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A Hilbert space analogue of Heron’s reflection
principle

FINBARR HOLLAND AND ANCA MUSTAŢǍ1

Abstract. This note is concerned with the simultaneous ap-

proximation of two vectors in a Hilbert space by an element in
one of its closed subspaces. The corresponding problem in el-

ementary plane geometry admits a short and elegant solution

based on reflection, probably due to Heron. Our discussion
of the Hilbert space analogue follows a similar line, display-

ing a one-parameter family of non-linear isometries which fix
the chosen subspace, and enjoy other properties possessed by

linear reflections. A natural choice of parameter then yields

the required minimum.

1. Introduction

Every secondary-school student learns the technique of dropping
a perpendicular from a point to a straight line, thereby establishing,
via the theorem of Pythagoras, the existence of a unique point on
the line that is closer to the given point than any other point on
the line. This is arguably the most influential theorem to emerge
from elementary Euclidean Geometry, giving, as it does, prominence
to the concept of perpendicularity, which is fundamental throughout
Mathematics. It is also very likely the first instance of an approxima-
tion problem that dealt with existence, uniqueness and construction
of a solution all at once.

This classical result opened up the Theory of Approximation in
Banach spaces, and, in particular, it has a direct analogue in Hilbert
space, one version of which we recall here for convenience [2]: Sup-
pose M is a closed subspace of a Hilbert space H, with inner-product
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< ·, · >, and x ∈ H. Then there is a unique point Px ∈M such that

||x− Px|| = inf{||x− t|| : t ∈M},
< x− Px, t >= 0, ∀t ∈M,

and
||x||2 = ||x− Px||2 + ||Px||2.

It turns out that P is a projection operator whose range is M , i.e., P
is a bounded self-adjoint linear mapping on H to M with P 2 = P .
This is a key result in Hilbert space. As is well-known, not only
do many profound facts about the space flow from it, such as, for
instance, a description of its dual space, and a description of the
space as a direct sum of one-dimensional subspaces, it also has wide
applicability.

In this note we address the possibility of simultaneously approx-
imating two or more vectors in a Hilbert space by an element in
one of its closed subspaces. Given a finite subset F of vectors in a
Hilbert space H, and a closed subspace M of H, can we determine
an element m ∈ M for which the elements in {||m − x|| : x ∈ F}
are simultaneously small? Any meaningful answer of this will of ne-
cessity involve a measure of “smallness”, and we have several such
measures to choose from. One natural such measure leads to the
following simple result, whose proof we leave for the reader.

Theorem 1.1. Let M be a closed subspace of a Hilbert space H.
Let x1, x2, . . . , xn be distinct vectors in H. Then there is a unique
vector m ∈M such that

n∑
k=1

||m− xk||2 = inf
{ n∑

k=1

||x− xk||2 : x ∈M
}

.

But what’s the answer if we select the `1-norm rather than the
`2-norm as our measure? Is the infimum of the set{ n∑

k=1

||x− xk|| : x ∈M
}

attained? If so, what is its value?
These questions appear to be much more complex if n > 2. But,

fortunately for us, the case n = 2 has a paradigm in elementary plane
geometry which led to Fermat’s principle of least time in optics.
A preliminary version of this principle appears to have been first
mooted by Heron (or Hero of Alexandria) who is thought to have
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lived in the first century, between 10–70 AD. Heron is probably best
known to students of mathematics for his formula for the area of a
triangle in terms of its side-lengths, but he is also renowned for his
ingenious inventions of, for instance, precursors of the steam engine
and vending machines, and his work on surveying and optics. (A
concise account of Heron and his works is given in [1]; more detail
about him can be elicited from the World Wide Web.) Seemingly,
he discovered his area formula when he attempted to show that the
“angle of incidence” in optics is equal to the “angle of reflection”.
So, for these reasons, it seems fair to ascribe the following result to
him.

Theorem 1.2 (Heron). Suppose a, b are two complex numbers and
L is a line in the complex plane. Then

max
(
|a− b|, |a−RLb|

)
= inf

{
|z − a|+ |z − b| : z ∈ L

}
,

where RLb denotes the reflection of b in L. Moreover, unless a, b ∈ L,
the infimum is attained at a unique point in L.

Of course, the interesting case of this theorem is when a, b are on
the same side of L.

In the next section we attempt to present a direct analogue of this
result in a Hilbert space setting.

2. Is there a direct analogue of Heron’s theorem in
Hilbert space?

Given a closed subspace M of a Hilbert space H and distinct
points a, b ∈ H, is the infimum of the set

{||x− a||+ ||x− b|| : x ∈M}
attained by some point in M? If so, what is the value of the infimum?
In what circumstances, if any, is the infimum attained by a unique
point in M?

Can we imitate Heron’s method to settle these questions? The
latter question immediately raises another: What’s meant by the
reflection of a point in M?

If, as above, P denotes the orthogonal projection on M , and x ∈
H, 2Px − x presents itself as an obvious candidate for what might
be termed the reflection Rx of x in M . It’s easy to see that R is a
linear isometric involution on H that fixes every element of M . In
other words, it has all the characteristic properties of what is meant
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in plane geometry by a reflection in a line that passes through the
origin. In particular, it follows that if a, b ∈ H and x ∈M , then

||a−Rb|| ≤ ||a−x||+||x−Rb|| = ||a−x||+||R(x−b)|| = ||a−x||+||b−x||,

and, of course,

||a− b|| ≤ ||a− y||+ ||b− y||, ∀y ∈ H.

Hence,

max
(
||a− b||, ||a−Rb||

)
≤ inf

{
||a− x||+ ||b− x|| : x ∈M

}
.

However, this inequality is strict, in general, as the following simple
example shows.

Example 2.1. Suppose M is the subspace spanned by the unit vec-
tor (0, 0, 1) ∈ R3, so that the (suggested) reflection of x = (x1, x1, x3)
in M is given by Rx = (−x1,−x2, x3). Let a = (3, 1, 1), b = (1, 2, 1).
Then

inf
{
||m−a||+||m−b|| : m ∈M

}
=
√

10+
√

5 > max
(
||a−Rb||, ||a−b||

)
.

Proof. Clearly,

inf
{
||m− a||+ ||m− b|| : m ∈M

}
= inf

{√
32 + 12 + (t− 1)2 +

√
12 + 22 + (t− 1)2 : −∞ < t <∞

}
=
√

10 +
√

5,

whereas

||a− b|| =
√

22 + 12 =
√

5, ||a−Rb|| =
√

42 + 32 = 5,

and max(
√

5, 5) = 5 <
√

10 +
√

5. �
Thus, the approach adopted so far is inadequate to answer the

opening question of this section. In order to obtain a complete solu-
tion we find it convenient to introduce a family of nonlinear norm-
preserving operators in the next section, which may be of indepen-
dent interest.

3. A one-parameter family of non-linear isometries on H

From now on, M will denote a closed subspace in a Hilbert space
H, and P will stand for the orthogonal projection from H to M .
Let M⊥ stand for the orthogonal complement of M and let Q =
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I − P , the orthogonal projection associated with M⊥. With each
unit vector u ∈M⊥, define Ru on H by

Rux = Px− ||Qx||u, x ∈ H.

Note the following properties of this non-linear operator.
• ||Rux− Px|| = ||Qx|| = ||x− Px||, ∀x ∈ H;
• Rux = x, ∀x ∈M ;
• ||Rux||2 = ||Px||2 + ||Qx||2 = ||x||2, ∀x ∈ H;
• If z ∈M and x ∈ H, then ||z −Rux|| = ||z − x||;
• ||QRux|| = ||Qx||, ∀x ∈ H;
• Ru(Rux) = Rux, ∀x ∈ H;
• If v is a unit vector in M⊥, then

||Rvu− v|| = ||Ruv − u||.

In particular, Ru is an isometry that fixes the elements of M , and
enjoys other properties possessed by a linear reflection.

4. A Hilbert space analogue of Heron’s theorem

Given y /∈ M , set ŷ = Qy/||Qy||. Then ŷ is a unit vector in M⊥

and generates the non-linear isometry Rŷ by

Rŷx = Px− ||Qx||Qy

||Qy||
, x ∈ H.

Lemma 4.1. Let y /∈M . Then
(1)

||z − x|| = ||z −Rŷx||, ∀z ∈M ;

(2)
||x− y|| ≤ ||Rŷx− y||, ∀x ∈ H,

with equality if and only if Rŷx = x.
(3) If also x /∈M , then

||y −Rŷx|| = ||x−Rx̂y||.

Proof. Part 1 was noted above. Part 2 is equivalent to the inequality

−2< < x, y > ≤ −2< < Rŷx, y >

= −2<
(

< Px, y > −||Qx||
||Qy||

< Qy, y >

)
,
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i.e.,

0 ≤ < (< x, y > − < Px, Py > +||Qx|| ||Qy||)
= < (< Qx,Qy > +||Qx|| ||Qy||) ,

which holds by the Cauchy-Schwarz inequality. Moreover, the equal-
ity holds if and only if Qx = −||Qx||ŷ, i.e.,

Rŷx = Px− ||Qx||ŷ = Px + Qx = x,

as claimed.
Part 3 follows from the fact that

< y,Rŷx > = < y, Px > −||Qx||
||Qy||

< Qy, y >

= < Py, Px > −||Qx|| ||Qy||
= < x,Rx̂y >.

�

Theorem 4.2. Suppose x, y ∈ H. Then

inf
{
||y−z||+||z−x|| : z ∈M

}
=
{
||x− y||, if x ∈M or y ∈M ,
||y −Rŷx||, if x, y /∈M .

Moreover, unless {x, y} ⊂ M , the infimum is attained by a unique
element in M .

Proof. By the triangle inequality,

||x− y|| ≤ ||z − x||+ ||z − y||, ∀z ∈ H,

with equality if z = x or z = y. This covers the first possibility.
Suppose y /∈M . Then, if z ∈M , by Lemma 1,

||y −Rŷx|| = ||(y − z) + (z −Rŷx)||
≤ ||y − z||+ ||z −Rŷx||
= ||y − z||+ ||z − x||.

Thus
||y −Rŷx|| ≤ inf

{
||y − z||+ ||z − x|| : z ∈M

}
.

To show that the equality sign holds here, select zt = (1−t)y+tRŷx,
where

t =
||Qy||

||Qx||+ ||Qy||
.
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Claim: zt ∈M . Equivalently, Pzt = zt, i.e., 0 = (1− t)Qy + tQRŷx.
But

(1− t)Qy + tQRŷx = (1− t)Qy + t

(
QPx− Q2y||Qx||

||Qy||

)
= (1− t)Qy − tQy||Qx||

||Qy||

=
(

1− t− t||Qx||
||Qy||

)
Qy

=
(
||Qy|| − t(||Qy||+ ||Qx||)

||Qy||

)
Qy

= 0,

as stated. Finally, since zt ∈M ,

||zt − y|| = t||y−Rŷx||, ||zt − x|| = ||zt −Rŷx|| = (1− t)||y−Rŷx||,

so that
||zt − y||+ ||zt − x|| = ||y −Rŷx||.

Hence, if y /∈M ,

||y −Rŷx|| = min
{
||y − z||+ ||z − x|| : z ∈M

}
.

Of course, if x ∈ M , then Rŷx = x, and we capture the first case;
and if x /∈M , then, by the lemma, ||y−Rŷx|| = ||x−Rx̂y||. So, this
disposes of the second possibility.

We proceed to examine the cases of equality.
Case A: Both x, y ∈M . In this case it’s easy to see that

||z−x||+ ||z−y|| = ||x−y|| = min{||z−x||+ ||z−y|| : z ∈M}, (1)

for every z in the line segment [x, y]. Conversely, if ||x− y|| = ||w−
x||+||w−y||, for some w ∈M \[x, y], then, with p = x−w, q = w−y,
we have p 6= 0, q 6= 0 and ||p + q|| = ||p|| + ||p||. Equivalently,
< < p, q >= ||p|| ||q||, so that, by the case of equality in the Cauchy-
Schwarz inequality, ||q||p = ||p||q. This now means that

w =
||q||x + ||p||y
||q||+ ||p||

,

which conflicts with our hypothesis. In other words, there is equality
in (1) if and only if z ∈ [x, y]. In particular, there is equality for
infinitely many points in M unless x = y.
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Case B: x ∈ M,y /∈ M and there is some w ∈ M with w 6= x such
that

||x− y|| = ||w − x||+ ||w − y||.
An argument similar to the one just given implies that w ∈ [x, y],
which means that y ∈M , which is impossible. Hence, the minimum
is uniquely attained in this case.
Case C: x, y /∈M . Suppose

||y −Rŷx|| = ||w − x||+ ||w − y|| = ||w −Rŷx||+ ||w − y||,
for some w ∈M . Again, w /∈ {x, y}. This time, put p = Rŷx−w, q =
w−y, so that, as before, ||p+ q|| = ||p||+ ||q||, whence ||q||p = ||p||q,
i.e.,

w =
||q||Rŷx + ||p||y
||q||+ ||p||

≡ (1− a)Rŷx + ay,

say. Since Qw = 0, (1− a)QRŷx + aQy = 0, i.e,

0 = −(1− a)
Qy||Qx||
||Qy||

+ aQy = (−(1− a)
||Qx||
||Qy||

+ a)Qy.

But Qy 6= 0, by hypothesis. Hence, (1− a)||Qx|| = a||Qy||, so that

a =
||Qx||

||Qx|+ ||Qy||
= 1− t,

whence w = zt. Thus, in Case C, the minimum is attained at a
unique point in M .

In summary: unless both of x and y belong to M , the minimum
is attained at a unique point in M . �

What this means is that, using the `1-norm, we can approximate
simultaneously to two points by an element in M ; and the approxi-
mating member of M is unique unless the given points both belong
to the subspace.
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