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PROBLEMS

IAN SHORT

Problems

Let us begin with a classic.

Problem 75.1. What is the least positive integer n for which a
square can be tessellated by n acute-angled triangles?

The second problem was proposed by Finbarr Holland of Univer-
sity College Cork. The inequality involving the exponential function
that is considered in the problem is a generalisation of the useful in-
equalities

ex 6
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and e2x 6

1 + x

1− x
(0 6 x < 1),

which are strict inequalities unless x = 0.

Problem 75.2. Let

sn(x) =
n∑

k=0

xk

k!
, n = 0, 1, 2, . . . .

Suppose 0 < α < 1. Prove that when n > 1,

ex 6
sn(x)− αxsn−1(x)

1− αx
for all x ∈ [0, 1/α)

if and only if α > 1/(n+ 1).

We finish with another inequality: the sort that might crop up in
a mathematics olympiad.

Problem 75.3. Given positive real numbers a, b, and c, prove that
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Solutions

Here are solutions to the problems from Bulletin Number 73.
The first problem was solved by Angel Plaza (Universidad de Las

Palmas de Gran Canaria, Spain), the North Kildare Mathematics
Problem Club, and the proposer, Finbarr Holland. We present the
solution of the North Kildare Mathematics Problem Club.

Problem 73.1 . Let Un denote the Chebyshev polynomial of the sec-
ond kind of degree n, which is the unique polynomial that satisfies
the equation Un(cos θ) = sin((n + 1)θ)/ sin θ. The polynomial U2n

satisfies U2n(t) = pn(4t2), where

pn(z) =
n∑

k=0

(−1)k
(

2n− k
k

)
zn−k.

Prove that pn is irreducible over the integers when 2n+ 1 is a prime
number.

Solution 73.1. Define qn(t) = pn(2t+2), so that qn(2t2−1) = U2n(t).
Since qn(cos 2θ) = U2n(cos θ), the n roots of qn are the numbers
cos(2kπ/(2n+ 1)) for k = 1, . . . , n. We prove that if pn is reducible,
then 2n+ 1 is not prime.

Suppose that pn is reducible over the integers. Then so is qn, and
one of the proper factors of qn has a = cos(2π/(2n+1)) as a root. It
follows that the degree of the extension Q(a) over Q is less than n.
Now let b = i sin(2π/(2n+ 1)). Since b2 = a2 − 1, the degree of the
extension Q(a, b) over Q is less than 2n. Notice that Q(a, b) contains
a+b, a primitive root of unity. Therefore the cyclotomic polynomial
x2n + · · · + x2 + x + 1 of degree 2n splits in Q(a, b). However, this
polynomial is irreducible when 2n+ 1 is prime, as is well-known, so
2n+ 1 cannot be prime. �

The second problem was solved by Henry Ricardo (New York Math
Circle, New York, USA), the North Kildare Mathematics Problem
Club, and the proposer (the Editor, who learned the problem from
Tony Barnard of King’s College London). The solution we present is
an amalgamation of the submitted solutions. Henry Ricardo pointed
out that the problem (and solution) appear elsewhere; for example,
see Problem 1339 in Math. Mag. 64 (1991), no. 1.
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Problem 73.2 . Find all positive integers a, b, and c such that

bc ≡ 1 (mod a)

ca ≡ 1 (mod b)

ab ≡ 1 (mod c).

Solution 73.2. Without loss of generality, suppose that a 6 b 6 c.
Since bc−1, ca−1, and ab−1 are divisible by a, b, and c, respectively,
we see that

(bc−1)(ca−1)(ab−1) = (abc)2− (abc)(a+ b+ c)+(ab+ bc+ ca)−1

is divisible by abc. Hence ab + bc + ca − 1 is divisible by abc. But
0 < ab+ bc+ ca− 1 < 3bc, so a < 3.

Next, we know that

(ca− 1)(ab− 1) = a2(bc)− (ab+ ca) + 1

is divisible by bc, so (ab + ca) − 1 is divisible by bc. But 0 <
(ab+ ca)− 1 < 2ac, so b < 2a.

From the inequalities a < 3 and b < 2a we see that either a = 1
and b = 1 or a = 2 and b < 4. In the former case we obtain the
solution (1, 1,m), where m is any positive integer. In the latter case,
the congruence bc ≡ 1 (mod a) tells us that b is odd, so b = 3. From
the congruence ab ≡ 1 (mod c) we deduce that c = 5, which gives
the only other solution (2, 3, 5). �

The third problem was solved by Adnan Al (Mumbai, India), An-
gel Plaza (Universidad de Las Palmas de Gran Canaria, Spain),
Henry Ricardo (New York Math Circle, New York, USA), the North
Kildare Mathematics Problem Club, and the proposer (the Editor,
who learned the problem from Tony Barnard). It was also solved by
Finbarr Holland, and it is his short solution that we present here.
Several contributors noted that there is literature on this kind of
problem; see, for example, S. Koumandos, Remarks on a paper by
Chao-Ping Chen and Feng Qi, Proc. Amer. Math. Soc. 134 (2006),
no. 5, 1365–1367.

Problem 73.3 . Prove that
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Solution 73.3. Let

vn =
1

2
× 3
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6
× · · · × 2n− 1

2n
.

Then a quick check shows that the sequence
√
nvn is strictly in-

creasing and the sequence
√

2n+ 1vn is strictly decreasing. Since
v1 = 1/2, we obtain the more general collection of inequalities
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, n = 2, 3, . . . . �

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com in any format (we prefer
Latex). Submissions for the summer Bulletin should arrive before
the end of April, and submissions for the winter Bulletin should
arrive by October. The solution to a problem is published two issues
after the issue in which the problem first appeared. Please include
solutions to any problems you submit, if you have them.
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