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The chain rule for F-differentiation

T. CHAOBANKOH, J. F. FEINSTEIN AND S. MORLEY

Abstract. Let X be a perfect, compact subset of the complex
plane, and let D(1)(X) denote the (complex) algebra of continuously
complex-differentiable functions on X. Then D(1)(X) is a normed
algebra of functions but, in some cases, fails to be a Banach func-
tion algebra. Bland and the second author ([3]) investigated the
completion of the algebra D(1)(X), for certain sets X and collec-
tions F of paths in X, by considering F -differentiable functions on
X.

In this paper, we investigate composition, the chain rule, and
the quotient rule for this notion of differentiability. We give an
example where the chain rule fails, and give a number of sufficient
conditions for the chain rule to hold. Where the chain rule holds,
we observe that the Faá di Bruno formula for higher derivatives is
valid, and this allows us to give some results on homomorphisms
between certain algebras of F -differentiable functions.

Throughout this paper, we use the term compact plane set to mean
a non-empty, compact subset of the complex plane, C. We denote
the set of all positive integers by N and the set of all non-negative
integers by N0. Let X be a compact Hausdorff space. We denote the
algebra of all continuous, complex-valued functions on X by C(X)
and we give C(X) the uniform norm |·|X , defined by

|f |X = sup
x∈X
|f(x)| (f ∈ C(X)).

This makes C(X) into a commutative, unital Banach algebra. A
subset S of C(X) separates the points of X if, for each x, y ∈ X
with x 6= y, there exists f ∈ S such that f(x) 6= f(y). A normed
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function algebra on X a normed algebra (A, ‖·‖) such that A is a
subalgebra of C(X), A contains all constant functions and separates
the points ofX, and, for each f ∈ A, ‖f‖ ≥ |f |X . A Banach function
algebra on X is a normed function algebra on X which is complete.
We say that such a Banach function algebra A is natural (on X) if
every character on A is given by evaluation at some point of X. We
refer the reader to [5] (especially Chapter 4) for further information
on Banach algebras and Banach function algebras.

Let D(1)(X) denote the normed algebra of all continuously (com-
plex) differentiable, complex-valued functions on X, as discussed in
[6] and [7]. Furthermore, let D(n)(X) denote the normed algebra
of all continuously n-times (complex) differentiable, complex-valued
functions on X, and let D(∞)(X) denote the algebra of continuous
functions which have continuous (complex) derivatives of all orders.
Dales and Davie ([6]) also introduced the algebras

D(X,M) :=

{
f ∈ D(∞)(X) :

∞∑
j=0

|f (j)|X
Mj

<∞

}
,

where M = (Mn)
∞
n=0 is a suitable sequence of positive real numbers.

The algebras D(X,M) are called Dales-Davie algebras.
The usual norms on the algebras D(n)(X) (n ∈ N) and D(X,M)

above need not be complete, so we often investigate the completion
of these algebras. One approach to this was introduced by Bland
and Feinstein [3], where they discussed algebras of F -differentiable
functions (see Section 2), and these algebras were investigated fur-
ther in [7] and [12].

Kamowitz and Feinstein investigated the conditions under which
composition with an infinitely differentiable map induces an endo-
morphism ([13, 9, 10]) or a homomorphism ([11]) between Dales-
Davie algebras.

In this paper, we investigate composition, the chain rule, and the
quotient rule for F -differentiation. We give an example where the
chain rule for F -differentiation fails, and give a number of sufficient
conditions for the chain rule to hold. We also prove a version of the
quotient rule for F -differentiable functions.

Where the chain rule holds, we observe that the Faá di Bruno
formula for higher derivatives is valid, and this allows us to give some
sufficient conditions, similar to those in [11], for composition with
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an infinitely F -differentiable function to induce a homomorphism
between the F -differentiability versions of Dales-Davie algebras.

1. Paths in the complex plane

We begin with a discussion of collections of paths in the complex
plane.

Definition 1.1. A path in C is a continuous function γ : [a, b]→ C,
where a < b are real numbers. Let γ : [a, b] → C be a path.
The parameter interval of γ is the interval [a, b]. The endpoints of
γ are the points γ(a) and γ(b), which we denote by γ− and γ+,
respectively. We denote by γ∗ the image γ([a, b]) of γ. A subpath
of γ is a path obtained by restricting γ to a non-degenerate, closed
subinterval of [a, b]. If X is a subset of C then we say that γ is a
path in X if γ∗ ⊆ X.

Let γ be a path in C. We say that γ is a Jordan path if γ is an
injective function.

Let [a, b] be a non-degenerate closed interval. A partition P of
[a, b] is a finite set {x0, . . . , xn} ⊆ [a, b] such that x0 = a, xn = b and
xj < xj+1 for each j ∈ {0, 1, . . . , n − 1}. If P and P ′ are partitions
of [a, b] then we say that P ′ is finer than P if P ⊆ P ′.

Definition 1.2. Let γ : [a, b] → C be a path and let c, d ∈ [a, b]
with c < d. The total variation of γ over [c, d] is

V d
c (γ) := sup

{
n−1∑
j=0

|γ(xj+1)− γ(xj)| : P = {x0, . . . , xn}

}
where the supremum is taken over all partitions P of [c, d]. We say
that γ is rectifiable if V b

a (γ) <∞, in which case we set Λ(γ) := V b
a (γ);

otherwise it is non-rectifiable. The length of a rectifiable path γ is
Λ(γ).

For a detailed discussion of paths, total variation and path length,
see [2, Chapter 6].

We say that a path γ is admissible if γ is rectifiable and contains
no constant subpaths. Let γ : [a, b]→ C be a non-constant (but not
necessarily admissible) rectifiable path. We define the path length
parametrisation γpl : [0,Λ(γ)]→ C of γ to be the unique path satis-
fying γpl(V t

a (γ)) = γ(t) (t ∈ [a, b]); see, for example, [8, pp. 109-110]
for details. We define the normalised path length parametrisation



22 CHAOBANKOH, FEINSTEIN AND MORLEY

γno : [0, 1]→ C of γ to be the path such that γno(t) = γpl(tΛ(γ)) for
each t ∈ [0, 1]. It is clear that γpl and γno are necessarily admissible
paths and (γpl)∗ = (γno)∗ = γ∗. It is not hard to show, using [8,
Theorem 2.4.18], that∫

γ

f(z) dz =

∫
γpl
f(z) dz =

∫
γno
f(z) dz,

for all f ∈ C(γ∗). We shall use this fact implicitly throughout.

Definition 1.3. Let X be a compact plane set and let F be a
collection of paths in X. We define F∗ := {γ∗ : γ ∈ F}. We say

that F is effective if
⋃
F∗ = X, each path in F is admissible, and

every subpath of a path in F belongs to F . We denote by Fno the
collection {γno : γ ∈ F}.

Let X be a compact plane set and let F be a collection of paths
in X. It is clear that F∗ = (Fno)∗.

We introduce the following definitions from [3, 6] and [7].

Definition 1.4. Let X be a compact plane set. We say that X is
uniformly regular if there exists a constant C > 0 such that, for all
x, y ∈ X, there exists a rectifiable path γ in X with γ− = x and
γ+ = y such that Λ(γ) ≤ C|x − y|. We say that X is pointwise
regular, if for each x ∈ X, there exists a constant Cx > 0 such that,
for each y ∈ X, there exists a path γ in X with γ− = x and γ+ = y
such that Λ(γ) ≤ Cx|x− y|. We say that X is semi-rectifiable if the
union of the images of all rectifiable, Jordan paths in X is dense in
X.

We also require the following definition from [7].

Definition 1.5. Let X be a compact plane set and let F be an
effective collection of paths in X. We say that X is F-regular at
x ∈ X if there exists a constant Cx > 0 such that for each y ∈ X
there exists γ ∈ F with γ− = x, γ+ = y and Λ(γ) ≤ Cx|x− y|. We
say that X is F-regular if X is F -regular at each point x ∈ X.

We note that if X is a compact plane set which is F -regular,
for some effective collection F of paths in X, then X is pointwise
regular.
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2. Algebras of F-differentiable functions

In this section we discuss algebras of F -differentiable functions as
investigated in [3] and [7], along with algebras of F -differentiable
functions analogous to the Dales-Davie algebras introduced in [6].

Definition 2.1. Let X be a perfect compact plane set, let F be a
collection of rectifiable paths in X, and let f ∈ C(X). A function
g ∈ C(X) is an F-derivative of f if, for each γ ∈ F , we have∫

γ

g(z) dz = f(γ+)− f(γ−).

If f has an F -derivative on X then we say that f is F -differentiable
on X.

The following proposition summarises several properties of F -
derivatives and F -differentiable functions on certain compact plane
sets. Details can be found in [3] and [7].

Proposition 2.2. Let X be a semi-rectifiable compact plane set and
let F be an effective collection of paths in X.

(a) Let f, g, h ∈ C(X) be such that g and h are F-derivatives for
f . Then g = h.

(b) Let f ∈ D(1)(X). Then the usual complex derivative of f on
X, f ′, is an F-derivative for f .

(c) Let f1, f2, g1, g2 ∈ C(X) be such that g1 is an F-derivative for
f1 and g2 is an F-derivative for f2. Then f1g2 + g1f2 is an
F-derivative for f1f2.

(d) Let f1, f2, g1, g2 ∈ C(X) and α, β ∈ C be such that g1 is an
F-derivative for f1 and g2 is an F-derivative for f2. Then
αg1 + βg2 is an F-derivative for αf1 + βf2.

Let X be a semi-rectifiable compact plane set, and let F be an
effective collection of paths in X. In this setting we write f [1]

for the unique F -derivative of an F -differentiable function and we

will often write f [0] for f . We write D
(1)
F (X) for the algebra of

all F -differentiable functions on X. We note that, with the norm

‖f‖F ,1 := |f |X + |f [1]|X (f ∈ D
(1)
F (X)), the algebra D

(1)
F (X) is a

Banach function algebra on X ([7, Theorem 5.6]).
For each n ∈ N, we define (inductively) the algebra

D
(n)
F (X) := {f ∈ D(1)

F (X) : f [1] ∈ D(n−1)
F (X)},
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and, for each f ∈ D
(n)
F (X), we write f [n] for the nth F -derivative

of f . We note that, for each n ∈ N, D
(n)
F (X) is a Banach function

algebra on X (see [3]) when given the norm

‖f‖F ,n :=
n∑
k=0

|f [k]|X
k!

(f ∈ D(n)
F (X)).

In addition, we define the algebra D
(∞)
F (X) of all functions which

have F -derivatives of all orders; that is, D
(∞)
F (X) =

⋂∞
n=1D

(n)
F (X).

It is easy to see that, for each n ∈ N, we have D(n)(X) ⊆ D
(n)
F (X)

and D(∞)(X) ⊆ D
(∞)
F (X).

3. Maximal collections and compatibility

We aim to prove a chain rule for F -differentiable functions, but
first we must investigate collections of paths further. Throughout
this section, let X be a semi-rectifiable, compact plane set, and let
A be the collection of all admissible paths in X. In this section, we

identify D
(1)
F (X) with the subset SF of C(X) × C(X) consisting of

all pairs (f, g) where f ∈ D
(1)
F (X) and g is the F -derivative of f .

We begin with a definition.

Definition 3.1. Let γ be an admissible path in X. Let f, g ∈ C(X).
We say that g is the γ-derivative of f if, for each subpath σ of γ, we
have ∫

σ

g(z) dz = f(σ+)− f(σ−).

Note that, in the above, if G denotes the collection of all subpaths
of γ, then G is effective in γ∗, so G-derivatives on γ∗ are unique.
Thus, if f has a γ derivative g on X, then g|γ∗ is uniquely deter-
mined.

Definition 3.2. Let S ⊆ C(X)× C(X). We define

p(S) := {γ ∈ A : for all (f, g) ∈ S, g is the γ-derivative of f}.

Let F be an effective collection of paths in X. Then we write m(F)

for p(SF), where SF = {(f, f [1]) : f ∈ D(1)
F (X)} as above.

The following lemma follows quickly from the definition of m(F).
We omit the details.
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Lemma 3.3. Let S, T ⊆ C(X) × C(X). If S ⊆ T then we have
p(T ) ⊆ p(S). Let F ,G be effective collections of paths in X. Then

we have D
(1)
m(F)(X) = D

(1)
F (X). Moreover, SF ⊆ SG if and only if

m(G) ⊆ m(F).

Note that SF ⊆ SG implies that D
(1)
F (X) ⊆ D

(1)
G (X).

We now investigate some elementary operations on m(F). Let
γ1 : [a, b]→ C, γ2 : [c, d]→ C be paths such that γ+

1 = γ−2 . We write
γ1 u γ2 for the path given by

(γ1 u γ2)(t) =

{
γ1(a+ 2t(b− a)), t ∈ [0, 1/2),

γ2(c+ (2t− 1)(d− c)), t ∈ [1/2, 1].

We call the path γ1 u γ2 the join of γ1 and γ2. Note that, if γ1

and γ2 are admissible, then γ1u γ2 is admissible. The reverse of γ1,
denoted by −γ1, is given by −γ1(t) = γ1(b − t(b − a)) (t ∈ [0, 1]).
Our notation for joining and reversing is not entirely standard and
there are many ways to parametrise these paths.

Lemma 3.4. Let F be an effective collection of paths in X. Then
m(F) has the following properties:

(a) if γ ∈ m(F) then −γ ∈ m(F);
(b) if γ ∈ m(F) then γpl, γno ∈ m(F);
(c) if γ1, γ2 ∈ m(F) such that γ+

1 = γ−2 then γ1 u γ2 ∈ m(F).

Proof. (a) This is clear from the definitions.
(b) This is clear from the definitions, and the discussions in Section

1.
(c) This is effectively [3, Theorem 4.5], and follows from the defi-

nitions. �

We also make the following observation about collections of paths
generated by a set in C(X)×C(X) and its closure in the norm given
by ‖(f, g)‖1 = |f |X + |g|X for each (f, g) ∈ C(X)× C(X).

Lemma 3.5. Let S ⊆ C(X)× C(X). Then p(S) = p(S) where the
closure of S is taken in the norm ‖·‖1 on C(X)× C(X) as above.

Proof. By Lemma 3.3, we have p(S) ⊆ p(S). Let (fn, gn) be a se-
quence in S such that (fn, gn)→ (f, g) ∈ S as n→∞. Let γ ∈ p(S).
Then we have

fn(γ
+)− fn(γ−) =

∫
γ

gn(z) dz,
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for all n ∈ N. But now fn → f and gn → g uniformly as n→∞, so

f(γ+)− f(γ−) =

∫
γ

g(z) dz.

Thus γ ∈ p(S). It follows that p(S) ⊆ p(S) and this completes the
proof. �

We also require the following elementary lemma, which is a minor
variant of a standard result. We include a proof for the convenience
of the reader.

Lemma 3.6. Let F be an effective collection of paths in X. Let

ϕ ∈ D(1)
F (X) and let γ : [a, b] → X ∈ F . Then ϕ ◦ γ is rectifiable,

and hence, if ϕ ◦ γ is non-constant, (ϕ ◦ γ)pl is admissible.

Proof. Let P = {x0, . . . , xn} be a partition of [a, b]. Set σ := ϕ ◦ γ
and let γj be the subpath of γ obtained by restricting γ to [xj, xj+1]
for each j ∈ {0, . . . , n− 1}. We have

V (σ,P) :=
n−1∑
j=0

|σ(xj+1)− σ(xj)| =
n−1∑
j=0

∣∣∣∣∣
∫
γj

ϕ[1](z) dz

∣∣∣∣∣ ≤ |ϕ[1]|XΛ(γ).

It follows that Λ(σ) = supV (σ,P) ≤ |ϕ[1]|XΛ(γ), where the supre-
mum is taken over all partitions P of [a, b]. As noted earlier, if σ is
non-constant then σpl is admissible. This completes the proof. �

We now introduce our notion of compatibility.

Definition 3.7. Let Y be a semi-rectifiable compact plane set, let
F be an effective collection of paths in X and let G be an effective

collection of paths in Y . Let ϕ ∈ D
(1)
F (X) such that ϕ(X) ⊆ Y .

We say that ϕ is F-G-compatible if, for each γ ∈ F , either ϕ ◦ γ is
constant or we have (ϕ ◦ γ)pl ∈ m(G).

Let X, Y be semi-rectifiable compact plane sets, let F be an ef-
fective collection of paths in X, and G be an effective collection of
paths in Y . If m(G) is the collection of all admissible paths in Y

then, for any ϕ ∈ D(1)
F (X) with ϕ(X) ⊆ Y, ϕ is F -G-compatible.

Example 3.8. Let X := {x + iy ∈ C : x, y ∈ [0, 1]}. Let F be
the collection of all line segment paths in X parallel to the real axis
and let G be the collection of all line segment paths in X parallel
to the imaginary axis. Set ϕ(z) := z (z ∈ X). Then ϕ : X → X is
continuously differentiable on X and ϕ(X) = X. Clearly ϕ ◦ γ ∈ F
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for all γ ∈ F . It is not hard to show that, if γ ∈ m(F), then γ∗ ∈ F∗
and, if γ ∈ m(G), then γ∗ ∈ G∗. Thus m(F)∩m(G) = ∅ and it follows
that ϕ is not F -G-compatible.

Let X, Y be semi-rectifiable compact plane sets, let F be an effec-
tive collection of paths in X, and let G be an effective collection of

paths in Y . If D(1)(Y ) is dense in D
(1)
G (Y ) then, by Lemma 3.5, the

collection m(G) is the collection of all admissible paths in Y . So,

by the comments following Definition 3.7, any function ϕ ∈ D(1)
F (X)

such that ϕ(X) ⊆ Y is automatically F -G-compatible.

4. Composition of F-differentiable functions

We now discuss an analogue of the chain rule for F -differentiable
functions. The following lemma is an F -differentiability version of
the usual change of variable formula.

Lemma 4.1. Let X be a semi-rectifiable, compact plane set and let

F be an effective collection of paths in X. Let ϕ ∈ D(1)
F (X) and let

γ : [a, b]→ X ∈ F . Then, for each f ∈ C(ϕ(γ∗)), we have∫
γ

(f ◦ ϕ)ϕ[1](z) dz =

∫
ϕ◦γ

f(z) dz. (1)

Proof. By Lemma 3.6, σ := ϕ ◦ γ is a rectifiable path so that the
integral on the right-hand side of (1) exists. Fix f ∈ C(σ∗) and let
ε > 0. Set M := |ϕ[1]|XΛ(γ) and let h := f ◦ σ : [a, b] → C. Since
h is uniformly continuous, there exists δ > 0 such that, for each
s, t ∈ [a, b] with |s− t| < δ, we have |h(t)−h(s)| < ε/(2M). Choose

a partition P0 = {t(0)
0 , . . . , t

(0)
m } of [a, b] such that

max
0≤j≤n−1

|tj+1 − tj| < δ.

For any partition P = {t0, . . . , tn} finer than P0 and, for each

j ∈ {0, . . . , n− 1}, let γ
(P)
j be the restriction of γ to [tj, tj+1]. We

have

T (P) :=

∣∣∣∣∣
n−1∑
j=0

∫
γ
(P)
j

(f(ϕ(z))− h(sj))ϕ
[1](z) dz

∣∣∣∣∣ < ε

2
, (2)

for any sj ∈ [tj, tj+1] (j = 0, 1, . . . , n− 1).
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Now fix a partition P = {t0, . . . , tn} of [a, b] finer than P0 such
that, viewing the integral in the right-hand side of (1) as a Riemann-
Stieltjes integral on [a, b], we have∣∣∣∣∣

n−1∑
j=0

h(sj)(σ(tj+1)− σ(tj))−
∫
σ

f(z) dz

∣∣∣∣∣ < ε

2
, (3)

for any choice of sj ∈ [tj, tj+1] (j = 0, 1, . . . , n− 1).
We now claim that, for this partition P , we have∣∣∣∣∣

∫
γ

f(ϕ(z))ϕ[1](z) dz −
n−1∑
j=0

h(sj)(σ(tj+1)− σ(tj))

∣∣∣∣∣ < ε

2
(4)

for any choice of sj ∈ [tj, tj+1] (j = 0, 1, . . . , n− 1).
For the remainder of the proof, for each j ∈ {0, . . . , n − 1}, fix

sj ∈ [tj, tj+1] and let S :=
∑n−1

j=0 h(sj)(σ(tj+1)− σ(tj)).

By the definition of ϕ[1], we have

m−1∑
j=0

h(sj)

∫
γ
(P)
j

ϕ[1](z) dz = S.

We also have∣∣∣∣∣
∫
γ

f(ϕ(z))ϕ[1](z) dz −
n−1∑
j=0

h(sj)

∫
γ
(P)
j

ϕ[1](z) dz

∣∣∣∣∣ = T (P),

where T (P) < ε/2 as in (2).
But now, by (2) and (3), we have∣∣∣∣∫

γ

f(ϕ(z))ϕ[1](z) dz −
∫
σ

f(w) dw

∣∣∣∣ < ε

2
+
ε

2
= ε.

This holds for all ε > 0 and any choice of the sj, so the result
follows. �

We can now state and prove a version of the chain rule for F -
differentiable functions.

Theorem 4.2. Let X, Y be semi-rectifiable, compact plane sets, let
F be an effective collection of paths in X, and let G be an effective

collection of paths on Y . Let ϕ ∈ D(1)
F (X) with ϕ(X) ⊆ Y . Suppose

that ϕ is F-G-compatible. Then, for all f ∈ D
(1)
G (Y ), f ◦ ϕ is F-

differentiable and (f ◦ ϕ)[1] = (f [1] ◦ ϕ)ϕ[1].
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Proof. Fix f ∈ D(1)
G (Y ) and γ ∈ F . Then, by Lemma 4.1, we have∫

γ

(f [1] ◦ ϕ)(z)ϕ[1](z) dz =

∫
ϕ◦γ

f [1](z) dz.

Since ϕ is F -G-compatible, we have ϕ ◦ γ ∈ m(G) and so∫
ϕ◦γ

f [1](z) dz = f((ϕ ◦ γ)+)− f((ϕ ◦ γ)−).

But (ϕ ◦ γ)+ = ϕ(γ+) and (ϕ ◦ γ)− = ϕ(γ−). Thus f ◦ ϕ is F -
differentiable and has F -derivative (f [1] ◦ϕ)ϕ[1]. This completes the
proof. �

As a corollary we obtain the quotient rule for F -differentiable
functions. This was originally proved by means of repeated bisection
in [4].

Corollary 4.3. Let X be a semi-rectifiable compact plane set, let F
be an effective collection of paths in X, and let f, g ∈ D(1)

F (X) such

that 0 /∈ g(X). Then we have f/g ∈ D(1)
F (X) and

(f/g)[1] = (gf [1] − fg[1])/g2.

Proof. We first show that h := 1/g ∈ D
(1)
F (X) and that we have

h[1] = −g[1]/g2. Since we have 0 /∈ g(X), the function ϕ(z) := 1/z
(z ∈ g(X)) is continuous and complex-differentiable on g(X), i.e.
ϕ ∈ D(1)(g(X)). Let G be the collection of all admissible paths in

g(X). Then we have ϕ ∈ D(1)(g(X)) ⊆ D
(1)
G (g(X)), and g is F -G-

compatible by the comments following Definition 3.7. By Theorem

4.2, ϕ ◦ g ∈ D(1)
F (X) with (ϕ ◦ g)[1] = (ϕ[1] ◦ g)g[1]. However, ϕ[1] is

just the ordinary complex derivative of ϕ, and so ϕ[1] ◦ g = −1/g2.
Thus h[1] = −g[1]/g2. The result now follows from the product rule
for F -derivatives, Proposition 2.2(c). �

By combining Theorem 4.2 with our comments at the end of Sec-
tion 3, we obtain the following corollary.

Corollary 4.4. Let X be a semi-rectifiable, compact plane set and

let F be an effective collection of paths in X. Let f, g ∈ D
(1)
F (X)

such that g(X) ⊆ X. Suppose that D(1)(X) is dense in D
(1)
F (X).

Then f ◦ g ∈ D(1)
F (X) and (f [1] ◦ g)g[1] is the F-derivative of f ◦ g.
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This last result was proved in the first author’s PhD thesis ([4])
using the quotient rule, under the apparently stronger condition that

the set of rational functions with no poles on X be dense in D
(1)
F (X).

See the final section of this paper for an open problem related to
this.

By applying Theorem 4.2 inductively, we obtain the Faá di Bruno
formula for the composition of n-times F -differentiable functions.

Corollary 4.5. Let X, Y be semi-rectifiable, compact plane sets,
let F be an effective collection of paths in X, and let G be an ef-

fective collection of paths in Y . Let n ∈ N, and let ϕ ∈ D(n)
F (X)

with ϕ(X) ⊆ Y . Suppose that ϕ is F-G-compatible. Then, for all

f ∈ D(n)
G (Y ), f ◦ ϕ ∈ D(n)

F (X) and, for each k ∈ {1, 2, . . . , n}, we
have

(f ◦ ϕ)[k] =
k∑
i=0

(f [i] ◦ ϕ)
∑ k!

a1! · · · ak!

k∏
j=1

(
ϕ[j]

j!

)aj
,

where the inner sum is over all a1, . . . , ak ∈ N0 such that

a1 + · · ·+ ak = i and a1 + 2a2 + · · ·+ kak = k.

5. Homomorphisms

We now discuss some algebras of infinitely F -differentiable func-
tions, analogous to the algebras D(X,M) introduced by Dales and
Davie in [6] (see also the introduction of the present paper). In par-
ticular, we describe some sufficient conditions under which a func-
tion can induce a homomorphism between these algebras. These
conditions are similar to those discussed by Feinstein and Kamowitz
in [9]. We begin with some definitions from [1, 6] and [9].

Definition 5.1. Let M = (Mn)
∞
n=0 be a sequence of positive real

numbers. We say that M is an algebra sequence if M0 = 1 and, for
all j, k ∈ N0, we have (

j + k

j

)
≤ Mj+k

MjMk
.

We define d(M) := limn→∞(n!/Mn)
1/n and we say that M is non-

analytic if d(M) = 0.
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Let X be a perfect compact plane set and let M = (Mn)
∞
n=0 be

an algebra sequence. Then the set of all rational functions with no
poles on X is contained in D(X,M) if and only if M is non-analytic.

We now discuss the algebras DF(X,M) as introduced in [3].

Definition 5.2. Let X be a semi-rectifiable, compact plane set and
let F be an effective collection of paths in X. Let M = (Mn)

∞
n=0 be

an algebra sequence. We define the normed algebra

DF(X,M) :=

{
f ∈ D(∞)

F (X) :
∞∑
j=0

|f [j]|X
Mj

<∞

}
with pointwise operations and the norm

‖f‖ :=
∞∑
j=0

|f [j]|X
Mj

(f ∈ DF(X,M)).

The proof that the DF(X,M) are indeed algebras is similar to the

proof of Theorem 1.6 of [6]. In fact, since D
(1)
F (X) is complete with

the conditions above, it follows that DF(X,M) is a Banach function
algebra; this is noted in [3].

Unfortunately, it is not known in general whether the Banach func-

tion algebras D
(n)
F (X) and DF(X,M) are natural on X, although

some sufficient conditions are given in [4]. We note that a necessary
condition for DF(X,M) to be natural is that M = (Mn)

∞
n=0 be a

non-analytic algebra sequence.

Definition 5.3. Let X be a semi-rectifiable, compact plane set, and

let F be an effective collection of paths in X. Let f ∈ D(∞)
F (X). We

say that f is F-analytic if

lim sup
k→∞

(
|ϕ[k]|X
k!

)1/k

<∞.

Note that a function f ∈ D(∞)
F (X) which is F -analytic need not be

analytic (in the sense of extending to be analytic on a neighbourhood
of X). Let X and F be as in Example 3.8, let M = (Mn)

∞
n=0 be an

algebra sequence, and let f ∈ DF(X,M) with f /∈ D(X,M) such
that f is F -analytic. Then f is not analytic. For example, we may
take take f(z) = Im(z) here, so that f [1] is identically 0.

We now give the main result of this section. No detailed proof
is required, since once the Faá di Bruno formula is established the
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calculations are identical to those from [13] and [10] (see also [9]).
Note that we do not assume the naturality of the algebras here.

Theorem 5.4. Let X, Y be semi-rectifiable, compact plane sets and

let n ∈ N. Let ϕ ∈ D
(∞)
F (X) such that ϕ(X) ⊆ Y . Suppose that

ϕ is F-analytic. Let F be an effective collection of paths on X and
let G be an effective collection of paths on Y such that ϕ is F-G-
compatible. Let M = (Mn)

∞
n=0 be a non-analytic algebra sequence.

(a) If |ϕ[1]|X < 1 then ϕ induces a homomorphism from the alge-
bra DG(Y,M) into DF(X,M).

(b) If the sequence (n2Mn−1/Mn) is bounded and |ϕ[1]|X ≤ 1 then
ϕ induces a homomorphism from DG(Y,M) into DF(X,M).

Note that, in the above, DF(X,M) and DG(Y,M) are always Ba-
nach function algebras, so we do not need to make any additional
completeness assumptions.

When (n2Mn−1/Mn) is unbounded, the condition that |f [1]|X ≤ 1
may no longer be sufficient for ϕ to induce a homomorphism from
DG(Y,M) into DF(X,M). The following example is from [11].

Example 5.5. Let I = [0, 1] and let F be the collection of all
admissible paths in I. For each n ∈ N, let Mn = (n!)3/2 and let
M = (Mn)

∞
n=0. Then M is a non-analytic algebra sequence such that

n2Mn−1/Mn →∞ as n→∞. Moreover, since I is uniformly regular,
we have DF(I,M) = D(I,M), and DF(I,M) is natural on I by [5,
Theorem 4.4.16]. Let ϕ(t) := (1 + t2)/2 (t ∈ I). Then ϕ is an F -
analytic map from I into I, |ϕ′|X ≤ 1, and ϕ is F -F -compatible.
However, by [9, Theorem 3.2], ϕ does not induce a homomorphism
from DF(I,M) into DF(I,M).

6. Open problems

We conclude with some open problems related to the content of
this paper.

Question 6.1. Can the assumption that ϕ be F-analytic in Theorem
5.4 be weakened or removed altogether?

We next ask two questions about maximal collections of paths.

Question 6.2. Let X be a semi-rectifiable compact plane set, and
let F be the collection of all Jordan paths in X. Is it necessarily
true that m(F) is the collection of all admissible paths in X?
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Question 6.3. Let Γ be an admissible path in C, and set X = Γ∗.
Let F be the collection of all subpaths of Γ. Does m(F) necessarily
include all Jordan paths in X?

Let X be a semi-rectifiable compact plane set. Our final questions
concern the density of rational functions and differentiable functions

in the algebras D(1)(X) and D
(1)
F (X), respectively. Some partial

results were obtained in [3] and [7].

Question 6.4. Is the set of all rational functions with no poles on
X always dense in D(1)(X)?

Question 6.5. Is D(1)(X) always dense in D
(1)
F (X) when F is the

collection of all admissible paths in X?
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