)-invariant, B-orthogonal decomposition m = my @ my, such
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that [my, mg] C my. Then M admits an one-parameter family of
G-invariant Riemannian metrics gy, A € R, such that (M, gy) is
a two-step g.o. space. Each metric gy corresponds to an Ad(K)-
invariant positive definite inner product on m of the form ( , ) =

Bl,, +ABly,, A>0.

The above Corollary |9.2]is a generalisation of Dohira’s result [25].
The main tool for the proof of Theorem is the following propo-
sition.

Proposition 9.3. ([§])Let M = G/K be a homogeneous space and
v : R — M be the curve y(t) = exp(tX) exp(tY) exp(tZ) - o, where
X,Y.Z em. Let T : R — Aut(g) be the map given by

T(t) = Ad(exp(—tZ) exp(—tY)). Then y is a geodesic in M through
o = eK if and only if for any W € m, the function Gy : R - R
given by

Gw(t) = ((TX)m+(TY )+ Zo, W, TX +TY + Z] )
+ (W [TX,TY + Z)u+ [TY, Z]n ),
1s identically zero, for every t € R.

The above proposition is a new tool towards the study of geodesics
consisting of more than one exponential factors. In fact, for X =
Y = 0 we obtain Lemma 2.1 of Kowalski and Vanhecke.

A natural application of Corollary is for total spaces of homo-
geneous Riemannian submersions, as shown below.

Proposition 9.4. Let G be a Lie group admitting a bi-invariant
Riemannian metric and let K, H be closed and connected subgroups
of G, such that K C H C G. Let B be the Ad-invariant positive
definite inner product on the Lie algebra g corresponding to the bi-
invariant metric of G. We identify each of the spaces T,(G/K),
T,(G/H) and T,(H/K) with corresponding subspaces m,m; and my
of g, such that m = my ®my. We endow G /K with the G-invariant
Riemannian metric gy corresponding to the Ad(K)-invariant posi-
tive definite inner product ( , ) = B|, +AB|, , A>0. Then
(G/K,gy) is a two-step g.o. space.

Example 9.5. ([8]) The odd dimensional sphere S***! can be con-
sidered as the total space of the homogeneous Hopf bundle S —
S+l 5 CP". Let g; be the standard metric of S?"*'. We equip
S?"*! with an one parameter family of metrics ¢y, which “deform”
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the standard metric along the Hopf circles S!. By setting G =
Un+1), K=U(n) and H = U(n) x U(1), the Hopf bundle corre-
sponds to the fibration H/K — G/K — G/H.

Since U(n + 1) is compact, it admits a bi-invariant metric corre-
sponding to an Ad(U(n + 1))-invariant positive definite inner prod-
uct B on u(n + 1). We identify each of the spaces T,S**! =
T,(G/K), T,CP" = T,(G/H), and T,S' = T,(H/K) with corre-
sponding subspaces m,my, and my of u(n + 1). The desired one
parameter family of metrics g, corresponds to the one parameter
family of positive definite inner products ( , ) = B[, + A B|,
A > 0 onm = m;®my. Then Proposition 0.4 implies that (S**1, gy)
is a two-step g.o. space. In particular, let X € T,S?*"*!. Then the
unique geodesic v of (S*"1, g\) with v(0) = o and ¥(0) = X, is
given by y(t) = expt(X; +AX32) expt(1 — )Xy -0, where X5, X, are
the projections of X on m; = T,CP" and my = T,S! respectively.
Note that if A = 1 + ¢, € > 0, then the metrics ¢g;,. are Cheeger
deformations of the natural metric ¢;.

By using Proposition it is possible to construct various classes
of two-step g.o spaces. The recipe is the following:
(i) Let G/K be a homogeneous space with reductive decomposition
g = € & m admitting a naturally reductive metric corresponding to
a positive definite inner product B on m.
(ii) We consider an Ad(K)-invariant, orthogonal decomposition m =
n D --- Pdn, with respect to B.
(iii) We separate the submodules n; into two groups as m; = n;, @
- @mn, and me=mn; DB n;, so that [my, my] C my. The
decomposition m = m; &my is Ad(K)-invariant and orthogonal with
respect to B.
(iv) Then Corollary 9.2 implies that G/ K admits an one parameter
family of metrics gy so that (G/K,g)) is a two-step g.o. space.

In [9] we applied the above recipe to the following classes of ho-
mogeneous spaces:
1) Lie groups with bi-invariant metrics, equipped with an one pa-
rameter family of left-invariant metrics.
2) Flag manifolds equipped with certain one parameter families of
diagonal metrics.
3) Generalized Wallach spaces equipped with three different types
of diagonal metrics (thus recovering some results from [§]).
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4)  k-symmetric spaces where k is even, endowed with an one pa-
rameter family of diagonal metrics.

10. SOME OPEN PROBLEMS

It seems that the target for a complete classification of homoge-
neous g.o. spaces in any dimension greater than seven is far for
being accomplished. In dimension seven there are several examples
but a complete classification is still unknown. However, as shown in
the present paper, for some large classes of homogeneous spaces it is
possible to obtain some necessary conditions for the g.o. property.
These conditions are normally imposed by the special Lie theoretic
structure of corresponding homogeneous space. Also, the problem
of an explicit description of homogeneous geodesics for spaces which
are not g.o., is not trivial either. Eventhough it is mathematically
simple, it requires high computational complexity. A more tractable
problem could be to classify g.o. spaces with two or three irreducible
isotropy summands.

Further, it is not usually an easy matter to show that the g.o.
property of (M = G/K, g) does not depend on the representation as
a coset space and on the Ad(K)-invariant decomposition g = ¢ @ m.
Therefore, we often stress that we study G-g.o. spaces.

Also, it would be interesting to see how various results about Rie-
mannian manifolds could be adjusted to pseudo-Riemannian mani-
folds, such as Propositions [2.2] [9.3]

Concerning generalizations of the g.o. property, we have intro-
duced the concept of a two-step homogeneous geodesic and two-step
g.0. space. We conjecture that a search for three-step (or more)
homogeneous geodesics reduces to two-step homogeneous geodesics.
Also, it would be interesting to study two-step homogeneous geodes-
ics in pseudo-Riemannian manifolds (formulate corresponding geo-
desic lemma etc.).
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