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FROM NAVIER-STOKES TO BLACK-SCHOLES:
NUMERICAL METHODS IN COMPUTATIONAL

FINANCE

DANIEL J. DUFFY

Abstract. In this article we give a general overview of the numer-
ical methods (in particular the finite difference method) to approx-
imate the partial differential equations that describe the behaviour
of financial products (such as stocks, options, commodities and in-
terest rate products). These products are traded in the marketplace
and it is important to price them using accurate and efficient al-
gorithms. Furthermore, financial institutions need to compute and
monitor the risks associated with these financial instruments and
portfolios of these instruments.

The focus in this article is to trace the emergence of advanced
numerical techniques and their applications to computational fi-
nance during the last twenty-five years. It is aimed at a mathe-
matical audience with a passing acquaintance of partial differen-
tial equations (PDEs) and finite difference methods. In partic-
ular, time-dependent convection-diffusion-reaction PDEs will take
centre-stage because they model a wide range of financial products.

1. A short History of Computational Finance

Computational Finance can be defined as a set of mathematical
and engineering techniques to solve complex problems in finance. It
has grown steadily during the last thirty years as financial services
became global and computing power increased exponentially. When
the Cold War ended the market had acquired access to a large pool
of physicists, mathematicians and computer scientists, or quants as
they became known on Wall Street. These quants applied their
knowledge to solve complex derivatives pricing problems. Growth
was explosive until the financial crash of 2007/2008. After the crash
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many of the exotic structured products that these quants had in-
vented were abandoned in favour of simpler ones. The events of the
last seven years have certainly proved that finance is not physics
and that models are, after all, just models of reality and not reality
itself.

2. Computational Finance 101: Plain Call Options

Before we jump into the mathematics and numerical analysis of
partial differential equations we try to sketch the financial context
in which they are used. It is impossible to discuss the context in any
great detail and we refer the reader to Wilmott [11]. It is written in
a style that should appeal to mathematicians.

In order to reduce the scope we focus exclusively on the most fun-
damental of all financial instruments, namely equity (also known
as stock or shares). Holding equity means that you own part of a
company. If the company goes bankrupt the value of your shares is
effectively zero or thereabouts. In short, you have lost your invest-
ment! The investor paid up front and she was probably expecting
the share price to increase in the future. Most people are optimists
and hence they buy shares in the hope that they will rise in price.
But this is risky because if the share price drops they will make a
loss. There is however, a less risky approach. Let us assume that
you expect the share price of the ABC company to rise from $100
to $140 in the next three months (for example, you consulted your
crystal ball on this and that is what it told you). So, instead of
buying the share for $100 now you might like to have the option to
wait for three months and then buy the share. You can then buy
a call option that gives you the right but not the obligation to buy
the share three months into the future for a certain strike price. Of
course, having the right but not the obligation to buy a share at
some time in the future comes at a price and this must be paid by
the investor up-front. For example, you can buy a call option with
strike price $120 that expires in three months time. If the price is
greater than $120 then you have made a profit. If the price is less
than $120 at expiration the option is worthless and you have lost
your initial investment.

We have not addressed the issue of how to compute the option price.
This is precisely the famous Black Scholes formula [1] that allows us
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to compute the option price analytically. In more complicated cases
we need to resort to numerical methods as discussed in this article.

3. The Mathematics of PDEs in Computational Finance:
Helicopter View

In general, the PDEs of relevance are of the convection-diffusion-
reaction type in n space variables and one time variable. The space
variables correspond to underlying financial quantities such as an as-
set or interest rate while the non-negative time variable t is bounded
above by the expiration T. The space variables take values in their
respective positive half-planes.

We model derivatives that are described by so-called initial bound-
ary value problems of parabolic type [10]. To this end, consider the
general parabolic equation:

Lu ≡
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
j=1

bj(x, t)
∂u

∂xj
+ c(x, t)u− ∂u

∂t
= f(x, t)

(1)
where the functions aij, bj, c and f are real-valued aij = aji, and

n∑
i,j=1

aij(x, t)αiαj > 0 if
n∑
j=1

α2
j > 0. (2)

In equation (2) the variable x is a point in n-dimensional space and
t is considered to be a positive time variable. Equation (1) is the
general equation that describes the behaviour of many derivative
types. For example, in the one-dimensional case (n = 1) it reduces
to the famous Black-Scholes equation (Here t∗ = T − t):

∂V

∂t?
+

1

2
σ2S2∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0 (3)

where V is the derivative type (for example a call or put option), S
is the underlying asset (or stock), σ is the constant volatility, r is
the interest rate and D is a dividend. Equation (3) is a special case
and it can be generalised to include more general kinds of options.

Equation (3) can be generalised to the multivariate case:

∂V

∂t?
+

n∑
j=1

(r −Dj)Sj
∂V

∂Sj
+

1

2

n∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
= rV. (4)
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This equation models a multi-asset environment. In this case σi is
the volatility of the ith asset and ρij is the correlation (−1 ≤ ρij ≤ 1)
between assets i and j. In this case we see that equation (4) is
written as the sum of three terms:

• Interest earned on cash position

r
(
V −

n∑
j=1

Sj
∂V

∂Sj

)
. (5)

• Gain from dividend yield
n∑
j=1

DjSj
∂V

∂Sj
. (6)

• Hedging costs or slippage

− 1

2

n∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
. (7)

Our interest is in discovering robust numerical schemes that produce
reliable and accurate results irrespective of the size of the parameter
values in equation (4).

Equation (1) has an infinite number of solutions in general. In order
to reduce this number to one, we need to define some constraints.
To this end, we define so-called initial condition and boundary con-
ditions for (1). We achieve this by defining the space in which
equation (1) is assumed to be valid. In general, we note that there
are three types of boundary conditions associated with equation (1)
(see [10]). These are:

• First boundary value problem (Dirichlet problem).
• Second boundary value problem (Neumann, Robin problems).
• Cauchy problem.

The first boundary value problem is concerned with the solution of
(1) in a domain D = Ω× (0, T ) where Ω is a bounded subset of Rn

and T is a positive number. In this case we seek a solution of (1)
satisfying the conditions:

u|t=0 = ϕ(x) (initial condition)

u|Γ = ψ(x, t) (boundary condition) (8)

where Γ is the boundary of Ω. The boundary conditions in (8) are
called Dirichlet boundary conditions. These conditions arise when
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we model single and double barrier options in the one-factor case
(see [5]). They also occur when we model plain options.

The second boundary value problem is similar to (8) except that
instead of giving the value of u on the boundary Γ the directional
derivatives are included, as seen in the following specification:(∂u

∂η
+ a(x, t)u

)
|Γ = ψ(x, t). (9)

In this case a(x, t) and ψ(x, t) are known functions of x and t, and ∂
∂η

denotes the derivative of u with respect to the outward normal η at
Γ . A special case of (9) is when a(x, t) ≡ 0 ; then (9) represents the
Neumann boundary conditions. These occur when modelling certain
kinds of put options. Finally, the solution of the Cauchy problem
for (1) in the strip Rn × (0, T ) is given by the initial condition:

u|t=0 = ϕ(x) (10)

where ϕ(x) is a given continuous function and u(x, t) is a function
that satisfies (1) in Rn×(0, T ) and that satisfies the initial condition
(10). This problem allows negative values of the components of the
independent variable x = (x1, . . . , xn). A special case of the Cauchy
problem can be seen in the modelling of one-factor European and
American options (see [11]) where x plays the role of the underlying
asset S. Boundary conditions are given by values at S = 0 and
S =∞. For European options these conditions are:

C(0, t) = 0

C(S, t)→ S as S →∞. (11)

Here C (the role played by u in equation (1)) is the variable repre-
senting the price of the call option. For European put options the
boundary conditions are:

P (0, t) = Ke−r(T−t
?)

P (S, t)→ 0 as S →∞. (12)

Here P (the role played by u in equation (1)) is the variable repre-
senting the price of the put option, K is the strike price, r is the
risk-free interest rate, T is the expiration and t is the current time.

From this point on we assume the following ‘canonical’ form for
the operator L in equation (1):

Lu ≡ −∂u
∂t

+ σ(x, t)
∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u = f(x, t) (13)
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where σ, µ, b and f are known functions of x and t.

We have given a global introduction to the kinds of linear partial
differential equations that are used in computational finance. We
are unable to discuss other topics such as nonlinear PDEs, free and
moving-boundary value problems, qualitative properties of equation
(1) (for example, criteria for existence and uniqueness of the solution
of equation (1)) and applications to computational finance. For a
discussion of these topics we refer the reader to [5].

For the rest of this article we restrict our attention to the linear one-
factor PDE defined by equation (13) in conjunction with auxiliary
conditions to ensure existence and uniqueness. We also assume that
all the coefficients and inhomogeneous term in equation (13) are
known.

4. The Finite Difference Method (FDM) in
Computational Finance

For completeness, we formulate the initial boundary value problem
whose solution we wish to approximate using the finite difference
method.

Define the interval Ω = (A,B) where A and B are two real num-
bers. Further let T > 0 and D = Ω× (0, T ).
The formal statement of the idealised problem is:
With

Lu ≡ −∂u
∂t

+ σ(x, t)
∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u,

find a function u : D → R1 such that

Lu = f(x, t) in D (14)

u(x, 0) = ϕ(x), x ∈ Ω (15)

u(A, t) = g0(t), u(B, t) = g1(t), t ∈ (0, T ). (16)

The initial-boundary value problem (14)-(16) is general and it sub-
sumes specific cases from the option pricing literature (in particular
it is a generalisation of the original Black-Scholes equation).

In general, the coefficients σ(x, t) and µ(x, t) represent volatility (dif-
fusivity) and drift (convection), respectively. Equation (14) is called
the convection-diffusion-reaction equation. It serves as a model for
many kinds of physical and economic phenomena. Much research
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has been carried out in this area, both on the continuous problem
and its discrete formulations (for example, using finite difference
and finite element methods). In particular, research has shown that
standard centred-difference schemes fail to approximate (14)-(16)
properly in certain cases (see [4]) .

The essence of the finite difference method is to discretise equation
(14) by defining so-called discrete mesh points and approximating
the derivatives of the unknown solution of system (14) - (16) in some
way at these mesh points. The eventual goal is to find accurate
schemes that will be implemented in a programming language such
C++ or C# for the benefit of traders and risk management. Some
typical attention points are:

• The PDE being approximated may need to be pre-processed
in some way, for example transforming it from one on a semi-
infinite domain to one on a bounded domain.
• Determining which specific finite difference scheme(s) to use

based on quality requirements such as accuracy, efficiency
and maintainability.
• Essential difficulties to resolve: convection dominance, avoid-

ing oscillations and how to handle discontinuous initial con-
ditions, for example.
• Developing the algorithms and assembling the discrete sys-

tem of equations prior to implementation.

Our goal is to approximate (14)-(16) by finite difference schemes.
To this end, we divide the interval [A,B] into the sub-intervals:

A = x0 < x1 < . . . < xJ = B

and we assume for convenience that the mesh-points {xj}Jj=0 are
equidistant, that is:

xj = xj−1 + h, j = 1, . . . , J.

(
h =

B − A
J

.

)
Furthermore, we divide the interval [0, T ] into N equal sub-intervals
0 = t0 < t1 < . . . < tN = T where tn = tn−1+k, n = 1, . . . , N (k =
T/N).

(It is possible to define non-equidistant mesh-points in the x and
t directions but doing so would complicate the mathematics and we
would be in danger of losing focus).

The essence of the finite difference method lies in replacing the



14 D.J. DUFFY

derivatives in (14) by divided differences at the mesh-points (xj, tn).
We define the difference operators in the x-direction as follows:

D+uj = (uj+1 − uj)/h, D−uj = (uj − uj−1)/h

D0uj = (uj+1 − uj−1)/2h, D+D−uj = (uj+1 − 2uj + uj−1)/h
2.

It can be shown by Taylor expansions that D+ and D− are first-
order approximations to ∂

∂x , respectivily while D0 is a second-order

approximation to ∂
∂x . Finally, D+D− is a second-order approxima-

tion to ∂2

∂x2 .
We also need to discretise the time dimension and to this end we
consider the scalar initial value problem:

 Lu ≡ u
′
(t) + a(t)u(t) = f(t),∀t ∈ [0, T ]

with a(t) ≥ α > 0,∀t ∈ [0, T ].
u(0) = A.

(17)

The interval where the solution of (17) is defined is [0, T ]. When
approximating the solution using finite difference equations we use
a discrete set of points in [0, T ] where the discrete solution will be
calculated. To this end, we divide [0, T ] into N equal intervals of
length k where k is a positive number called the step size. In general
all coefficients and discrete functions will be defined at these mesh
points. We draw a distinction between those functions that are
known at the mesh points and the solution of the corresponding
difference scheme. We adopt the following notation:

an = a(tn), f
n = f(tn)

an,θ = a(θtn + (1− θ)tn+1), 0 ≤ θ ≤ 1, 0 ≤ n ≤ N − 1
un,θ = θun + (1− θ)un+1, 0 ≤ n ≤ N − 1.

(18)

Not only do we have to approximate functions at mesh point but we
also have to come up with a scheme to approximate the derivative
appearing in (17). There are several possibilities and they are based
on divided differences. For example, the following divided differences
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approximate the first derivative of u at the mesh point tn = n ∗ k;

D+u
n ≡ un+1 − un

k

D−u
n ≡ un − un−1

k

D0u
n ≡ un+1 − un−1

2k
.


(19)

We now introduce a number of important and useful difference
schemes that approximate the solution of (17). The main schemes
are:

• Explicit Euler.
• Implicit Euler.
• Crank Nicolson (or box scheme).

The explicit Euler method is given by:

un+1 − un

k
+ anun = fn, n = 0, . . . , N − 1

u0 = A

(20)

whereas the implicit Euler method is given by:

un+1 − un

k
+ an+1un+1 = fn+1, n = 0, . . . , N − 1

u0 = A.

(21)

Notice the difference: in (20) the solution at level n + 1 can be
directly calculated in terms of the solution at level n while in (21)
we must rearrange terms in order to calculate the solution at level
n+ 1. The next scheme is called the Crank-Nicolson or box scheme
and it can be seen as an average of the explicit and implicit Euler
schemes. It is given as:

un+1 − un

k
+ an,

1
2 un,

1
2 = fn,

1
2 , n = 0, . . . , N − 1

uo = A where un,
1
2 ≡ 1

2(un + un+1).

(22)

The discussion in this section has prepared us for a discussion of the
Black-Scholes partial differential equation.
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5. Example: The Black-Scholes PDE and its
Approximation

Probably one of the most famous formulae in computational fi-
nance is due to Fischer Black, Myron Scholes and Robert Merton
[1]. It has become popular with traders to price and hedge (a hedge
is a trade to reduce risk) options.

We introduce the generalised Black Scholes formula to calculate
the price of a call option on some underlying asset. In general the
call price is a function of six parameters:

C = C(S,K, T, r, σ, t) (23)

where the parameters have the following meaning [8]:

• S = asset price.
• K = strike (exercise) price.
• T = exercise (maturity) date.
• r = risk-free interest rate.
• σ = constant volatility.
• b = cost of carry.

We can view the call option price C as a function that maps a vector
of parameters into a real value. The exact formula for C is given
by:

C = Se(b−r)TN(d1)−Ke−rTN(d2) (24)

where N(x) is the standard cumulative normal (Gaussian) distribu-
tion function defined by

N(x) =
1√
2π

∫ x

−∞
e−y

2/2dy (25)

and where
d1 =

ln(S/K) + (b+ σ2/2)T

σ
√
T

d2 =
ln(S/K) + (b− σ2/2)T

σ
√
T

= d1 − σ
√
T .

(26)

The cost-of-carry parameter b has specific values depending on the
kind of derivative security [8]:

• b = r, we have the Black and Scholes stock option model.
• b = r − q, the Morton model with continuous dividend yield
q.
• b = 0, the Black futures option model.



NAVIER-STOKES TO BLACK-SCHOLES 17

• b = r−R, the Garman and Kohlhagen currency option model,
where R is the foreign risk-free interest rate.

Thus, we can find the price of a plain call option by using formula
(24).

The formula needs six input parameters, one of which (namely, the
volatility) cannot be found from the market and then special meth-
ods must be employed to estimate it. A discussion of this problem
is outside the scope of this article. Even though the assumptions
upon which formula (24) are based do not hold in all practical cases
(see Hull 2006 for a discussion) it is nonetheless the motivator for
more general cases for which an analytical solution is not available.
In these cases we must resort to numerical methods, for example
using the finite difference method that approximates the so-called
Black-Scholes PDE:

LV ≡ −∂V
∂t

+ σ(S, t)
∂2V

∂S2
+ µ(S, t)

∂V

∂S
+ b(S, t)V

where

σ(S, t) = 1
2σ

2S2

µ(S, t) = rS
b(S, t) = −r.

(27)

The corresponding fitted scheme is now defined as:

LhkV
n
j = −

V n+1
j − V n

j

k
+ ρn+1

j D+D−V
n+1
j + µn+1

j D0V
n+1
j

+ bn+1
j V n+1

j ,
for 1 ≤ j ≤ J − 1, where

ρnj ≡
µnjh

2
coth

µnjh

2σnj
.

(28)

We define the discrete variants of the initial condition (15) and
boundary conditions (16) and we realise them as follows:

V 0
j = max(Sj −K, 0), 1 ≤ j ≤ J − 1 (29)

and
V n

0 = g0(tn)
V n
J = g1(tn)

}
0 ≤ n ≤ N. (30)

The system (28), (29), (30) can be cast as a linear matrix system:

AnUn+1 = F n, n ≥ 0 with U 0 given (31)
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and we solve this system using LU decomposition, for example. A
discussion of this topic with algorithms and implementation in C++
can be found in [3]. Summarising, the scheme (28) uses constant
meshes in both space and time, centred differencing in space and
backwards in time (fully implicit) marching. Furthermore, we use
exponential fitting (see [2]) to ensure that the method remains stable
and accurate for problems with small diffusion parameter or large
convection parameter (This is the case of convection dominance).
We note that equation (29) is the discrete payoff function for a call
option. It plays the role of the discrete initial condition for the finite
difference scheme (28), (29), (30).
Finally, we remark that scheme (28), (29), (30) is first-order accurate
in space and time. For higher-order methods for one-factor and
multi-factor Black Scholes PDEs, see [5] and [7].

6. Software Design and Implementation Issues

What happens when we have set up the system of equations (28),
(29), (30)? In general, we implement the schemes in some modern
object-oriented programming language, for example C++ or C# for
use in production environments although languages such as Mat-
lab and Mathematica are used for building and testing prototypes.
Many pricing libraries have been developed during the last twenty-
five years in C++ and its popularity can be attributed to the fact
that it is an ISO standard and it is very efficient. It is a big language
and the learning curve is steep.

A discussion of the software activities involved when designing soft-
ware systems in computational finance is outside the scope of this
article. See [3] for some applications to PDEs and to the finite
difference method.

7. Conclusions and Future Scenarios: Computational
Finance and Research Mathematics

We have written this article to show some of the mathematical,
numerical and computational techniques that are used to price and
hedge financial derivatives. We have focused on a small subset but
important subset, namely the Black Scholes PDE and its numerical
approximation using the finite difference method. There are many
challenges and opportunities in this field in my opinion for applied
and numerical mathematicians, computer scientists and engineers
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in the coming years as we enter an era of distributed and parallel
computing.
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