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Problems

I learned the first problem from Grahame Erskine of the Open
University.

Problem 74.1. Given a positive integer A, let B be the number
obtained by reversing the digits in the base n expansion of A. The
integer A is called a reverse divisor in base n if it is a divisor of B
that is not equal to B.

For example, using decimal expansions, if we reverse the digits of
the integer 15, then we obtain 51. Since 15 is not a divisor of 51,
the integer 15 is not a reverse divisor in base 10.

For which of the positive integers n between 2 and 16, inclusive,
is there a two-digit reverse divisor in base n?

You may also wish to attempt the more difficult problem of classi-
fying those positive integers n for which there is a two-digit reverse
divisor in base n.

The second problem was proposed by Ángel Plaza of Universidad
de Las Palmas de Gran Canaria, Spain.

Problem 74.2. Let f : R+ −→ R+ be an increasing, convex func-
tion with f(1) = 1, and let x, y, and z be positive real numbers.
Prove that for any positive integer n,(

f

(
2x

y + z

))n
+

(
f

(
2y

z + x

))n
+

(
f

(
2z

x+ y

))n
> 3.

The third problem was contributed by Finbarr Holland of Uni-
versity College Cork. To state this problem, we use the standard
notation

f(n) ∼ g(n) as n→∞,
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where f and g are positive functions, to mean that

f(n)

g(n)
→ 1 as n→∞.

Problem 74.3. Prove that for j = 0, 1, 2, . . .,

n∑
k=0

kj
(
n

k

)
∼ nj2n−j as n→∞.

Solutions

Here are some solutions to the problems from Bulletin Number 72.
The proposer sketched a method for solving Problem 72.1, but we
have yet to receive a full solution. If we receive a full solution, then
we’ll publish it in a later issue.

The second problem was solved by the North Kildare Mathematics
Problem Club and the proposer, Finbarr Holland. The solution that
we give is equivalent to the submitted solutions.

Problem 72.2 . Prove that the integral∫ ∞
0

x sinx

2 + 2 cosx− 2x sinx+ x2
dx

exists as a Riemann integral, but not as a Lebesgue integral, and
determine its value as a Riemann integral.

Solution 72.2. Let

f(x) =
x sinx

2 + 2 cosx− 2x sinx+ x2
.

The denominator is equal to (1 + cosx)2 + (x − sinx)2, so f is
continuous on [0,∞), and hence it is Riemann integrable on any
compact subdomain of [0,∞). Let

g(x) = arctan

(
cosx+ 1

sinx− x

)
.

Then g is an antiderivative of f on (0,∞), so∫ b

a

f(x) dx = g(b)− g(a),
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where 0 < a < b <∞. Since g(a)→ −π/2 as a→ 0, and g(b)→ 0
as b→∞, we deduce that, as a Riemann integral,∫ ∞

0

f(x) dx =
π

2
.

Next, to prove that f is not Lebesgue integrable on (0,∞), let

In =

∫ (2n+1)π

π

|f(x)| dx

for n = 1, 2, . . .. Then

In =
n∑
k=1

∫ (2k+1)π

(2k−1)π
|f(x)| dx

=
n∑
k=1

∫ 2π

0

|f(x+ (2k − 1)π)| dx

=
n∑
k=1

∫ 2π

0

(x+ (2k − 1)π)| sinx|
(1 + cos x)2 + ((2k − 1)π + (x− sinx))2

dx

>
n∑
k=1

(2k − 1)π

∫ 2π

0

| sinx|
(1 + cos x)2 + ((2k − 1)π + (x− sinx))2

dx.

Let

ak = (2k − 1)π

∫ 2π

0

| sinx|
(1 + cos x)2 + ((2k − 1)π + (x− sinx))2

dx.

Then

(2k − 1)πak →
∫ 2π

0

| sinx| dx = 4 as k →∞.

As the sum of the reciprocals of the odds numbers is infinite, we see
that the sequence In is unbounded. Thus∫ ∞

0

|f(x)| dx =∞,

so f is not Lebesgue integrable. �

The third problem was solved by the North Kildare Mathematics
Problem Club and the proposer, Tom Moore of Bridgewater State
University, USA. The two solutions are equivalent to the solution
given below.
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Problem 72.3 . For n = 1, 2, . . . , the triangular numbers Tn and
square numbers Sn are given by the formulas

Tn =
n(n+ 1)

2
and Sn = n2.

It is well known that every even perfect number is a triangular num-
ber. Prove that every even perfect number greater than 6 can be
expressed as the sum of a triangular number and a square number.

Solution 72.3. The Euclid–Euler theorem says that every even per-
fect number can be expressed in the form 2p−1(2p− 1), where p and
2p−1 are prime numbers, and every number of that form is an even
perfect number. We use this representation of even perfect numbers
to solve the problem.

After some basic algebraic manipulations, we can see that

Tn + S2n+1 = 1
2(3n+ 1)(3n+ 2).

Let p be an odd prime number such that 2p − 1 is also a prime
number. Notice that 2p − 2 is divisible by 3. Let m = 1

3(2p − 2).
Then with some further algebraic manipulations, we see that

Tm + S2m+1 = 2p−1(2p − 1).

This shows that every even perfect number other than the number 6
(which is given by p = 2) can be expressed as the sum of a triangular
number and a square number. The number 6 cannot be expressed
as the sum of a triangular number and a square number, as you can
easily check. �

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com.
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