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EDITORIAL

It is a great sadness to me and to many in the Irish mathemati-
cal community that we have lost Jim Flavin, who for as long as I
can remember was a constant support to younger mathematicians
and who embodied the highest standards in Applied Mathematics.
His work on nonlinear differential equations was world-class. Math-
SciNet lists 57 papers1. His love and support for the Irish language
were also well-known, and as a member of the scientific commit-
tee of An Coiste Téarmáıochta he invested a great deal of time
and attention in publications such as ‘Foclóir Eoláıochta’ (Eagrán
Méadaithe, An Gúm 1994) and ‘Téarmáı Rı́omhaireachta’ (An Gúm
1990), which are vital supports for those who wish to conduct sci-
entific discourse in the language. He was working lately on an ex-
panded biography of Pádraig De Brún, that colourful and passionate
polymath, prankster, poet and visionary, the only full professor of
mathematics so far arrested for plotting the overthrow of the Irish
state, who served in Maynooth, DIAS and finally as President of
UCG. Jim’s work on the biographical note published on the occasion
of the 50th anniversay of DIAS 2 gathered much valuable material,
and it is to hoped that whatever else he put together more recently
can be brought to light.

Matt McCarthy has compiled an obituary note that appears in
this issue. Nı́ fheicfimid a leithéid aŕıs.

Following considerable distress and controversy in the mathemat-
ical and wider scientific community about a policy shift in Science
Foundation Ireland which resulted in the “administrative”rejection
of many grant proposals (i.e. rejection before consideration by any
scientific peers), the National Committee for Mathematical Science
decided to articulate these concerns. The Chair, Richard Timo-
ney, wrote to the SFI chief, Mark Ferguson. A copy of the letter

1See http:http://www.ams.org/mathscinet/search/publications.html?

pg1=INDI&s1=67460 (if you have access).
2Irishleabhar Mhá Nuad 1994, pp. 9-32; It was also published in DIAS School

of Theoretical Physics 50 Year Report, pp. 10-29 with two photographs and a
facsimile of the title-page of De Brún’s thesis
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iv EDITORIAL

may be viewed on the Royal Irish Academy website3. Earlier, the
RIA President, Luke Drury, spoke publicly about the importance of
supporting fundamental research in basic science, including mathe-
matics. Dr. Ferguson has agreed to meet Professor Timoney and a
delegation, and it is hoped that the situation will improve.

The Bulletin is exchanged for the publications of a good few
learned societies. This has the benefit of widening its impact, and
the exchange material that comes in is distributed among Irish insti-
tutions. In some cases, we are more motivated by the desire to assist
poorly-resourced colleagues overseas. Where the incoming journals
go is determined by the IMS Committee, taking into account ex-
pressed preferences. We have recently agreed a new exchange with
for the Iranian Journal of Mathematical Chemistry. We have a run
of Note di Matematica (published by Universita del Salento) and this
has not yet been allocated. Expressions of interest in either period-
ical are invited. We have long had an exchange with the Deutsche
Mathematiker Vereinigung. Our Vice-President Martin Mathieu re-
ports that the agreement with the DMV has been extended to a
reciprocity agreement that allows members of the IMS to become
members of the DMV at a reduced rate (and vice versa).

Tony Wickstead points out errata in the Winter 2011 number: On
page 15, the report of Duncan Lawson’s talk is cut short (actually
in the middle of a line!), and at the foot of page 16, the line ‘Martin
Stynes, University College Cork’ should really have been moved to
the top of page 17. I regret these lapses, and will endeavour to do
better. If I fail, corrections are always welcome.

In the last issue, I invited schools to send links to contact points
for prospective research students in Mathematics. These are the
ones that have come in so far:

DCU: Olaf Menkens http://www.dcu.ie/info/staff_member.php?
id_no=2659

NUIG: Jim Cruickshank mailto://jam:es.cruickshank@nuigalway.

ie

NUIM: http://www.maths.nuim.ie/pghowtoapply
QUB: http://www.qub.ac.uk/puremaths/Funded_PG_2012.html

3 http://ria.ie/getmedia/cb045886-692e-4d2c-baba-3760c9507368/

Letter-to-SFI.pdf.aspx
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TCD: http://www.maths.tcd.ie/postgraduate/
UCD: Nuria Garcia Ordiales mailto://nuria.garcia@ucd.ie

UU: http://www.compeng.ulster.ac.uk/rgs/

I again invite the remaining schools with Ph.D. programmes in
Mathematics to send me their preferred link, a url that works. I
remind readers of the print edition that all links are live, and hence
may be accessed by a click, in the electronic edition of this Bulletin4.

AOF. Department of Mathematics and Statistics, NUI, Maynooth,
Co. Kildare

E-mail address : ims.bulletin@gmail.com

4http://www.maths.tcd.ie/pub/ims/bulletin/
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Applying for I.M.S. Membership

(1) The Irish Mathematical Society has reciprocity agreements
with the American Mathematical Society, the Deutsche Math-
ematiker Vereinigung, the Irish Mathematics Teachers Asso-
ciation, the New Zealand Mathematical Society and the Real
Sociedad Matemática Española.

(2) The current subscription fees are given below:

Institutional member 160 euro
Ordinary member 25 euro
Student member 12.50 euro
DMV, I.M.T.A., NZMS or RSME reciprocity member 12.50 euro
AMS reciprocity member 15 US$

The subscription fees listed above should be paid in euro by
means of a cheque drawn on a bank in the Irish Republic, a
Eurocheque, or an international money-order.

(3) The subscription fee for ordinary membership can also be
paid in a currency other than euro using a cheque drawn on
a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$ 30.00.
If paid in sterling then the subscription is $20.00.
If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$ 30.00.
The amounts given in the table above have been set for the

current year to allow for bank charges and possible changes
in exchange rates.

(4) Any member with a bank account in the Irish Republic may
pay his or her subscription by a bank standing order using
the form supplied by the Society.

(5) Any ordinary member who has reached the age of 65 years
and has been a fully paid up member for the previous five
years may pay at the student membership rate of subscrip-
tion.



3

(6) Subscriptions normally fall due on 1 February each year.

(7) Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

(8) Any application for membership must be presented to the
Committee of the I.M.S. before it can be accepted. This
Committee meets twice each year.

(9) Please send the completed application form with one year’s
subscription to:

The Treasurer, I.M.S.
Department of Mathematics

St Patrick’s College
Drumcondra

Dublin 9, Ireland
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James N. Flavin
1936 – 2012

Jim Flavin was born in Cork in December 3, 1936. He received
his secondary education at Christian Brothers College, Cork where
he had a distinguished academic career. He entered University Col-
lege, Cork in 1954 and was awarded a First Class Honours Degree
in Mathematical Science in 1957. He was awarded a M.Sc. De-
gree as well as the N.U.I. Travelling Studentship in 1959. Jim then
embarked on his doctoral studies at King’s College, Newcastle upon
Tyne under the direction of Professor Albert Green and was awarded
his Ph.D. degree from the University of Durham in 1962. The topic
of his thesis was Thermoelastic Wave Propagation in Prestressed
Elastic Materials. This was a profoundly stimulating time to be
at King’s College, since Professor Green’s innovative work on fun-
damental continuum mechanics attracted several outstanding inter-
national visitors who influenced and enhanced an exciting research
atmosphere. Jim took full advantage of the opportunities offered.

He was appointed Lecturer in Mathematical Physics at Univer-
sity College, Galway (now National University of Ireland, Galway)
in 1962 and a year later at the remarkably young age of 26 was ap-
pointed Professor of Mathematical Physics and Head of Department
in 1963. He held both positions until his retirement in 2002. He was

5
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the sole member of the Department until January 1965 and as a
result carried an enormous teaching load.

At the time of Jim’s appointment the College was governed by
the University College Act 1929 which required the institution to
provide academic programmes through the medium of the Irish lan-
guage. While some members of the academic community took this
requirement less than seriously, Jim understood it to be one of his
conditions of appointment and undertook it extremely seriously. He
realised that his secondary education had not fully equipped him
adequately in Irish and set out to rectify this situation. He did this
initially by frequently visiting the West Kerry Gaeltacht in Dunquin
where Irish was the first language of the area. He also immersed
himself in the study of Irish Language and Literature. His linguistic
skills were such (he was also fluent in Italian and French) that he
was soon regarded as an expert in the use of the Irish Language.

Jim’s love of the Irish language was reflected in his enthusiasm for
teaching courses in U.C.G. though the medium of Irish whenever
possible. He was one of the few people who provided courses through
Irish in the Science Faculty beyond first year level. He was for many
years a member of a Department of Education working party on
the development of an Irish terminology of scientific terms and he
took particular pleasure when these efforts ultimately culminated in
the publication of an English-Irish dictionary (Foclóir Eoláıochta,
an Gúm, 1994).

He was an extremely active member of the Governing Body of
U.C.G. for over twenty years until 1992. He was also a member
of the Senate of The National University of Ireland for many years
and served on the board of The School of Theoretical Physics of
The Dublin Institute for Advanced Studies. Jim was also a member
of National Committee for Theoretical and Applied Mechanics and
a founder member of the Irish Mechanics Society. He was elected
a Member of The Royal Irish Academy in 1999. He was also a
Foreign Member of the Academia di Scienze Fisiche e Matematiche
di Napoli.

Jim Flavin published throughout the years in various areas of Ap-
plied Mathematics. Initially his doctoral work led to a number of
papers on wave propagation in elastic media. However he soon be-
came interested in problems associated with classical elasticity. His
initial work in this area was concerned with establishing bounds for
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the torsional rigidity of elastic cylinders of various cross sections and
composed of a variety of types of elastic materials. His subsequent
work on Saint-Venant’s principle led to a series of papers frequently
quoted by other leading scientists in the field. There followed a se-
ries of publications, mainly in conjunction with Robin Knops and
Larry Payne on estimates for the asymptotic growth and decay of
solutions in elasticity and other elliptic systems. In addition, he
continued to be a sole author of several contributions devoted to
diverse aspects of Mechanics

In 1993 Jim embarked on a collaboration with Salvatore Rionero of
The University of Naples, which proved to be extraordinarily fruit-
ful until Jim’s death in April 2012. They spent many happy periods
working together in both Galway and Naples. Their research was
primarily concerned with the study of partial differential equations
with particular emphasis on heat flow, nonlinear diffusion and Lia-
punov stability. Their numerous important and incisive results were
combined into a well received book: Quantitative Estimates for Par-
tial Differential Equations: An Introduction, 1995, CRC Press.

Jim had many interests. He was an extremely keen walker and
swimmer. He played rugby while a student at Christian College,
Cork. In recent years, primarily motivated by his son Aonghus,
he developed a keen interest in soccer. He was an avid Liverpool
supporter and was a regular visitor to Anfield. Jim’s most recent
visit was in January of this year, to see Liverpool play Manchester
United.

Jim was a renowned story teller and seancháı and is remember by
his students as an excellent lecturer and communicator. He was a
highly regarded member of the Irish and international mathematical
communities and his death on April 13, 2012 leaves a void in the
lives of those who knew him well. Above all he will be greatly missed
by his wife Freda, his children Martina, Aonghus and Cĺıodhna and
grandchildren.

Leaba imeasc na naomh go raibh aige.

Collected and compiled by Matt McCarthy, NUI Galway.
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RANGES OF BIMODULE PROJECTIONS AND
CONDITIONAL EXPECTATIONS

ROBERT PLUTA

This is an abstract of the PhD thesis Ranges of Bimodule Projec-
tions and Conditional Expectations written by R. Pluta under the
supervision of Prof. Richard M. Timoney at the School of Mathe-
matics, Trinity College Dublin and submitted in September 2011.
The algebraic theory of corner rings introduced by Lam [1] (as

an abstraction of the properties of Peirce corners eRe of a ring R
associated with an idempotent e ∈ R) is investigated in the context
of C∗-algebras and operator algebras. The main result is as follows.

Theorem. Let H be a Hilbert space with an orthonormal basis (ei)i∈I
(which may be countable or uncountable), and B(H) the algebra of
bounded operators on H. Let E : B(H)→ B(H) be a linear map with
range S a subalgebra such that E ◦ E = E, E is an S-bimodule map,
and E(x∗) = E(x)∗ for x ∈ B(H) (E is called a Lam conditional
expectation). Then, if ei ⊗ e∗i ∈ S for i ∈ I, there is an equivalence
relation on I such that E(x) = ∑

j∈J pjxpj for x ∈ B(H), where J
is the set of equivalence classes, pj =

∑
i∈j ei ⊗ e∗i for j ∈ J , and

ei⊗ e∗i is the operator that sends an element h ∈ H to 〈h, ei〉ei ∈ H.

This is generalized to purely atomic von Neumann algebras.

References

[1] T. Y. Lam: Corner ring theory: a generalization of Peirce decompositions. I.
Algebras, rings and their representations, 153–182, World Sci. Publ., Hacken-
sack, NJ, 2006.

School of Mathematics, Trinity College Dublin
E-mail address, R. Pluta: plutar@tcd.ie

2010 Mathematics Subject Classification. 46L05, 46L07.
Key words and phrases. C∗algebra, injective, noncommutative conditional

expectation.
Received on 14-5-2012.
I would like to thank Prof. Richard M. Timoney for the care he took in super-

vising my PhD thesis.

c©2012 Irish Mathematical Society
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JOHN TODD AND THE DEVELOPMENT OF
MODERN NUMERICAL ANALYSIS

NIALL MADDEN

Abstract. The purpose of this article is to mark the centenary of
the birth of John Todd, a pioneer in the fields of numerical analysis
and computational science. A brief account is given of his early life
and career, and that of his wife, Olga Taussky, including experi-
ences during World War II that led to him engaging with the then
developing field of numerical analysis. Some of his contributions to
the field, and the contexts in which they arose, are described.

1. Before the war

John (Jack) Todd’s long and eventful life began on May 17th, 1911
in Carnacally, County Down. I give only an outline of these events
here, and refer the interested reader to [1, 2, 5] for further details.

Having attended Methodist College in Belfast, Todd studied at
Queen’s University Belfast from 1928 to 1931, where A.C. Dixon was
professor of Mathematics. He then went to Cambridge, but could
not enrol for a bachelor’s degree since he had not studied Latin, and
so became a research student instead. He was supervised by J.E.
Littlewood, who disapproved of the notion of doctoral degrees, so
Todd never completed one. He worked under Littlewood’s guidance
on transfinite superpositions of absolutely continuous functions [25,
26].

He returned to lecture in Queen’s University Belfast in 1933, work-
ing with J.G. Semple who had recently been appointed as professor.
When Semple moved to King’s College London in 1937, he invited

2010 Mathematics Subject Classification. 01-08, 01A60, 10A70, 65-XX.
Key words and phrases. John Todd, Olga Taussky, Biography, Numerical Anal-

ysis, Computational Mathematics.
Received on 14-5-2012; revised 29-5-2012.
The author is grateful to Prof. Tom Laffey for discussions about Olga Taussky

and John Todd, to Frank Uhlig helpful comments and for the image in Figure 2,
and to the Archives of the Mathematisches Forschungsinstitut Oberwolfach for
permission to reproduce images in Figure 1.

c©2012 Irish Mathematical Society
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12 N. MADDEN

Todd to join him. Initially Todd taught aspects of real analysis
there, particularly measure theory, but when another professor be-
came ill while teaching a course in group theory, he was asked to
take over.

He developed an interest in the area — enough to attend seminars
on the topic at other London Colleges, and tackle a challenging
research problem. That in turn led him to contact Olga Taussky
who was at Westfield College, leading to a personal and professional
partnership that was to last for nearly 60 years.

Figure 1. John Todd, 1977 and Olga Taussky, (circa
1932). (Source: Archives of the Mathematisches
Forschungsinstitut Oberwolfach)

2. Taussky and Todd

Olga Taussky was a highly prolific and influential mathematician:
she authored roughly 200 research articles and supervised the re-
search of 14 graduate students; she was a founding editor of the
journals Linear Algebra and its Applications and Linear and Multi-
linear Algebra; she received many awards and distinctions, including
election as vice-president of the American Mathematical Society in
1985.

Taussky was born in 1906 in Olmütz, in the Austro-Hungarian
empire. She studied in Vienna, initially majoring in both mathe-
matics and chemistry, the latter being related to the family business.
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However, she soon focused her attention on mathematics, eventually
completing a doctorate in Vienna, under the supervision of Philip
Furtwängler, a noted number theorist who contributed significantly
to the development of class field theory.

In 1931 she moved to Göttingen, primarily to work with Richard
Courant on editing Hilbert’s papers on number theory, while also as-
sisting Courant and Emmy Noether with their courses. However, the
rise of antisemitism resulted in many academics in German universi-
ties, including Courant, Noether and Taussky, being forced to leave
their positions. After a short time in Cambridge, Courant became a
professor at New York University in 1936, while Noether moved to
Bryn Mawr College in Pennsylvania. Taussky was awarded a three
year research fellowship from Girton College in 1935, and decided
to spend the first year of that in Bryn Mawr with Noether.

After applying for numerous positions, Olga Taussky was eventu-
ally appointed to a teaching post at Westfield College, a constituent
of the University of London. In 1937 she met Todd and within a
year they married, somewhat inauspiciously, on the day the Mu-
nich Agreement was signed. Their first joint articles, which show
Taussky’s emerging interest in the developing field of matrix theory
(e.g., [21, 22]) were written in a bomb shelter in London. Their
final joint paper [23], a historical note on links between the cele-
brated method of Cholesky and work of Otto Toeplitz, was com-
pleted shortly before Taussky’s death in 1995.1

For more details of Taussky’s life and career, see [17] and [47],
and the autobiographical articles [24] and [20]: the former is pri-
marily concerned with her life and experiences, the latter with her
contributions to matrix theory. Her contributions to other areas of
algebra are discussed in [16].

3. During the war

With the outbreak of World War II, and their colleges evacuated
from London, Taussky and Todd moved to Belfast where they both

1The manuscript was originally submitted in 1995. Following the death of
Taussky later that year, the manuscript was “lost” for several years. Some years
after, there was renewed interest in the origins of Cholesky’s method, including
the discovery by Claude Brezinski of an original, unpublished, hand-written note
by Cholesky describing it. So in 2005, Todd resubmitted the paper for publication
in Numerical Algorithms.
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taught for a year. Eventually they were to return to London and to
work in scientific war jobs.

Taussky worked on aerodynamics at the National Physics Labo-
ratory with the Ministry of Aircraft Production. Here she learned
a great deal about differential equations, which had not interested
her much previously, and matrix theory. She worked on problems in
flutter [44], expressed as hyperbolic differential equations, and devel-
oped a technique that greatly reduced the amount of computational
effort required to estimate the eigenvalues of certain matrices. Her
idea was to use the simple, but very powerful, idea introduced by
Gers̆gorin [12] which shows that the eigenvalues of an n× n matrix
A with complex entries are contained in the union of n disks, where
the ith disk is centred on aii and has radius

∑
j 6=i |aij|. Taussky then

used carefully chosen similarity transforms that reduce the radius of
the disks, thus improving the accuracy of the estimate.

Although Gers̆gorin’s work had received some attention, Taussky
is often credited with popularising it, for example in [19]. Many
generalisations and extensions were to follow, by Taussky and by
others; an accessible account of these is given by Varga in [48]. The
study of Gers̆gorin’s disks were also a topic of research in the Ph.D.
studies of Taussky’s Irish student, Fergus Gaines [11].

While Taussky was working on aeronautics, Todd worked with the
Admiralty in Portsmouth, initially on ways of counteracting acoustic
mines. During that period he was struck by the amount of time that
physicists spent doing routine calculations, while mathematicians
were attempting to engage with engineering problems:

“This was rather frustrating: physicists were doing
elementary computing badly and mathematicians like
me were trying to do physics. I thought that I could
see a way to improve this mismatching” [1].

Todd persuaded his superiors to reassign him to London to establish
what became the Admiralty Computing Service, centralising much
of numerical computations for the naval service. He remained there
until 1946.

In 1942 John von Neumann visited the Admiralty to inspect some
of their ballistic facilities in connection with his work on develop-
ing the atomic bomb at Los Alamos. Todd was given the task of
accompanying him, and introduced him to their computing facility.
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This led to the rather remarkable claim, made by von Neumann,
that Todd was responsible for getting him interested in computing!

Todd’s work with the Admiralty also led to what he considered
his greatest contribution to mathematics. In 1945 he was part of a
small group that visited Germany to investigate mathematics that
might be of interest to the Navy, such as the work of Konrad Zuse
on programmable computers. The group also visited Oberwolfach,
which they had heard was being used as a mathematics research
centre. They arrived just in time to prevent it from being looted by
Moroccan soldiers. Because it was in the French zone of occupation,
Todd subsequently travelled to Paris to persuade the French govern-
ment to maintain it. It later developed into a world renowned centre
for mathematical research. For a lively recounting of the adventures
of this time, see [41].

4. Conversion to Numerical Mathematics

Even before setting up the Admiralty Computing Service, Todd
had developed an interest in the topic of computing, initially promp-
ted by Alan Turing’s work on computable numbers [45], and through
contacts with the British Association for the Advancement of Sci-
ence (BAAS), which was mainly concerned with making tables—
often regarded as the primary goal of early scientific computing.

When he returned to Kings College in 1946, he taught the first
course there on numerical mathematics. There were no text books
for this developing area, so Todd developed his own notes. This
included a section on the solution of systems of linear equations,
featuring the method of Cholesky, which at the time was not well
known in the mathematics literature.2 It was through this course
that Leslie Fox and colleagues at the Mathematics Division of the
National Physics Laboratory became aware of this now standard
method.

2André-Louis Cholesky was a French military officer. He developed his epony-
mous method for solving linear systems involving Hermitian, positive-definite ma-
trices when he was engaged in computing solutions to certain least-squares prob-
lems that arise in geodesy. Compared to other approaches at the time, it was
remarkably efficient—Cholesky reported that he could solve a system of 10 equa-
tions, to 5 decimal digits of accuracy, in under five hours! He explained his method
to other topographers, but never published it. It was eventually published in a
journal on geodesy by a colleague several years after Cholesky’s untimely death
towards the end of World War I [6]. See also [3].
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Around this time, Artur Erdélyi and Todd wrote an article in
Nature based on their observations of industrial mathematics re-
search [9]. They argued for the foundation of an Institute for Prac-
tical Mathematics in the U.K. to provide instruction in the “mathe-
matical technology” needed for developments in engineering, math-
ematical biology and economics. The call was not immediately
heeded, but in 1947, Todd and Taussky moved to the United States,
at the invitation of John Curtiss, to help establish the new Institute
for Numerical Analysis at the National Bureau of Standards. Fol-
lowing an “inspirational” three months visiting von Neumann at
Princeton [2], they began working at the INA, located at first at
UCLA. They moved to Washington a year later where they stayed
for 10 years.

In 1957 Todd and Taussky were offered positions at Caltech: John
as Professor of Mathematics, and Olga as a research associate “with
the permission but not the obligation to teach” [17].3 Todd’s ap-
pointment was made so as to develop courses in numerical anal-
ysis and computation within the mathematics department. They
remained at Caltech for the rest of their lives. Taussky died on
October 7th, 1995. Todd died on May 16th, 2007.

5. Todd and Numerical Analysis

Prior to the 1940s, a “computer” was usually understood to be a
person who carried out calculations, and the designers of numerical
algorithms had in mind the development of methods that were to
be implemented by hand. Computing machinery was mainly lim-
ited to hand-operated mechanical calculators, such as the 10-digit
Marchant Model 10 ACT—the first calculator used in Todd’s course
on numerical analysis at King’s College in 1946. The same year,
ENIAC (Electronic Numerical Integrator And Computer), the first
general-purpose, programmable electronic computer, was launched.

From the 1940s, the rapid development of computer hardware was
mirrored by rapid developments in the field of numerical analysis:
it could be argued that the field emerged as a discipline in its own
right between 1940 and 1960. (The term itself is usually credited to

3At the time, Caltech regulations prevented Todd and Taussky from holding
professorships concurrently; this was only modified years later as a result of the
recognition that Taussky was receiving as one of the country’s leading mathe-
maticians. Taussky was granted tenure in 1963 and a full professorship in 1971.
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John Curtiss, and its first use was in the name of the Institute for
Numerical Analysis that he founded in 1947). Landmark advances
included the development of the Crank-Nicolson method for time-
dependent partial differential equations in 1947, and the discovery
of the more computationally efficient alternating direction method
(ADI) by Peaceman and Rachford in 1953. The basis for Finite
Element methods, now the most popular approach for numerical so-
lution of partial differential equations in engineering applications,
was provided by Courant in 1943, but their full potential was not
realised until the 1960s. In 1947, von Neumann and Goldstine pro-
duced the first mathematical study of direct numerical solution of
linear systems, with particular regard to the effects of round-off er-
ror.4 New algorithms (and their analyses) for the iterative solution
of linear systems included successive over-relaxation (SOR) in 1950,
and the Conjugate Gradients method in 1952 (though the latter
did not achieve significant popularity until much later). The Fast
Fourier Transform of Cooley and Tukey was developed in 1965.

The American Mathematical Society’s journal Mathematical Ta-
bles and Other Aids to Computation was launched in 1943, and
renamed Mathematics of Computation in 1960. In 1959, the first
journal for numerical analysis, Springer-Verlag’s Numerische Math-
ematik was founded, with Robert Sauer, Alwin Walther, Eduard
Stiefel, Alston Householder, and John Todd as editors. Todd served
on the editorial board for 49 years. The SIAM Journal on Numerical
Analysis was founded later, in 1964.

Readers interested in the history of the development of the field
of numerical analysis in the 20th century should consult the recent
article by Grcar [14] which pays special attention of the importance
of von Neumann’s work, particularly [49], and those who developed
its ideas further, including John Todd.

5.1. Articles. Todd’s first papers in numerical analysis were related
to computational linear algebra, and the problems of ill-conditioning
of matrices. Suppose A is a nonsingular matrix and we wish to solve
the system Ax = b by computational means. Simply representing b
with finitely many digits introduces numerical error. In many cases

4Their paper [49] is often cited is the first in modern numerical analysis; others
would give that honour to Turing for his 1936 paper on computable numbers [45],
while in [38] Todd points to Comrie’s 1946 article on the use of general business
machines in solving computational problems [7].
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of interest, the implementation of standard direct solution algorithm
(all variants on Gaussian elimination) on a computer with finite
precision greatly magnifies these errors. In [49], von Neumann and
Goldstine introduced a quantity they called the “figure of merit”
which gives an upper bound on the magnification of the errors. This
is usually denoted κ(A) and is now known as the condition number of
the matrix, a term coined by Alan Turing in a related work written
around the same time [46]. If κ(A) is large, then the matrix is said
to be ill-conditioned. It is usually defined as, for example,

κ(A) = ‖A‖‖A−1‖,
where ‖·‖ is one’s favourite matrix norm, or as the ratio of the largest
to smallest eigenvalue of A. This latter case can be useful in practice,
since it does not require direct knowledge of A−1. Furthermore,
in [49] the “figure of merit” is given as ‖A‖2‖A−1‖2 = σn/σ1 where
0 < σ1 ≤ · · · ≤ σn are the singular values of the invertible matrix A.
But since in most of the cases considered, A is a symmetric positive
definite matrix, this is the same as λn/λ1 where 0 < λ1 < · · · < λn
are the eigenvalues of A. Turing’s proposed measures included using
a scaled Frobenius norm. Todd [27, 29] studied this issue for a matrix
arising in the numerical solution of a second-order elliptic problem in
two variables by the standard finite difference method, and showed
the relationship between several measures of conditioning proposed
by Turing, von Neumann and others. His work was instrumental in
Goldstine and von Neumann’s quantity becoming accepted as the
condition number. He went on to study fourth and higher-order
problems in [32]. See [14] for a further discussion of this.

Other articles, including [28], are concerned with the stability of
finite difference schemes, and propose that such analysis be done
based on the matrix analysis of resulting linear systems. Simi-
lar ideas, but for several explicit and implicit schemes for time-
dependent problems, are found in [34]. A mathematical analysis
(explaining experimental results obtained by other authors) for an
ADI method is given in [10]. The computation of special functions
features in [15], for example, and the efficiency of methods for solv-
ing integral equations is considered in [35].

Although numerical analysis is often (and certainly, originally) un-
derstood as the mathematical study of computer algorithms for solv-
ing mathematical problems, in [33] Todd coined the term “ultramod-
ern numerical analysis” (or “adventures with high speed automatic
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digital computing machines”) which, unlike other areas of mathe-
matics of the time, features aspects of experimentation, particularly
where rigorous error analysis was not possible for sufficiently compli-
cated problems. A systematic study of such experimentation, using
matrix inversion as the main illustration, is given in [18]. An experi-
mental study of a linear solver is given in [30], and of the application
of a Monte Carlo method for solving a partial differential equation
in [31] (as originally proposed by Courant, Friedrichs and Lewy in
their celebrated 1928 paper that includes their famous condition for
the stability of explicit schemes for time dependent problems [8]).
Given the need to avoid over-extrapolation based on numerical ex-
periments for a limited number of examples, Todd [33] cautioned
that “separation of theoretical and applied numerical analysis is un-
desirable”.

Although many of Todd’s later papers were on the history of com-
putational mathematics, he continued publishing original research
into his seventies [4, 42] and eighties [43].

5.2. Books. While at the Bureau of Standards, Todd developed a
programme to help train mathematicians in the new techniques of
computational mathematics. He arranged for experts in the field to
give courses in particular topics. At the suggestion of Taussky, the
notes from these courses developed into the highly influential Survey
of Numerical Analysis [36]. The first chapter, a reworking of [33]
mentioned above, is titled Motivation for Working in Numerical
Analysis, and notes that

“the profession of numerical analysis is not yet so de-
sirable that it is taken up by choice; indeed, although
it is one of the oldest professions, it is only now be-
coming respectable”.

He distinguished between what he termed classical, modern and ul-
tramodern numerical analysis. Classical numerical analysis is con-
cerned with solution, by hand, of problems in interpolation, integra-
tion, and the approximation of solutions to initial value problems5.
Modern numerical analysis, on the other hand, is required for the
exploitation of automatic digital computation. Finally, ultramodern
numerical analysis relies on a combination of rigorous mathematics,

5See the fascinating monograph [13] for details on the fundamental develop-
ments of classical numerical analysis.
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where problems permit it, and careful study of experimental results
for problems whose complexity is beyond existing mathematical the-
ory (for example, one might devise a numerical method for solving
a nonlinear differential equation, give a mathematical analysis for
a linearised variant and the results of supporting numerical experi-
ments for the full nonlinear problem).

The survey contained contributions from, among others, Morris
Newman, Harvey Cohen, Olga Taussky, Philip J. Davis, Werner
Rheinbolt and Marshall Hall, Jr.. Topics covered include approxima-
tion of functions, the principles of programming, Turing Machines
and undecidability, numerical linear algebra, differential equations,
integral equations, functional analysis, block designs, number the-
ory, and computational statistics.

Todd did not completely abandon his earliest research interests.
His 1963 monograph, Introduction to the Constructive Theory of
Functions [37] drew from the tradition of classical analysis to present
sometimes neglected ideas on Chebyshev theory and orthogonal
polynomials, while still providing “some mild propaganda for nu-
merical analysis”.

The courses in numerical analysis that Todd developed at Cal-
tech became the basis for the two volume Basic Numerical Math-
ematics. As educational aspects of the subject developed, most
presentations where aimed either at students at graduate or upper
undergraduate level, or incorporated computational aspects into in-
troductory courses in linear algebra and calculus. As he explains in
Volume 1 [40], Todd aimed to introduce aspects of numerical compu-
tation after only the basics of calculus and algebra had been studied.
He combined both “controlled numerical experiments”, to reinforce
ideas such as convergence and continuity, with “bad examples”, to
temper the tendency to rely on numerical experience rather then
develop sound mathematical analyses:

“The activities of the numerical analyst are similar to
the highway patrol. The numerical analyst tries to
prevent computational catastrophes”.

Often, the existence of such “bad examples” is due to the subtle dif-
ference between real numbers and those that might be represented
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by computer. As an example (see [40, Chap. 3]) consider the diver-
gent harmonic series

1 +
1

2
+

1

3
+

1

4
+ · · · .

If this sum is constructed on a computer it will appear to be con-
vergent since, for large enough n, the computer will not be able to
distinguish 1/n from zero.

Volume 1 [40], subtitled “Numerical Analysis”, covers topics in
interpolation, quadrature and difference equations, and are com-
plemented by (relatively) elementary programming exercises. Since
most programs required are for scalar problems, students were ex-
pected to develop a complete implementation of the algorithms
themselves.

Volume 2 [39], “Numerical Algebra” deals with direct and iterative
methods for solving linear systems of equations, and for the estima-
tion of eigenvalues, with applications to curve fitting and solution of
boundary value problems. Because the algorithms require the rep-
resentation and storage of vectors and matrices, unlike the earlier
volume, students were encouraged to use libraries of subroutines to
complete programming assignments.

To summarise the importance, not only of these books, but of
Todd’s contribution in general, we give a quotation from A. S.
Householder’s review of [40]:

“Probably no one has a practical and theoretical back-
ground surpassing that of the author, and this book is
altogether unique”.
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“ODD” MATRICES AND EIGENVALUE ACCURACY

DAVID JUDGE

Abstract. A definition of even and odd matrices is given, and
some of their elementary properties stated. The basic result is that
if λ is an eigenvalue of an odd matrix, then so is −λ. Starting from
this, there is a consideration of some ways of using odd matrices to
test the order of accuracy of eigenvalue routines.

1. Definitions and some elementary properties

Let us call a matrix W even if its elements are zero unless the
sum of the indices is even – i.e. Wij = 0 unless i + j is even; and
let us call a matrix B odd if its elements are zero unless the sum of
the indices is odd – i.e. Bij = 0 unless i + j is odd. The non-zero
elements of W and B (the letters W and B will always denote here
an even and an odd matrix, respectively) can be visualised as lying
on the white and black squares, respectively, of a chess board (which
has a white square at the top left-hand corner).

Obviously, any matrix A can be written as W+B; we term W and
B the even and odd parts, respectively, of A. Under multiplication,
even and odd matrices have the properties, similar to those of even
and odd functions, that

even × even and odd × odd are even,
even × odd and odd × even are odd.

From now on, we consider only square matrices. It is easily seen
that, if it exists, the inverse of an even matrix is even, the inverse
of an odd matrix is odd. It is also easily seen that in the PLU
decomposition of a non-singular matrix A which is either even or
odd, L and U are always even, while P is even or odd according as
A is.

2010 Mathematics Subject Classification. 15A18,15A99,65F15.
Key words and phrases. even matrix, odd matrix, eigenvalues, test matrix.
Received on 27-4-2012; revised 11-7-2012.
The author would like to express his gratitude for helpful discussions with T.

Laffey, D. Lewis, and the late Fergus Gaines.

c©2012 Irish Mathematical Society

25



26 D. JUDGE

We note also that in the QR factorisation of a non-singular even
matrix, R and Q are both even, while for an odd matrix, R is even,
Q is odd. (This is most easily seen by viewing the QR factorisation
in its Gram-Schmidt orthogonalisation aspect.) Thus the property
of being even or odd is preserved under the basic QR algorithm for
eigenvalues: however, for odd matrices, this is not true for the QR
algorithm with shifts.

2. The basic result

The following very elementary result is basic:

Proposition 2.1. If λ is an eigenvalue of an odd matrix B, then
so is −λ.

This can be seen easily in two different ways.

First Proof. If Djk = (−1)kδjk, D−1(W + B)D = W − B, so
that W +B, W −B have the same eigenvalues, for arbitrary square
(even and odd) matrices W and B. Putting W = 0, the result
follows. �

Second Proof. We can write any vector x as x = u + v, where
ui = 0, i odd, vi = 0, i even. We call u and v even and odd
vectors, respectively, and refer to them as the even and odd parts
of x. (We assume that indices run from 1 to n, the order of the
matrix. However, choosing the index origin as 0 merely interchanges
the values of u and v, and makes no difference to what follows.) We
note that

if B is odd , then Bu is odd , Bv is even. (1)

Now if x is an eigenvector of B with eigenvalue λ,

Bx = λx, (2)

writing x = u + v, and using (1), we must have

Bu = λv , Bv = λu. (3)

Then

B(u− v) = Bu−Bv = λv − λu = −λ(u− v), (4)

so that −λ is an eigenvalue of B, with eigenvector u− v. �
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This property is useful in giving a simple indication of the accuracy
of eigenvalue routines. For a completely arbitrary odd matrix B,
random or otherwise, with real or complex elements, the non-zero
eigenvalues can be sorted into pairs (λ1i , λ

2
i ) such that

λ1i + λ2i = 0. (5)

(As far as this property is concerned, there is no initial error what-

ever in entering B .) If the computed values, denoted by λ̂, are

sorted into corresponding pairs (λ̂1i , λ̂
2
i ), and

δi ≡ λ̂1i + λ̂2i , (6)

then max|δi| gives an estimate of the error.
A check on the accuracy of the eigenvectors is also possible. The

argument of proof 2 shows that if x = u + v is an eigenvector of B
corresponding to a simple eigenvalue λ , and if y is an eigenvector
corresponding to −λ, then y is of the form y = θu + φv, with the
same u and v, where θ and φ are scalars. (The fact that φ = −θ
here is not essential.) Thus if we multiply y by a factor to make
one of its even components (say the first non-zero one, or the largest
one) equal to the corresponding component of x, producing z, say,
we must have z = u+ρv, where ρ is some scalar. When we subtract
z from x, all the other even components must also cancel exactly.
Doing this for the computed vectors x̂ and ŷ, the actual deviations
from zero of these components give an accuracy estimate. The odd
components can be checked similarly.

3. Even matrices

For even matrices, there is no necessary relation whatever between
any of the eigenvalues – e.g., a diagonal matrix with arbitrary values
is even.

However, it is of interest to consider a further subdivision of such
matrices into a doubly-even (in brief, d-even) part and a doubly-odd
(in brief, d-odd) part,

W = Wee +Woo, (7)

where (Wee)ij = 0 unless i and j are both even, (Woo)ij = 0 unless
i and j are both odd.
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Under multiplication, doubly-even and doubly-odd matrices have
the properties that

d-even × d-even is d-even, d-odd × d-odd is d-odd,
d-even × d-odd is zero, d-odd × d-even is zero.

Thus the doubly-even and doubly-odd parts are completely ‘uncou-
pled’ under multiplication.

If I denotes the unit matrix, let Iee and Ioo denote its doubly-even
and doubly-odd parts, so that

I = Iee + Ioo. (8)

We can now see that the d-even and d-odd parts are also ‘uncoupled’
when taking inverses, in the following sense. If W is non-singular,
let X and Y denote the d-even and d-odd parts, respectively, of
W−1. Then

X ×Wee = Iee, X ×Woo = 0, Y ×Wee = 0, Y ×Woo = Ioo.

The eigenvalue problem for W also splits into two completely in-
dependent sub-problems:

Wx = λx =⇒ Weeu = λu, Woov = λv,

where u and v are the even and odd parts of x.
These properties of even matrices, trivial to check, are even more

obvious on noting that under a simple reordering transformation,
W is equivalent to a block-diagonal matrix of the form

T =

[
T1 0
0 T2

]
(9)

where T1, of dimension b(n+ 1)/2c, contains the non-zero elements
of Woo, and T2, of dimension bn/2c, contains those of Wee.

We note that under the same transformation, an odd matrix B is
similarly equivalent to a skew-diagonal block matrix

S =

[
0 S1
S2 0

]
. (10)

Thus the determinant of an even matrix always factorizes,

det(W ) = det(T ) = det(T1).det(T2),

and the determinant of an odd matrix either factorizes or is zero:

det(B) = det(S) = (−1)n/2det(S1).det(S2), if n is even,

= 0 if n is odd
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(since if n is odd, S1 and S2 are not square). This latter gives one
proof of the almost obvious fact that an odd matrix of odd dimension
always has the eigenvalue λ = 0.

4. Further eigenvalue matchings

We consider now the matrix

M ≡ αIee + βIoo +B (11)

where α and β are scalars, B as usual denotes an odd matrix, and
Iee and Ioo are as defined above at (8). If λ is an eigenvalue of M ,
the eigenvalue equation

Mx = λx (12)

can be written as the pair of equations

αu +Bv = λu, (13)

Bu + βv = λv (14)

where u and v are the even and odd parts of x. We can now proceed
in two different ways.

First, on defining y by

y = (λ− α)u + (β − λ)v (15)

we find that

My = (α + β − λ)y. (16)

Thus the eigenvalues of the matrix M can be grouped into pairs
(λ1, λ2) such that

λ1 + λ2 = α + β. (17)

This may be viewed as a generalisation of the basic result for a pure
odd matrix B, where α = β = 0.

Second, on defining z by

z =
√

(λ− α) u +
√

(λ− β) v, (18)

we find that

Bz =
√
λ− α

√
λ− β z. (19)

Thus for each eigenvalue λ of M , there corresponds an eigenvalue κ
of B such that

κ =
√

(λ− α)(λ− β). (20)

It should be emphasised that the relation (17) relates two eigen-
values of the same matrix, generated during one calculation, while
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(20) relates eigenvalues of two different matrices, generated in two
independent calculations.

Based on (20), we can give now an error estimate alternative to (6).

It is convenient to take β = −α, and solve for λ, λ =
√

(κ2 + α2),
so that the sets of λ’s and κ’s can be sorted into pairs (λi, κi) such
that

λi −
√

(κ2i + α2) = 0. (21)

If the computed values, denoted by λ̂, κ̂, are sorted into corre-
sponding pairs (λ̂i, κ̂i), and

δi ≡ λ̂i −
√

(κ̂2i + α2) , (22)

then again max|δi| gives an estimate of the error.
We note that for any estimate based on either (17) or (as here)

(20), one can check on the eigenvectors also, just as in Section 2.

5. Discussion

If one is using a package to calculate eigenvalues and wishes to
get some idea of the accuracy of the results, it is natural to see how
it performs on test matrices. An ideal test matrix is one which can
be entered exactly, and whose eigenvalues are known in advance,
either exactly or to very high precision. The error level can thus be
assessed directly by observing the differences between the computed
values and the correct values.

Rather than importing samples of this type, one may prefer to use
something which is easily generated. For example, a simple method
is to choose a set of numbers and form a diagonal matrix D, say,
with these values; then choose an arbirary non-singular matrix X,
say, and take M ≡ XDX−1 as the test matrix. Its eigenvalues
should be the chosen numbers, and its eigenvectors the columns of
X. However, there is a snag: what is entered into the eigenvalue
calculation is not, in fact, the exact ‘known-eigenvalue’ matrix M ,
but a computed approximation, M̂ , say; and so one cannot tell how
much of the observed error is due to the eigenvalue calculation, and
how much arises in computing M̂ .

An alternative approach, the one adopted here, is to use an exact-
entry test matrix, or pair of matrices, whose eigenvalues are not
known in advance: but, instead, some relation which should hold
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between these values is known. The extent to which the the com-
puted values fail to satisfy this relation gives an estimate of the error
due to the eigenvalue calculation alone.

However, caution is needed with this approach. Consider the fol-
lowing argument: “if λ is an eigenvalue of a real matrix, then so
is λ̄. Therefore we can sort the complex eigenvalues into pairs, the
sum of whose imaginary parts should be zero. The difference from
zero of the sum of the computed imaginary parts then gives an in-
dication of the error of these computed values.” This is, of course,
completely erroneous, because the imaginary parts will be evaluated
at the same point of the calculation as being ± the square-root of
the same number,Q, say; and their sum will thus cancel perfectly,
even though Q may differ widely from the correct value.

This shows that we must guard against the possibilty that the
supposed ‘accuracy-checking’ relation between eigenvalues may be
automatically satisfied at the time of their calculation. (One might
worry that this could somehow be happening in (6), i.e. that the the
‘equal-and-opposite’ pairs might be produced in some correlated way
because their magnitudes are equal. To circumvent this, one could
add α times the unit matrix to B before finding the eigenvalues, and
then subtract α from each before pairing - equivalent to (17) with
β = α. However, trials show that this step is unnecessary.) Clearly,
there is no possiblity whatever of correlation between the errors of
the κ′s and λ′s in (22).

For a real odd matrix B, if λ is an eigenvalue, then ±λ,±λ̄ are all
in the list of eigenvalues, which complicates the sorting and match-
ing of the imaginary parts. To keep (6) easy to implement, one
can consider just the real parts, and simply ignore the imaginary
parts of the λ’s, implicitly assuming that the errors of the real and
imaginary parts are of the same order. (This may be false in special
circumstances, e.g. if B is antisymmetric – a case where, in fact,
using (6) fails completely.) Using (22) has no such problems: we can

take all the real parts and all the imaginary parts, of both the λ̂i
and the

√
(κ̂2i + α2), as positive, and sort these real and imaginary

parts independently.
In trials of random odd matrices (real and complex) of dimension

up to 500, using (6)and (22) gave results of the same order, differing
by a factor often close to one, and rarely exceeding two.
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6. Addendum

The author is grateful to the referee for pointing out that very sim-
ilar concepts have been introduced and used by Liu et al in the field
of computer science: in [1], a square matrix A of even dimension n
is decomposed into four sub-matrices, each of dimension n/2, con-
taining those elements Aij of A for which i and j are even and even,
even and odd, odd and even, or odd and odd, respectively. (These
correspond to the T1, S1, S2, and T2 of section 3, the index origin in
[1] being 0.) These authors then exploit this partitioning to break
down the process of evaluating A×b, where b is a vector of dimen-
sion n, into four processes involving the even and odd sub-vectors of
b (each of dimension n/2), as a key step in designing an improved
hardware module for use in vector digital signal processing.

If, motivated by this work, we consider a splitting, similar to 7,
of an n-dimensional square odd matrix B into an “even-odd ” part
and an “odd-even” part (both n-dimensional),

B = Beo +Boe, (23)

where (Beo)ij = 0 unless i is even, j is odd, (Boe)ij = 0 unless i is
odd, j is even, it is of interest to note the easily-proved facts

(a) if λ is an eigenvalue of Beo + Boe, then iλ is an eigenvalue of
Beo −Boe,

(b) if W is an even matrix, the matrices W,W +Beo and W +Boe

all have the same eigenvalues.
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SPECTRAL PERMANENCE

ROBIN HARTE

Abstract. Several kinds of generalized inverse bounce off one an-
other in the proof of a variant of spectral permanence for C* em-
beddings.

This represents an expanded version of our talk to the IMS meeting
of August 2012, which in turn was based on the work [3] of Dragan
Djordjevic and Szezena Zivkovic of Nis, in Serbia.

1. Gelfand property

Spectral permanence, for C* algebras, says that the spectrum of
an element a ∈ A ⊆ B of a C* algebra is the same whether it
is taken relative to the subalgebra A or the whole algebra B: this
discussion is sparked by the effort to prove that the same is true of a
variant of spectral permanence in which the two-sided inverse, whose
presence or not defines “spectrum”, is replaced by a generalized
inverse. The argument involves a circuitous tour through “group
inverses”, “Koliha-Drazin inverses” and “Moore-Penrose inverses”;
it turns out that the induced variants of spectral permanence are
curiously inter-related.

Suppose T : A → B is a semigroup homomorphism, where we
insist that a semigroup A has an identity 1 , and that a homo-
morphism T : A → B respects that: we might indeed talk about
a functor between categories. It then follows, writing A−1 for the
invertible group in A, that

T (A−1) ⊆ B−1 , (1.1)

or equivalently, turning it inside out,

A−1 ⊆ T−1B−1 . (1.2)
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At its most abstract then “spectral permanence” for the homomor-
phism T says that (1.2) holds with equality:

T−1B−1 ⊆ A−1 . (1.3)

In words, it is tempting to describe (1.3) by saying “Fredholm im-
plies invertible”. We shall also describe (1.3) as the Gelfand prop-
erty, since it also holds, famously, when

T = Γ : A→ C(X) ⊆ CX (1.4)

is the Gelfand representation of a commutative Banach algebra A;
here of course X = σ(A) is the “maximal ideal space” of the algebra
A. We might notice a secondary instance of spectral permanence in
the embedding

C(X) ⊆ CX (1.5)

of continuous functions among arbitrary functions; similarly, for a
Banach space X, the embedding

B(X) ⊆ L(X) (1.6)

of bounded operators among arbitrary linear operators has spec-
tral permanence, but only thanks to the ministrations of the open
mapping theorem. Another elementary example is the left regular
representation

L : A→ AA (1.7)

of the semigroup A as mappings, where, for a ∈ A,

La(x) = ax (x ∈ A) . (1.8)

Less familiar is a commutant embedding

J : A = commB(K)→ B , (1.9)

where

commB(K) = {b ∈ B : a ∈ K =⇒ ba = ab} (1.10)

and of course J(a) = a: here spectral permanence reflects the fact
that two-sided inverses double commute:

a ∈ B−1 =⇒ a−1 ∈ comm2
B(a) . (1.11)

If in particular the semigroup A is a ring, having therefore a back-
ground “addition” and a distributive law, then we can quotient out
the Jacobson radical

Rad(A) = {a ∈ A : 1− Aa ⊆ A−1} , (1.12)
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in which every possible expression 1 − ca has an inverse: now it is
easily checked that

K : a 7→ a+ Rad(A) (A→ A/Rad(A)) (1.13)

has spectral permanence. Our final example will be the most famil-
iar, if not by any means the most elementary: it is the determinant

det : Cn×n → C , (1.14)

which indeed “determines” whether or not a square matrix is invert-
ible.

2. Spectral permanence

Mathematicians are thus prepared to go to a lot of trouble to
establish spectral permanence. If we specialise to linear homomor-
phisms between (complex) linear algebras then we meet the phe-
nomenon of spectrum, defining for each a ∈ A,

σA(a) = {λ ∈ C : a− λ 6∈ A−1} ; (2.1)

the idea is to harness complex analysis to the theory of invertibility.
Now we can rewrite (1.1) to say that, for arbitrary a ∈ A,

σB(Ta) ⊆ σA(a) , (2.2)

while the Gelfand property (1.3) says that (2.2) holds with equality,
giving indeed “spectral permanence”.

If we specialise to isometric Banach algebra homomorphisms then
there is built in a certain degree of spectral permanence, to the
extent that we always get

∂σA(a) ⊆ σB(Ta) : (2.3)

the topological boundary of the larger spectrum is included in the
smaller. Equivalently, it turns out, this means that

σA(a) ⊆ ησB(Ta) , (2.4)

where the connected hull ηK of a compact subset K ⊆ C is the
complement of the unbounded connected component of the comple-
ment C \ K. This has spin-off: if for a particular element a ∈ A
either the larger spectrum is all boundary,

σA(a) ⊆ ∂σA(a) , (2.5)

or the smaller spectrum fills out its connected hull,

ησB(Ta) ⊆ σB(Ta) , (2.6)
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then the homomorphism T : A → B has “spectral permanence at”
a ∈ A, in the sense of equality in (2.2). This holds if for example
the spectrum is either real or finite.

If more generally the homomorphism T : A→ B is one-one there
is at least inclusion

iso σA(a) ⊆ σB(Ta) . (2.7)

3. Generalized permanence

If A is a semigroup we shall write

A∩ = {a ∈ A : a ∈ aAa} (3.1)

for the “regular” or relatively regular elements of A, those a ∈ A
which have a generalized inverse c ∈ A for which

a = aca : (3.2)

we remark that if (3.2) holds the products

p = ca = p2 , q = ac = q2 (3.3)

are both idempotent. Generally if T : A → B is a homomorphism
there is inclusion

T (A∩) ⊆ B∩ ⊆ B , (3.4)

and hence also
A∩ ⊆ T−1(B∩) ⊆ A . (3.5)

If there is equality in (3.4) we shall say that T has generalized per-
manence. This happens for example when

T−1(0) ⊆ A∩ , T (A) = B : (3.6)

recall the implication

(a− aAa) ∩ A∩ 6= ∅ =⇒ a ∈ A∩ . (3.7)

This does not however happen when T is quotienting out the radical
as in (1.10), unless the ring A is semi simple: for notice

Rad(A) ∩ A∩ = {0} . (3.8)

It follows that spectral permanence is not in general sufficient for
generalized permanence. Indeed by (3.8) spectral and generalized
permanence together imply that a homomorphism T : A → B is
one one; further (1.5) shows that spectral permanence and one one
do not together imply generalized permanence. If A is the ring of
continuous homomorphisms a : X → X on a Hausdorff topological
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abelian group X then it is necessary for a ∈ A∩ that a have closed
range

a(X) = cl a(X) : (3.9)

this is because

a(X) = ac(X) = (1− ac)−1(0) (3.10)

is the null space of the complementary idempotent. Thus the em-
bedding (1.6) is another example with spectral but not generalized
permanence.

4. Simple permanence

If in particular there is c ∈ A for which

a− aca = 0 = ac− ca , (4.1)

then a ∈ A is very special; this happens if a ∈ A is either invert-
ible, or idempotent, or more generally the commuting product of an
invertible and an idempotent. When (4.1) holds we shall say that
a ∈ A is simply polar: in Banach-algebra-land 0 ∈ C can be at
worst a simple pole of the resolvent mapping

(z − a)−1 : C \ σ(a)→ A . (4.2)

In the group theory world the product cac is referred to as the group
inverse for a ∈ A. We remark that it is necessary and sufficient for
a ∈ A to be simply polar that

a ∈ a2A ∩ Aa2 : (4.3)

indeed [15],[19],[20] there is implication

a2u = a = va2 =⇒ au = va , aua = a = ava , (4.4)

giving (4.1) with c = vau.
We shall write SP(A) for the simply polar elements of a semigroup

A and observe, for homomorphisms T : A→ B, that

T SP(A) ⊆ SP(B) ⊆ B , (4.5)

and hence

SP(A) ⊆ T−1SP(B) ⊆ A ; (4.6)

when there is equality in (4.5) we shall say that T : A → B has
simple permanence. The counterimage T−1SP(B) ⊆ A is sometimes
known [2],[18],[16] as the “generalized Fredholm” elements of A.
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We remark that spectral permanence does not in general, or even
together with one-one-ness, imply simple permanence: return to
(3.8) and (1.5).

In general

SP(A) ⊆ A∪ ≡ {a ∈ A : a ∈ aA−1a} , (4.7)

and hence

SP(A) ∩ A−1left = A−1 = SP(A) ∩ A−1right . (4.8)

This will show again that spectral permanence together with one
one is not sufficient for generalized permanence:

Theorem 4.1. If B−1left 6= B−1right then there exist A and T : A → B
for which T is one one with spectral but not generalized permanence.

Proof. If A is commutative then A∩ = SP(A) and hence

T (A∩) ⊆ SP(B) ⊆ B∩ ,

and if

T (A∩) ∩B−1left \B−1 6= ∅
then T does not have generalized permanence. Thus find a ∈ B−1left \
B−1 and, recalling (1.9), take

T = J : comm2
B(a) ⊆ B

�
The familiar example is to take B = L(X) to be the linear map-

pings on the space X = CN of all complex sequences and a ∈ B to be
the forward shift. Conversely however simple permanence together
with one-one-ness does imply spectral permanence:

Theorem 4.2. For semigroup homomorphisms

one one and simple permanence implies spectral permanence ,
(4.9)

while conversely

simple and spectral permanence implies one one . (4.10)

Proof. The last implication is (3.8); conversely observe

SP(A) ∩ T−1B−1left ⊆ A∪ ∩ T−1B−1left ⊆ A−1 + T−1(0) (4.11)

�
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When we specialise to rings of mappings then simple polarity is
characterized by “ascent” and “descent”:

Theorem 4.3. If A = L(X) is the additive, or linear, operators on
an abelian group, or vector space, X then necessary and sufficient
for a ∈ A to be simply polar is that it has ascent ≤ 1,

a−2(0) ⊆ a−1(0) ; equivalently a−1(0) ∩ a(X) = O ≡ {0} , (4.12)

and also descent ≤ 1,

a(X) ⊆ a2(X) ; equivalently a−1(0) + a(X) = X . (4.13)

The same characterization is valid when A = B(X) for a Banach
space X.

Proof. The complementary subspaces a−1(0) and a(X) determine
the idempotent p : X → X, defined by setting

p(ξ) ∈ a(X) ; ξ − p(ξ) ∈ a−1(0)

for each ξ ∈ X, whose boundedness, together with the closedness of
the range a(X), follows ([7] Theorem 4.8.2) from the open mapping
theorem; and finally, if ξ ∈ X,

c(ξ) = cp(ξ) ; ca(ξ) = p(ξ)

�
We remark that, on incomplete spaces, the conditions (4.5) and

(4.6) are not sufficient for simple polarity: indeed it is possible for
a ∈ B(X) to be one one and onto but not in B(X)∩: the obvious
example is the “standard weight” a = w on X = c00 ⊆ c0 defined
by setting

w(ξ)n = (1/n)ξn .

Even together with the assumption a ∈ A∩, however, the conditions
(4.5) and (4.6) are ([7] (7.3.6.8)) not sufficient for simple polarity
(4.1) when A = B(X) for an incomplete normed space X.

5. Drazin permanence

More generally if there is n ∈ N for which an is simply polar we
shall also say that a ∈ A is “polar”, or Drazin invertible. If a ∈ A is
polar then there is c ∈ A for which ac = ca and a−aca is nilpotent.
If we further relax this to “quasinilpotent” we reach the condition
that a ∈ A “quasipolar”. Specifically if we write

QN(A) = {a ∈ A : 1−Ca ⊆ A−1} (5.1)
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for the quasinilpotents of a Banach algebra A then a ∈ QN(A) if
and only if

σA(a) ⊆ {0} ,
while with some complex analysis we can prove that if a ∈ QN(A)
then

‖an‖1/n → 0 (n→∞) . (5.2)

In the ultimate generalization of “group invertibility”, we shall write
QP(A) for the quasipolar elements a ∈ A, those which have a spec-
tral projection q ∈ A for which (cf [8])

q = q2 ; aq = qa ; a+ q ∈ A−1 ; aq ∈ QN(A) . (5.3)

Now [17] the spectral projection and the Koliha-Drazin inverse

a• = q , a× = (a+ q)−1(1− q) (5.4)

are uniquely determined and lie in the double commutant of a ∈ A.
It is easy to see that if (5.3) is satisfied then

0 6∈ acc σA(a) : (5.5)

the origin cannot be an accumulation point of the spectrum; con-
versely if (5.5) holds then we can display the spectral projection as
a sort of “vector-valued winding number”

a• =
1

2πi

∮

0

(z − a)−1dz , (5.6)

where we integrate counter clockwise round a small circle γ cen-
tre the origin whose connected hull ηγ is a disc whose intersection
with the spectrum is at most the point {0}. Now generally for a
homomorphism T : A→ B there is inclusion

T QP(A) ⊆ QP(B) , (5.7)

while if T : A→ B has spectral permanence in the sense (1.3) then
it is clear from (5.5) that there is also “Drazin permanence” in the
sense that

QP(A) = T−1QP(B) ⊆ A : (5.8)

Theorem 5.1. For Banach algebra homomorphisms T : A → B
there is implication

spectral permanence =⇒ Drazin permanence .

Proof. Equality in (2.2), together with (5.5) �
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The example of Theorem 4.1 also shows that the left regular rep-
resentation L : A → B(A), with A = B(X) for a normed space X,
does not always have generalized permanence; however we do have
a sort of “closed range permanence”: there is implication

LaA = cl LaA =⇒ a(X) = cl a(X) : (5.9)

indeed if aξn → η and ϕ ∈ X∗ and ϕ(ξ) = 1 then, with ϕ� η : ζ 7→
ϕ(ζ)η,

La(ϕ� η) = La(b) =⇒ η = a(bξ) . (5.10)

Generally

Theorem 5.2. If T : A→ B is arbitrary then

QP(A) ∩ T−1(B−1) ⊆ A−1 + T−1(0) (5.11)

and if T : A→ B is one one then

QP(A) ∩ T−1SP(B) = SP(A) . (5.12)

Hence if a ∈ B and T = J : A = comm2
B(a) ⊆ B then

A∩ = T−1SP(B) . (5.13)

It follows that if T−1(0) = O then

Drazin =⇒ simple =⇒ spectral permanence .

Proof. Uniqueness guarantees that the spectral projection T (a)• of
Ta ∈ SP(B) ⊆ QP(B) commutes with T (a) ∈ B, and one-one-ness
guarantees the same for a ∈ A �

For Banach algebra homomorphisms therefore there is an im-
proved version of Theorem 4.2: of the three conditions

spectral permanence ; simple permanence ; one one ,

any two imply the third.
If we rework Theorem 4.1 with B = B(`2) then it is clear that

isometric homomorphisms with spectral permanence need not have
generalized permanence: indeed the forward shift a = u ∈ B∩ \
QP(A) is not even quasipolar: we recall that the spectrum of u is
the closed unit disc, violating (5.5).

Theorem 4.1 was obtained in this way ([3] Theorem 3.2) in [3].
Of course (cf [9],[17]) “quasinilpotents” and“quasipolars” are only
available in Banach algebras; Theorem 4.1 above, using “simply
polar” elements, is conceptually much simpler.
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6. Moore-Penrose permanence

We recall that a “C* algebra” is a Banach algebra which also has
an involution a 7→ a∗ which is conjugate linear, reverses multiplica-
tion, respects the identity and satisfies the “B* condition”

‖a∗a‖ = ‖a‖2 (a ∈ A) . (6.1)

Historically the term “C* algebra” was reserved for closed *-subal-
gebras of the algebras B(X) for Hilbert spaces X; however the
Gelfand-Naimark-Segal (GNS) representation

Γ : A→ B(ΞA) (6.2)

takes an arbitrary “B* algebra” A isometrically into the algebra of
operators on a rather large Hilbert space ΞA built from its “states”:
a defect of (6.2) would be that if already A = B(X) we do not get
back ΞA = X. In the opinion of this writer these terms “B* algebra”
and “C* algebra” could easily ([7] Chapter 8) have been Hilbert
algebra. When in particular A = B(X) for a Hilbert space X then
the closed range condition (3.9) is sufficient for relative regularity
a ∈ A∩: indeed we can satisfy (2.2) by setting

c(ξ) = c(qξ) ; c(aξ) = p(ξ) (ξ ∈ X) , (6.3)

where q∗ = q = q2 and p∗ = p = p2 are the orthogonal projections on
the range a(X) and the orthogonal complement a−1(0)⊥ of the null
space. The element c ∈ A given by (6.3) satisfies four conditions:

a = aca ; c = cac ; (ca)∗ = ca ; (ac)∗ = ac , (6.4)

and is known as the Moore-Penrose inverse of a ∈ B(X): more
generally in a C* algebra A the conditions (6.4) uniquely determine
at most one element

c = a† ∈ A , (6.5)

lying ([11] Theorem 5) in the double commutant of {a, a∗}, and still
known as a “Moore-Penrose inverse” for a ∈ A. Now it is a result of
Harte and Mbekhta ([11] Theorem 6) that generally there is equality

A∩ = A† : (6.6)

in an arbitrary C* algebra, every relatively regular element has a
Moore Penrose inverse. The argument, and a slight generalization,
proceeds with the aid of the Drazin inverse.

More generally, on a semigroup A, an involution a 7→ a∗ satisfies

(a∗)∗ = a ; (ca)∗ = a∗c∗ ; 1∗ = 1 . (6.7)
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In rings and algebras we also ask that the involution be additive, or
conjugate linear. The B* condition (6.7) implies that, for arbitrary
a, x ∈ A,

‖ax‖2 ≤ ‖x∗‖ ‖a∗ax‖ , (6.8)

which in turn gives cancellation

L−1a∗a(0) ⊆ L−1a (0) . (6.9)

Generally the hermitian or “real” elements of A are given by

Re(A) = {a ∈ A : a∗ = a} . (6.10)

The Moore-Penrose inverse a† of (6.4), if it exists, is unique and
double commutes with a and a∗. We pause to notice the star polar
elements of a semigroup A:

SP∗(A) = {a ∈ A : a∗a ∈ A∩} ; (6.11)

now we claim

Theorem 6.1. If the involution * on the semigroup A is cancellable
then

A† ⊆ SP∗(A) ⊆ A∩ . (6.12)

Proof. With cancellation there is implication

a ∈ SP∗(A) =⇒ a ∈ aAa∗a ⊆ Aa∗a ∩ aAa ,
and equality

Re(A) ∩ SP∗(A) = Re(A) ∩ SP(A) ,

If a = aca with c = a† then

a∗a = a∗(ac)(ac)∗a = a∗acc∗a∗a ∈ a∗aAa∗a :

conversely, by cancellation,

a∗a = ada∗a =⇒ a = ada∗a :

hence also
a ∈ Aa∗a ; ⇐⇒ a∗ ∈ a∗aA .

Hence if a∗ = a then (4.2) follows �
It is now clear that an isometric C* homomorphism has “Moore-

Penrose permanence”:

Theorem 6.2. If T : A→ B has simple permanence then

T−1B† ⊆ A† . (6.13)
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Proof. We claim

A† = {a ∈ A : a∗a ∈ SP(A)} , (6.14)

with implication

a∗a ∈ SP(A) =⇒ a† = (a∗a)×a∗ .

If a ∈ A† with a = aca and (ca)∗ = ca then, with d = cc∗, we have

a∗ad = a∗acc∗ = a∗c∗ = a∗c∗a∗c∗ = ca

and

da∗a = cc∗a∗a = ca .

Conversely if a∗a = a∗ada∗a with a∗ad = da∗a with (wlog) d = d∗

then, using cancellation, with c = da∗,

aca = ada∗a = a and ca = da∗a = a∗ad = a∗c∗ .

Now if a ∈ A there is implication

Ta ∈ B† =⇒ T (a∗a) ∈ SP(B) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A†

�
Our main result is a slight generalization, and a new proof, of the

Harte/Mbekhta result (6.6), and at the same time “generalized per-
manence”, equality in (3.4), for isometric C* homomorphisms. One
way to go, thanks to the Gelfand/Naimark/Segal representation,
is to look first in the very special algebra D = B(X) of bounded
Hilbert space operators:

Theorem 6.3. If d ∈ D = B(X) for a Hilbert space X then

(d∗d)−1(0) ⊆ d−1(0) (6.15)

and

cl d(X) + d∗−1(0) = X ; (6.16)

hence if cl d(X) = d(X) then

d∗(X) = d∗d(X) , andcl d∗d(X) = d∗d(X) . (6.17)

There is inclusion

Re(D) ∩D∩ ⊆ SP(D) ; (6.18)

hence

d ∈ D∩ =⇒ d ∈ SP∗(D) =⇒ d∗d ∈ SP(D) =⇒ d ∈ D† . (6.19)
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Proof. For arbitrary ξ ∈ X there is [3] inequality

‖dξ‖2 ≤ ‖ξ‖ ‖d∗dξ‖ ,
and also

cl d(X) = d∗−1(0)⊥

�
Both of the Harte/Mbekhta observations now follow:

Theorem 6.4. If T : A→ B is isometric then

T−1(B∩) ⊆ A† . (6.20)

Proof. With S : B → D = B(X) a GNS mapping we argue, us-
ing again Theorem 4.2, together with “spectral permanence at” a∗a
(which has of course real spectrum),

Ta ∈ B∩ =⇒ ST (a∗a) ∈ SP(D) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A†

�
In the situation of (6.14),

a = a∗ ∈ A∩ =⇒ a† = a× ; 1− a†a = a• . (6.21)

Theorem 6.4 has an obvious extension to homomorphisms with clos-
ed range:

Theorem 6.5. If T : A → B has closed range then there is impli-
cation, for arbitrary a ∈ A,

T (a) ∈ B∩ =⇒ a+ T−1(0) ∈ (A/T−1(0))∩ . (6.22)

Proof. Apply Theorem 6.4 to the bounded below T∧ : A/T−1(0)→
B �
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[4] DS Djordjević, JJ Koliha and I Straskraba, Factorization of EP elements of
C* algebras, Linear Multilinear Alg. 57 (2009) 587-594.
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THE EQUATION OF TIME AND THE ANALEMMA

PETER LYNCH

Abstract. The Earth’s progress around the Sun varies through
the year. Combined with the tilt of the axis of rotation, this re-
sults in variations of the length of a solar day. The variations are
encapsulated in the Equation of Time. A plot of altitude versus az-
imuth for the Sun at 12 noon local time through the year describes
a figure-of-eight curve known as an analemma. By analysis of the
observations, we find that the qualitative aspects of the analemma
can be reproduced using just two sinusoidal components.

1. Introduction

An analemma is the curve obtained by plotting the position of the
Sun, as viewed from a fixed location on Earth, at the same clock
time each day for a year. If the Earth’s orbit were perfectly circular
and the axis of rotation were perpendicular to the plane of the orbit,
the analemma would collapse to a fixed point. However, the orbit
is elliptical and the axis tilted, and the analemma is a large figure-
of-eight. This has important consequences for the measurement of
time.

On the East Pier in Dun Laoghaire there is an analemmatic sun-
dial. The hour-points are on an ellipse, the horizontal projection
of a circle parallel to the equator. The gnomon is formed by the
observer, whose shadow falls on the ellipse, indicating the time.
Three adjustments must be made to get mean time from sun-dial
time. First, since Dun Laoghaire is six degrees, eight minutes west
of Greenwich, 25 minutes must be added. Next, a seasonal correc-
tion must be made. This is read from a graph of the Equation of
Time, conveniently plotted on a bronze plaque (Fig. 1). Finally,
an extra hour must be added during Irish Summer Time. In this

2010 Mathematics Subject Classification. 85-01, 85A04.
Key words and phrases. Mean Time, Analemma.
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Figure 1. Bronze plaque indicating the Equation of
Time, on the analemmatic sundial installed on the East
Pier in Dun Laoghaire (Graph drawn by Capt. Owen
M. Deignan. Photo: Peter Lynch).

paper, we will examine the Equation of Time and show how it can
be expressed approximately in terms of two sinusoidal components.

2. Observations

The position of the Sun in the sky, as seen from the Royal Ob-
servatory, Greenwich at 12:00 GMT each day for 2006, is available
online [5]. The position is specified by two angles, analogous to lat-
itude and longitude: the altitude, or angle relative to the horizon
and the azimuth, or angle relative to true north. A plot of altitude
versus azimuth (Fig. 2) describes a figure-of-eight curve known as
an analemma.

The apparent variation in the position of the Sun has been in-
tensively studied by astronomers, and is well understood. It is the
cause of variations in the length of a solar day and the difference
between solar time and mean time. The variations are encapsulated
in an expression called the Equation of Time (the term ‘equation’ is
used here in a historical sense, meaning a correction or adjustment).
The difference between mean and solar time can be predicted with
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Figure 2. The analemma, based on observed values of
the azimuth and altitude of the Sun at 12.00 GMT at the
Royal Observatory, Greenwich for 2006 (see [5]). Note
the unequal axes.

great precision. For example, [2] gives an algorithm that calculates
the Equation of Time valid over a period of 6000 years, accurate
to within three seconds. So, accurate estimation of the correction is
not an issue. However, examination of the data shows that there are
dominant components of the Equation of Time that call for expla-
nation, and it is instructive and illuminating to examine these and
explain them in terms of the main variations in the Earth’s orbit.
This is the goal of the present note.

A Fourier analysis of the altitude and azimuth for the year 2006
shows that only the first few components have appreciable ampli-
tude. Fig. 3 (left panel) makes it clear that the altitude is dominated
by the component with a period of a year; the Sun moves between
the Tropics of Cancer and Capricorn in an essentially sinusoidal
fashion. In Fig. 3 (right panel), the amplitudes of the coefficients of
the transformed azimuth show that components 1 and 2 are domi-
nant; component 3 is not negligible, but it is substantially smaller
than the two main components. Thus, the principal variations in
azimuth have periods of a year and a half year.

When the altitude is plotted against the azimuth, the figure-of-
eight curve shown in Fig. 2 results. The pattern can be further bro-
ken down by taking the in-phase and quadrature elements of each
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Figure 3. Magnitude of the Fourier components of al-
titude (left) and azimuth (right). Only the first 8 com-
ponents are shown.

of the two components of the azimuth. Thus, for the annual com-
ponent, we plot the part in phase with the altitude in Fig. 4(A) and
the part orthogonal to altitude in Fig. 4(B). Similarly, the two parts
of the semi-annual component of azimuth are plotted in Fig. 4(C)
and Fig. 4(D).

The aim of the remainder of this paper is to explain the observed
variations in terms of the characteristics of the orbit of the Earth.
There are two main variations, the eccentricity of the Earth’s ellip-
tical orbit and the obliquity, or tilt of the axis relative to the ecliptic
or plane of the orbit around the Sun. We will examine each in turn.
We remark that highly accurate values for all the quantities and
expressions that we consider are available in the astronomical liter-
ature. The present note is concerned with elucidating mechanisms
rather than with precision.

3. Variations due to ellipticity of the orbit

To a high degree of approximation, the Earth’s orbit is a Keplerian
ellipse. Perihelion in 2006 was on 4 January and aphelion on 3 July.
The Earth rotates about its axis in a sidereal day and revolves about
the Sun in a year, so the ratio of mean angular velocity of revolution
$ to that of rotation Ω is about 1/365.
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Figure 4. Lissajous components of the analemma. A:
In-phase annual component; B: Quadrature annual com-
ponent; C: In-phase semi-annual component; D: Quad-
rature semi-annual component.

By Kepler’s Second Law, the angular momentum (per unit mass)
h = r2θ̇ is constant [6]. Here, r is the distance between the Earth and
Sun and θ is the ‘true anomaly’, the angle between the radius vector
and the line from the Sun to the perihelion. Let a be the semi-major
axis and e the eccentricity of the orbit. The perihelion and aphelion
distances are respectively rP = (1 − e)a and rA = (1 + e)a and, if
the angular velocities at these points are ωP = θ̇P and ωA = θ̇A, we
have

h = (1 − e)2a2ωP = (1 + e)2a2ωA .

Since the eccentricity is small (e ≈ 0.0167), we can take the mean
angular velocity to be $ = h/a2. Then

ωP = h/[(1 − e)a]2 ≈ (1 + 2e)$

ωA = h/[(1 + e)a]2 ≈ (1 − 2e)$

As the Earth rotates and revolves, the Sun appears to revolve about
it with angular velocity Ω − ω, so the difference between the rates
at aphelion and perihelion is

(Ω − ωA) − (Ω − ωP) = (ωP − ωA) ≈ 4e$

Thus, the fractional change is 4e$/Ω. This determines the length
of a solar day, which may be shorter or longer than the mean day
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by an amount 2e$/Ω ≈ 9.15 × 10−5 s s−1, or 7.9 seconds in a day.
This is small, but it accumulates over a period of weeks or months.

The variation in the length of a solar day can be approximated
by a sinusoidal wave with amplitude 2e$/Ω, varying on an annual
cycle:

∆ECC =
2e$

Ω
cosM1 (1)

where M1 = 2π(D −DP)/365 with D the day number and DP the
date of perihelion. Eccentricity causes a lengthening of the solar
day at perihelion (near mid-winter) and a shortening at aphelion
(near mid-summer), and ∆ECC is the amount that must be added
to correct solar time for the effect of the Earth’s elliptic orbit.

4. Variations due to obliquity of the orbit

Let us now disregard the eccentricity temporarily, and assume that
the Earth’s orbit is circular. If the axis of rotation were perpendicu-
lar to the ecliptic, or plane of the Earth’s orbit around the Sun, each
day would be the same length. The Earth would advance by about
1◦ during the course of a sidereal day, so a solar day would be longer
by a factor of about 1

360 , or about 4 minutes. However, the equatorial
plane of Earth is tilted to the ecliptic by an angle ε ≈ 23.44◦, called
the obliquity. So, the ecliptic plane cuts the earth in a great circle
that makes an angle ε with the equator at the two points where they
intersect. These points correspond to the equinoxes.

Let us also disregard the Earth’s rotation momentarily; effectively,
we are taking a stroboscopic view with a frequency Ω. Then, during
the course of a year, the Sun will trace out the great circle at a
constant rate. The equation for the great circle is an elementary
geometrical exercise; the latitude (φ) and longitude (λ) are related
by

tanφ = tan ε sin(λ− λ0) (2)

where λ0 corresponds to the vernal equinox. For simplicity, we set
λ0 = 0. Eqn. (2) corresponds to one of Napier’s rules for right
spherical triangles; see [8, p. 888]. Differentiating (2), we get

dφ

dλ
=

tan ε cosλ

1 + tan2 ε sin2 λ
.

The progress of the Sun along the trajectory (2) is constant, but
the change in longitude, which determines the time, is not. If we
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consider a small step dσ along the great circle, the spherical metric
gives dσ2 = cos2 φ dλ2 + dφ2, so the change in λ with respect to σ is

dλ

dσ
= (1 + tan2 ε sin2 λ) cos ε .

The extreme values follow immediately. For small or moderate val-
ues of the obliquity ε, they are:

Equinoxes (λ = 0, π) :
dλ

dσ
= cos ε ≈ 1 − 1

2ε
2

Solstices (λ =
π

2
,
3π

2
) :

dλ

dσ
= sec ε ≈ 1 + 1

2ε
2

Thus, the solar day may be shorter or longer than the mean day
by an amount 1

2ε
2$/Ω ≈ 2.29 × 10−4 s s−1, or 19.8 seconds in a day.

We note that [3] gives a more accurate expression where the factor
1
2ε

2 is replaced by 2 tan2 ε
2 . However, our concern here is less with

precision and more with simplicity.
The variation in the length of a solar day can be approximated by

a sinusoidal wave with amplitude 1
2ε

2$/Ω, varying on a semi-annual
cycle:

∆OBL =
ε2$

2Ω
cos 2M2 (3)

where M2 = 2π(D−DW)/365 with D the day number and DW the
date of the winter solstice (day 355 in 2006). Obliquity causes a
lengthening of the solar day at the equinoxes and a shortening at
the solstices, and ∆OBL is the amount that must be added to correct
solar time for its effect.

5. The Equation of Time

We now combine the effects of eccentricity (1) and obliquity (3) to
get the total difference between solar and mean time, ∆ = ∆ECC +
∆OBL. To calculate the accumulated difference, this must be inte-
grated, to give

E =
2e$

Ω
sinM1 +

ε2$

4Ω
sin 2M2

= 7.9 sin

(
2π(D − 3)

365

)
+ 9.9 sin 2

(
2π(D − 355)

365

)
. (4)
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Figure 5. Equation of Time (in minutes) as a function
of the day number, computed using (4). The compo-
nents due to eccentricity (dashed) and obliquity (dotted)
are shown. This is the correction that must be added to
solar time to get mean time.

This gives the difference between the mean and solar time in min-
utes. It varies by about 15 minutes in both directions. The approx-
imate curve, together with the two components, due to eccentricity
and obliquity, are shown in Fig. 5. There is good qualitative agree-
ment with the curve in Fig. 1.

To construct an approximation to the analemma, we convert time
in minutes given by (4) to degrees longitude by dividing by 4 and
adding 180◦. The approximate and observed curves are plotted in
Fig. 6. We see that the main features of the observed pattern are
replicated, but there are significant differences. These discrepancies
can be reduced by including higher terms. A very precise, but more
complicated, description of the Equation of Time is given in [2].

6. Discussion

The difference between mean time and solar time is expressed as
the Equation of Time. Fourier analysis of the observations at the
Royal Observatory in Greenwich shows that the variations in the
Sun’s noontime position are dominated by the first few Fourier coef-
ficients. This allows us to approximate the Equation of Time by two
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Figure 6. Solid line: analemma based on the approx-
imate Equation of Time (4). Dotted line: analemma
based on observations, as in Fig. 2.

sinusoidal components, with periods of a year and a half year. The
curve that results from plotting the resulting approximation against
solar altitude is qualitatively similar to the observed analemma.

The analemma has many applications. It can be used to estimate
the time and azimuth of sunrise and sunset, and to explain the
occurrence of latest sunset some days before the winter solstice and
the earliest sunrise some days later. Many geosynchronous, but
not geostationary, satellites move on analemmatic curves, and the
control systems for the paraboloidal dishes used to track them must
compute these curves to ensure optimum communications. Finally,
the Equation of Time is important in many scientific and engineering
contexts. It is used for the design of solar trackers and heliostats,
vital for harnessing solar energy.

If more precise approximations of the Equation of Time are re-
quired, they are available in [2]. Practical information on the con-
struction of analemmatic sundials is presented in [1] and [7], and a
program to compute the design for a given location is given in [4].
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Seán Dineen: Analysis – A Gateway to Understanding
Mathematics, World Scientific, 2012,

ISBN:978-9814401388

REVIEWED BY TOM CARROLL

The book under review is a first course not only in analysis and cal-
culus but in the culture of mathematics. It grew from lecture notes
for a mathematics course aimed at Economics and Finance students
at University College Dublin and caters not only for mathematics
students but for students whose area of primary interest lies outside
mathematics. It is clear that the author believes that all students,
including those who would typically be classed by a mathematics
department as taking a ‘service course’, should be expected to un-
derstand the principles of mathematics and be skilled in their use.

Dineen paints on a broad canvas. The topics standard to all cal-
culus and analysis textbooks are covered completely and in detail –
number, function, limits and continuity, sequences and series, differ-
entiation, integration, applications – with the approach being thor-
ough right from the beginning. The reader is encouraged to think
about each topic from different points of view. Rather than assum-
ing the role of the omniscient author who providentially introduces
material in advance of needing it, Dineen deals with issues only as
they arise and introduces new mathematics only as it is needed. For
example, though proofs are centre stage throughout the book, read-
ers pick up proof techniques by degrees and in a manner commen-
surate with their growing mathematical maturity and confidence.
That this approach works is partly due to the historical narrative
which runs parallel to the mathematics and which explains how cen-
tral concepts, such as number, function, limit, came into focus only
gradually and were used implicitly long before their modern defini-
tions solidified, often long before it was even realized that a precise
definition might be needed. Pen pictures of the main contributors to
the development of mathematics give the narrative a human feel and
reinforce the message that understanding this mathematics takes
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time and commitment. Teachers’ expectation of engagement on the
part of students needs to be matched by a reciprocal commitment
to engage with students and to bring students along with them. Di-
neen does this through a non-linear mathematical narrative. In the
first chapter on Quadratic Functions, the rules of algebra, cance-
lation, square roots, functions are used freely, even if they will be
formally introduced only later on. Though the exponential function
and the logarithm function (modulo the intermediate value theorem
which is proved later) are first formally defined in Chapter 7, these
functions are introduced informally in Chapter 2 and are used freely
throughout the book. Real Numbers feature right from the start –
that positive numbers have a square root is used in Chapter 1, the
completeness axiom is the basis of Chapter 6 where all the main
properties of supremum and infimum of sets of real numbers are
proved – even if the completeness axiom and the construction of the
real numbers comes later in Chapter 12. It is in this sense that the
narrative is ‘non-linear’. It has taken great care and thought on the
part of the author to ensure that this approach works logically, which
it most certainly does. Dineen is frank about his approach. He in-
troduces concepts gradually, informally at first, with an emphasis
on understanding rather than absolute rigour. He aims to ‘blend
intuitive techniques and rigourous definitions’ with the rigor coming
later, often motivated by the historical realization that clarity and
precision would be essential if further progress was to be made (cf,
for example, Berkeley’s criticisms of Newton and Leibniz’s calculus,
which Dineen discusses in detail). Dineen’s approach steers a care-
ful course between the ubiquitous calculus tome and a potentially
dry first course in mathematical analysis and, in so doing, is more
reflective of the way we learn mathematics. Let me be entirely clear
that, though the mathematical development often moves ahead of
itself only to regroup later, the narrative is entirely consistent and
leaves no loose ends.

To conclude, a technical word or two about the author’s mathe-
matical choices. The rational numbers are constructed from the pos-
itive rational numbers which are in turn constructed directly from
the natural numbers, so that the integers come after the rationals in
Dineen’s development. This works very well and is, of course, a per-
fect opportunity to bring in equivalence relations. Countability is
covered in the context of number and function. Analysis is based on
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sequences, which avoids any ε-δ arguments. In fact, Dineen avoids
ε entirely by restricting himself first to monotonic sequences, defin-
ing the limit of a bounded monotonic sequence to be the supremum
if it is increasing, or the infimum if it is decreasing, of the set of
real numbers which occur in the sequence. Having consolidated this
notion through a variety of examples and results, Dineen defines
a general sequence to be convergent if it lies between an increas-
ing and a decreasing sequence which are convergent and have the
same limit. All aspects of infinite series are covered in detail. From
here he naturally defines continuity of a function at a point to be
sequential continuity. I particularly enjoyed Chapter 10 on the con-
struction of the real numbers using sections of the dyadic rationals
and a ‘bisection principle’. The last sections of the book cover first
the derivative and its applications, then the Riemann integral for
continuous functions and its applications. A notable feature of the
book are the numerous well thought out, interesting exercises at the
end of each chapter, with solutions provided at the end of the book.
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REVIEWED BY FIACRE Ó CAIRBRE

The authors have produced an invaluable contribution to the fas-
cinating relationship between magic and mathematics. There is an
engaging account of the history and characters behind the pieces of
magic. The authors delve into some non–trivial mathematics behind
the tricks and also give other applications of the relevant mathe-
matics. This attractively produced book provides an enlightening
insight into the crossover between mathematics and magic. Step by
step instructions are given for each trick and so after reading it you
may be able to impress your family and friends with some stunning
magic. Both authors are professional mathematicians and one is a
professional magician while the other is a professional juggler.
The authors exhibit a lifelong passion, enthusiasm and deep knowl-
edge for magic and mathematics and this is an ideal combination for
producing a great read. As a thirteen year old, one of the authors
was a regular at the world famous Tannen’s Magic Emporium in
New York’s Times Square. The shop was like a wonderland for a
young boy interested in magic. An endearing account of some of the
other regulars at Tannen’s is provided. For example, one regular is
described as follows: “There’s Manny Kraut, a huge man whose fat
hands somehow make the most beautiful, delicate card tricks”.
One of the earliest tricks discussed goes back to Fibonacci’s famous
book, Liber Abaci, which appeared in 1202. The first serious magic
books (two of them coincidentally in the same year) appeared in
1584. The current state of magic today is very vibrant and is de-
scribed as “a very active whirlpool”. The authors say “there are a
handful of inventors who are repeatedly brilliant”and seven of them
are discussed in the book. It’s quite a diverse lot. There is a chicken
farmer from Petaluma, a rural free-delivery mailman, a computer
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wizard (or two) and a priest. One was a hobo who lived out of
dumpsters.
The book contains a wide diversity of types of tricks including cards,
coins, pictures, words, paper folding and chains. My three favourite
tricks involve de Bruijn sequences, the Gilbreath Principle and the so
called Miracle Divination. A de Bruijn sequence with window length
k is a zero/one sequence of length 2k such that every k consecutive
digits appear just once (going around the corner). For example,
11100010 is a de Bruijn sequence of window length 3. If one has a de
Bruijn sequence of window length k, then one can perform the trick
with 2k cards. This is a great trick that should impress any audience.
Continuing in the tradition of the magician keeping the details of
the trick secret from the audience, I won’t give away the details of
the trick. I think it’s better that one reads the book in order to
see the details of the tricks. Some non–card trick applications of
de Bruijn sequences and higher dimensional de Bruijn arrays are
discussed including robotic vision, industrial cryptography, DNA,
protein folding and rhyming patterns in East Indian music. The
authors mention some open problems in mathematics concerning
higher dimensional de Bruijn arrays. They also give some details
about a recently solved problem related to Hamiltonian cycles.
The Gilbreath Principle is named after Norman Gilbreath who was
an undergraduate in mathematics when he created an ingenious
new card trick that would stun the world of magic. In July 1958,
Gilbreath introduced himself in the magic magazine, Linking Ring,
as follows: “I have been interested in magic for ten years. I am a
math major at UCLA. Being a supporter of the art of magic, I have
created over 150 good tricks and many others not so good. Here are
a couple I hope you can use”. He then gave a brief account of what
is now called Gilbreath’s First Principle. His new card trick was
picked up and varied almost immediately by the magic community.
In the January 1959 issue of Linking Ring, card experts Charles
Hudson and Edward Marlo wrote “It is not often one runs across a
new principle in card magic ... Gilbreath’s principle has proved the
most popular card effect to appear in the parade for a long time”. In
a 1966 issue of Linking Ring, Gilbreath, who was now a professional
mathematician working for the Rand Corporation, introduced his
so called Second Principle, which included new uses for his First
Principle and many non–card tricks.
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There is a surprising connection between Gilbreath’s Principle and
the Mandelbrot set. The authors were informed about this connec-
tion by Dennis Sullivan who attributes its proof to the Fields Medal-
lists, John Milnor and William Thurston. This story illustrates
that the mathematics behind card tricks may be a lot deeper than
one might think. Some other non–magic applications of Gilbreath’s
Principle are given, including applications to Penrose tiles and de-
signing sorting algorithms for computers.
The Miracle Divination is a coin trick involving three spectators. It
has a long history with one version going as far back as Fibonacci’s
1202 book, Liber Abaci.
The authors perform their magic to an eclectic audience. For ex-
ample, in relation to the trick involving de Bruijn sequences above
they say: “The trick is one we have performed for drunks in seedy
nightclubs, at Hubert’s Flea museum and at the banquet for the
American Mathematical Society”.
This illuminating book was a pleasure to read and I highly rec-
ommend it to anybody interested in the mathematics behind some
impressive magic.
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This is a ‘concept’ book. Elwin Street Productions describe them-
selves as follows:

We’re a lively, independent illustrated coedition pub-
lisher. We conceive and produce a mix of stylish refer-
ence, handbooks and giftbooks that combine superlative
writing and strong concepts with an off-beat sensibility
and a fresh, spirited feel.

Their concepts have resulted in a number of series such as The
Little Book of x, x in Your Pocket, How to be an x, The curious
Girl’s Book of x, Freaky x, x for Busy People (for x here and later
substitute a topic such as Climate Change, Conspiracies, Romans,
Outer Space, Campfire Cooking, etc.), and many more individual
ideas. They conceived the idea of a book about equations, and
went looking for a writer. They found Dana Mackenzie, who had
established himself as a popular science writer after 13 years as an
academic mathematician. He wrote the book, and they placed it
with PUP, and so here we are.

There is a recognised need for mathematicians to communicate
with the wider public, and there is an appetite out there for di-
gestible material, so although the foregoing scenario does not re-
semble our usual model (in which we think up the whole idea from
the start), I guess it makes sense.

MacKenzie has the knack of getting and keeping your attention,
and writes with fluency and wit, and he is a good story-teller. He
parses the mathematical universe into Algebra, Geometry, Applied
Mathematics and Analysis, and gives each its share. The book is
structured into four parts (corresponding to historical periods), each
with six chapters. Each chapter has a key equation, ranging from
1 + 1 = 2 to 2ℵ0 = ℵ1, and including physical equations from
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Archimedes, Newton, Maxwell, Einstein and Dirac. This frame-
work provides the skeleton for a tour through the whole history of
mathematical ideas and characters, including Pythagoras, Cardano,
Kepler, Euler, Abel, Galois, Gauss, Lobachevskii, Hamilton, Rie-
mann and Chern. In the modern period, he includes a chapter on
the Lorenz attractor and an account of Black-Scholes and its influ-
ence on financial markets. The book is beautifully-illustrated with
many full-colour pictures.

There is a wealth of anecdote and information. It was amus-
ing to learn that a 1988 poll taken for the Mathematical Intelli-
gencer revealed that Euler proved four of the top five “most beauti-
ful theorems”, and that a similar exercise for Physics World showed
Maxwell’s Equations to be the most popular.

The author draws morals from the tales, and expresses clear opin-
ions. This makes for interesting reading, although one is obliged to
take issue on some points:

He gives a proof by diagram of Pythagoras taken from Liu Hui’s
third-century annotation of the classic Nine Chapters on the Art
of Mathematics, and remarks (p. 39) that it is “a much simpler
proof to understand than the one in Euclid’s Elements”. It is an
interesting diagram, but it is not actually a proof, as it implicitly
assumes the congruence of various pairs of figures.

I was interested to learn that this same Liu gave the approxi-
mation π ≈ 3927

1250 , based on the use of an equilateral 3072-sided
polygon, extending the method used (presumably independently)
by Archimedes. On p. 45 he concludes an interesting account of
formulae for π, including one that gives the octal expansion with
the quite fatuous statement: “If God created the integers and God
created π, then perhaps God is actually a computer”.

On p. 47 he states that “To the modern mathematician, Zeno’s
paradoxes are harmless”. In this, he certainly is in accord with
many who underrate Zeno. But Zeno was talking about Physics,
the world, and he gave three paradoxes that must be considered
together. I would say that they are resolvable, but not that they are
harmless.

On p. 51, discussing the area under a parabola, he outlines the
method given by Archimedes, and compares it unfavourably with
the procedure that would be followed by a “modern mathematician,
who would have no qualms about” taking a limit in a certain series.
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But in fact the careful argument used by Archimedes, beginning
by assuming that the area is not what is asserted and proceeding
by reductio ad absurdum corresponds precisely to what a modern
(rigorous) mathematician would do: if the area is not 4

3 , then it is
greater or less by some amount ε > 0, and so on.

Chapter 6, on Archimedes law for levers, includes a statement
of his famous Principle about immersed bodies. This Principle is
often introduced in school physics courses, as it is here, without any
discussion of the reasoning behind it. This is a pity, as it is easily
proved in the case of a rectangular box, using elementary arithmetic
and the nature of pressure. The case of a body of arbitrary shape
requires multivariate integral calculus, or equivalent. It would be
inappropriate to include it in the present book, and I do not fault
it for that.

On p.73, Kepler’s Third Law is mis-stated, using the “distance
to the Sun” instead of the semi-axis major. The difference is often
trivial enough, but there seems no good reason not to give the correct
version. More seriously, there are some questionable statements
about the consequences of this Law. It is not true to say that one
can infer the distance of an orbiting planet from its period (unless
one knows the mass of the star or the distance and period of some
other planet). It is not true that one can tell the mass of a planet
from the observation of its period — although one can tell it from
the period and distance of one of its satellites.

On p. 149, it is implied that the dynamical pressure of the solar
wind is the same thing as the pressure of solar radiation.

On p. 185 he gives a proof that the set of real numbers is un-
countable, using decimal expansions, remarking in footnote that he
“Intentionally gave this easier but flawed version for non-experts.
For math experts, repairing the inaccuracy takes a little work but
in my opinion no fundamentally new ideas.” However, the proof may
be fixed in a very simple way without making it any more difficult
for non-experts: instead of adding 1 mod 10 to the n-th digit of the
n-th decimal in a purported enumeration of the interval [0, 1), just
change it to a 2 if it is not a 2, and otherwise change it to a 3.

These quibbles are matters that can easily be fixed in a new edi-
tion, and once that is done I would be happy to recommend the
book to any person, young or old, with an interest in mathematics
and its uses. I enjoyed reading it.
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PROBLEMS

IAN SHORT

The first two problems were contributed by Finbarr Holland.

Problem 69.1. Suppose that the matrices A, b, and c are of sizes
n × n, n × 1, and 1 × n, respectively. Prove that, for all complex
numbers z,

det(A− zbc) = detA− zcA∗b = detA+ z det

(
0 c
b A

)
,

where A∗ is the adjoint of A (that is, the transpose of the matrix of
cofactors of A).

Problem 69.2. Prove that
∞∑

n=1

1

(n+ 1)2

n∑

k=1

1

k
= ζ(3),

where ζ is the Riemann zeta function.

I came across the final problem as a graduate student.

Problem 69.3. A rectangle is partitioned into finitely many smaller
rectangles. Each of these smaller rectangles has a side of integral
length. Prove that the larger rectangle also has a side of integral
length.

Here are the solutions to the problems from Bulletin Number 67.
The first solution was contributed by the North Kildare Mathemat-
ics Problem Club.

Problem 67.1 . Prove that there does not exist a differentiable func-
tion f : R→ R that satisfies

f ′(x) > 1 + [f(x)]2

for each real number x.
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Solution 67.1. Suppose there were such an f . Let

g(x) = arctan f(x)− x.
Then

g′(x) =
f ′(x)

1 + f(x)2
− 1 > 0

for all x ∈ R, so g is nondecreasing, so for x > 0 we have

arctan f(x) > x+ arctan f(0).

This is impossible, because arctan f(x) < π/2 for all real numbers
x. Therefore no such function f exists. �

The second solution was shown to me some years ago by Edward
Crane, shortly after he was given the problem.

Problem 67.2 . Suppose that x1, x2, . . . , xn, where n > 3, are non-
negative real numbers such that

x1 + x2 + · · ·+ xn = 2

and

x1x2 + x2x3 + · · ·+ xn−2xn−1 + xn−1xn = 1.

Find the maximum and minimum values of

x21 + x22 + · · ·+ x2n.

Solution 67.2. Let

A =
∑

i6n
i odd

xi and B =
∑

i6n
i even

xi.

Then A+B = 2, so AB 6 1, and hence

1 = x1x2 + x2x3 + · · ·+ xn−2xn−1 + xn−1xn 6 AB 6 1.

Equality in the first inequality implies that all terms xj are 0 other
than three consecutive terms xi−1, xi, and xi+1 (and one of these
may be 0). This reduces the problem to the n = 3 case. In this case
you can easily check that x2 = 1, and the minimum is 3/2 and the
maximum is 2. �

The third solution was contributed by the North Kildare Mathe-
matics Problem Club (they also submitted an alternative solution
to the second problem).
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Problem 67.3 . There are m gold coins divided unequally between
n chests. An enormous queue of people are asked in turn to select
a chest. Each member of the queue knows how many coins there
are in each chest, and also knows the choice of those ahead in the
queue who have selected already. In choosing a chest, each person
considers the (possibly non-integer) number of gold coins he would
receive were the coins in that chest to be shared equally amongst all
those, including him, who have selected that chest so far. He then
chooses the chest that maximises this number of coins. For example,
if there are three chests A, B, and C containing 3, 5, and 8 coins,
then the first person in the queue selects C, the second selects B,
the third selects C, the fourth selects A, and so forth.

After the mth person has chosen a chest, how many people have
selected each chest? Express your answer in terms of the number
of coins per chest. What more can be said about people’s chest
selections?

Solution 67.3. We claim that the number of people who choose each
chest by the m-th stage is equal to the number of coins in the chest.

We remark that the choice of chest is not always uniquely de-
termined. However, this does not affect the state of play after m
choices.

Suppose cj coins are in chest j. Let p0j = 0 for all j. For n ≥ 1,
let pnj be the number who have chosen chest j when the n-th person
has made his choice.

Our claim is that pmj = cj for each j.
Suppose some pmk > ck. Let n be the first number with pnk > ck.

Then ∑

j 6=k

pnj = n− pnk < m− ck =
∑

j 6=k

cj,

so there exists some j with pnj < cj. But then chest j would have
been a better choice than chest k at the n-th stage, since

cj
pnj + 1

> 1 >
ck
pnk
.

So this is impossible.
Thus pmj 6 cj for each j, and since

m =
∑

j

pmj 6
∑

j

cj = m,

we conclude that pmj = cj for each j, as claimed.
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More generally, regarding each coin as a packet of r coins, we see
that when n = mr, the number choosing chest j is rcj. �

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com.

Department of Mathematics and Statistics, The Open University,
Milton Keynes MK7 6AA, United Kingdom
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