
Irish Math. Soc. Bulletin 63 (2009), 33–43 33

The Imperfect Fibonacci and Lucas Numbers

JOHN H. JAROMA

Abstract. A perfect number is any positive integer that is

equal to the sum of its proper divisors. Several years ago, F.

Luca showed that the Fibonacci and Lucas numbers contain
no perfect numbers. In this paper, we alter the argument

given by Luca for the nonexistence of both odd perfect Fi-

bonacci and Lucas numbers, by making use of an 1888 result
of C. Servais. We also provide a brief historical account of

the study of odd perfect numbers.

1. Introduction

It has been shown as sufficient by Euclid and as necessary by Euler
that an even number is perfect if and only if it is equal to

2p−1(2p − 1),

where 2p−1 is prime. Primes of the form 2p−1 are called Mersenne
primes. They are named in honor of the 17th century priest, Fr. M.
Mersenne (1588–1648), who claimed that such numbers are prime
provided that p ∈ {2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257} and are com-
posite for all other values of p ≤ 257. Although Mersenne’s conjec-
ture contained five mistakes, it had taken more than 300 years for
mathematicians to discover them all.

Because of the Euclid–Euler defining characteristic of an even
perfect number, the discovery of a new Mersenne prime is equiva-
lent to the finding of a new even perfect number. As of 2008, only
44 Mersenne primes have been discovered. The four smallest were
known at the time of Euclid. The prevailing conjecture is that there
are infinitely many.

An equally, if not even more celebrated open problem is the ques-
tion of whether or not an odd perfect number exists. It has remained
unanswered for over two millennia. Nevertheless, a significant step
toward a better understanding of them occurred in the 18th century
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when L. Euler provided us with their canonical form. In particular,
he showed that if n is an odd perfect number, then it necessarily
follows that

n = pαq2β1
1 q2β2

2 · · · q2βk

k (1)
where, p, q1, q2, . . . qk, are distinct odd primes and p ≡ α ≡ 1 (mod 4).

In his 1972 Ph.D. thesis, C. Pomerance asserted that the modern
era of research on odd perfect numbers began with J. J. Sylvester
[33], for in 1888 Sylvester published a series of papers that further
qualified the structure that an odd perfect number must assume.
Specifically, he demonstrated that such a number has at least four
distinct prime divisors. Sylvester also established a lower bound
of eight on the number of distinct prime factors that an odd perfect
number can have provided that it is not divisible by three [43]. In ad-
dition, he showed that no odd perfect number is divisible by 105 [43].
Furthermore, before that year was over, Sylvester also improved the
unrestricted bound on the number of distinct prime divisors of an
odd perfect to five [44].

Sylvester offered the reader some of his thoughts regarding the
existence of an odd perfect number in [42] when he equated the ques-
tion to a problem of the ages comparable in difficulty to that which
previously to the labours of Hermite and Lindemann . . . environed
the subject of the quadrature of the circle. He contended that odd
perfect numbers do not exist and in [41] declared that . . . a pro-
longed meditation on the subject has satisfied me that the existence
of any one such — its escape, so to say, from the complex web of
conditions which hem it in on all sides — would be little short of a
miracle.

Recently, Luca showed that perfect numbers do not exist among
either the Fibonacci numbers {Fn}= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .}
or the Lucas numbers {Ln} = {1, 3, 4, 7, 11, 18, 29, 47, 76, 123,
. . . } [23]. His argument for the odd perfect number showed that if
either Fn or Ln is odd perfect, then n = p, where p an odd prime.
He then proved that Fp is not an odd perfect number by quoting an
earlier result of his that asserts σ(Fn) ≤ Fσ(n), ∀n ≥ 1 [24].1 For the
case of the Lucas numbers, Luca demonstrated that σ(Lp) < 2Lp,
for all primes p ≥ 2.

1If we let n be any positive integer, then σ(n) denotes the sum of the positive
divisors of n.
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We later summarize Luca’s argument for the nonexistence of an
even perfect Lucas number, as well as show there are no even perfect
Fibonacci numbers by recapping the solution of [31]. Upon doing
this, we offer a proof, apart from the one given by Lucas, demon-
strating the impossibility of either an odd perfect Fibonacci or Lucas
number. Our main tool will be an 1888 theorem of C. Servais that
places an upper bound on the least prime divisor of an odd perfect
number [38].

Before this is accomplished, we present the following account of
the study of odd perfect numbers.

2. Brief Study of Odd Perfect Numbers

This section briefly recaps and updates the history of the study of
odd perfect numbers offered in [9].

Approximately twenty three hundred years ago, Euclid showed in
Proposition 36 of Book IX of his Elements that a number of the
form 2n−1(2n − 1) is perfect provided that 2n − 1 is prime. Four
hundred years later, Nicomachus of Gerasa continued the study of
perfect numbers in his Introductio Arithmetica. Unfortunately, all of
his assertions, including the declaration that all perfect numbers are
even, were given without proof. Nonetheless, his conjectures were
taken as fact for centuries.

It appears that the first mathematician of note to suggest that an
odd perfect number exists was R. Descartes. In a letter to Mersenne
dated November 15, 1638, he announced that he could demonstrate
that every odd perfect number must be of the form ps2, where p is
a prime. Furthermore, he stated that he saw no reason to prevent
the existence of an odd perfect number and cited the example of
p = 22021 and s = 3 · 7 · 11 · 13 as evidence. For, ps2 would be an
odd perfect number provided one pretends that 22021 is prime.

In 1832, B. Peirce studied existence criteria from a different per-
spective by establishing a lower bound of four on the number of dis-
tinct prime divisors that an odd perfect number can have [32]. We
remark that the credit for this important discovery seems to have
eluded Peirce, being often misdirected to either Sylvester [43] or to
Servais [39]. Both of these mathematicians independently proved the
same result more than fifty years later (See [43] and [39].) In fact,
even L. E. Dickson neglected to credit Peirce with this important
discovery in his magnum opus, History of the Theory Numbers [7].
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However, as noted earlier, Sylvester did break new ground in 1888
by improving the said lower bound to five [44]. The year 1888 also
saw Servais placing an upper bound of k+1 on the least prime divisor
of an odd perfect number with k distinct prime divisors [38].

In 1913, Dickson demonstrated that for any integral value of k,
there are only finitely many odd perfect numbers with k components2

[8]. He proved this as a corollary to a similar result for odd primitive
non-deficient numbers. By definition, such numbers necessarily con-
tain all the odd perfect numbers3. A significant aspect of Dickson’s
paper is that one may now conduct a search for the an odd perfect
number with k components by initially listing out all of the finitely
many primitive odd non-deficient numbers associated with that k-
value and then checking for those among them are equal to the sum
of their proper divisors. Alas, the approach is not feasible for most
values of k, for the resulting lists quickly become intractably large.

In 1925, I. Gradstein advanced the lower bound on the number of
distinct prime divisors on an odd perfect number to six [11]. In 1949,
H. J. Kanold revisited the four-divisor case and published a proof of
the same result given in earlier years by Peirce, Servais, Sylvester,
and Dickson [27]. The significance of this paper extended consider-
ably beyond the stated result for in it, Kanold demonstrated that the
largest prime divisor of an odd perfect number must exceed 60. This
marked the first theorem of its kind. Moreover, it represented the
initial contribution to a class of propositions that would ultimately
be suggested by Pomerance some twenty-five years later.

More specifically, because the approach to the odd perfect num-
ber question from the perspective of Dickson’s paper is impractical,
it was necessary to seek out alternative approaches to studying the
structure of an odd perfect number. In 1974, and in addition to
showing that an odd perfect number must have at least seven distinct
prime divisors4, Pomerance proposed a class of theorems for consid-
eration: An odd perfect number is divisible by j distinct primes
> N [33].

Furthermore, along this line of thought, Kanold’s 1949 result of
j = 1 and N = 60 was improved for the j = 1 case to N = 11200

2For example, that the components of (1) are pα, q2β1
1 , q2β2

2 , . . . q
2βk
k .

3A deficient number is any integer n with σ(n) < 2n. So, n is a non-deficient

number if σ(n) ≥ 2n. Dickson had called a number primitive non-deficient

provided that it is not a multiple of a smaller non-deficient number.
4In 1974, N. Robbins independently proved the same result [36].
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by P. Hagis, Jr. and W. McDaniel [15] in 1973. Two years later,
they bettered their own result by exhibiting N = 100110 [16]. In
1975, Pomerance became the first to illustrate a case for j > 1 upon
showing j = 2 and N = 138 [34].

In 2008, T. Goto and Y. Ohno showed that an odd perfect number
must have a factor greater than 108. This improved the 2003 result
of P. Jenkins who demonstrated that the largest prime divisor of an
odd perfect number exceeds 107 [22], which augmented the earlier
lower bound of 106 discovered by Hagis and G. Cohen in 1998 [4].

In 1999 and 2000, D. Iannucci published initial results on the
second and third largest prime divisors of an odd perfect number.
He proved they exceed 10000 and 100, respectively [19], [20]. It
appears that these remain as the best such estimates to date.

The study of odd perfect numbers has also included attempts to
provide a bound on its magnitude. In 1908, A. Turǎninov established
a lower bound of 2000000. The current best estimate of this kind
has been given by R. P. Brent, Cohen, and H. J. J. te Riele in 1991
[1], which showed that any odd perfect number is necessarily greater
than 10300. This result was achieved by developing an algorithm
which demonstrated that if there exists an odd perfect number n
then n > K, upon which they applied the algorithm to K = 10300.

In 1994, R. Heath-Brown proved that if n is odd and σ(n) = an,
then n < (4d)4

k

, where d is the denominator in a and k is the
number of distinct prime factors of n [18]. In particular, if n is
an odd perfect number then n has an upper bound of 44k

. This
represents an improvement over the previous best estimate of n <

(4k)(4k)2
k2

, which was given by Pomerance in 1977 [35]. Heath-
Brown has remarked that his bound is still too large to be of practical
value. Nevertheless, we remark that when his bound is viewed in
conjunction with the lower bound of 10300, Sylvester’s result that
every odd perfect number has at least five distinct divisors follows
immediately; that is, 10300 < n < 44k

implies k > 4.48. In 1999,
R. J. Cook improved Heath-Brown’s result to n < (2.124)4

k

[6]. In
2003, P. Nielsen further reduced it to 24k

[29].
Presently, the best result for the least number of distinct prime

divisors that an odd perfect number can have is nine. This was
recently discovered by Nielsen [30]. It is a long-awaited improve-
ment over the bound of eight established independently in 1979 by
E. Z. Chien [3] (who published nothing of his work) and by Hagis
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in 1980 [12]. Hagis’s original proof contained almost two hundred
manuscript pages. We note that Cohen and Sorli in 2003 described
an algorithmic approach for showing that if there exists an odd per-
fect number, then it has t distinct prime factors [5]. In that work,
they also discussed the algorithm’s applicability to the case t ≥ 9.
Nielsen’s demonstration ultimately avoids previous computational
results for odd perfect numbers.

Some obtained estimated on the total number of prime divisors
that an odd perfect number can have. In 1986, M. Sayers showed
that such a number necessarily has at least 29 such factors [37].
This was later improved to 37 by Iannucci and Sorli [21]. The best
estimate to date appears to be 75, given recently by Hare [17].

The best improvement to Sylvester’s bound on the number of
distinct prime factors of an odd perfect number not divisible by three
now stands at twelve which also appears in Nielsen’s paper [30]. The
best previous estimate of eleven had been obtained independently in
1983 by both Hagis [13] and M. Kishore [28].

Finally, we point out that a study of odd perfect numbers from a
somewhat different perspective was initiated in 1937 by R. Steuer-
wald upon showing that not all the βi’s in Euler’s canonical form
given by (1) can all be equal to one. This continued in 1941 when
Kanold showed that neither may all of the βi’s be equal to two nor
may one of the βi’s be equal to two while all the rest are equal to one
[26]. In 1972, Hagis and McDaniel proved in [14] that not all the βi

can be equal to three. In 2003, Iannucci and Sorli showed that an
odd perfect number cannot be divisible by three if for all i, βi ≡ 2
(mod 3) or βi ≡ 2 (mod 5) [21].

3. Fn and Ln are not Even Perfect

In this section, we present previously developed arguments for the
nonexistence of even perfect Fibonacci and Lucas numbers. As pre-
viously noted, if 2p − 1 is prime, then a necessary and sufficient
condition for an even number N to be perfect is that it is necessarily
of the form

N = 2p−1(2p − 1). (2)

Now, to show that a Fibonacci number cannot be even perfect,
we refer Padwa’s 1972 solution of the problem posed by R. Whitney
[31]: Prove that there are no even perfect Fibonacci numbers. For
the Lucas numbers, we illustrate Luca’s proof given in [23].
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Theorem 1. There are no even perfect Fibonacci or Lucas num-
bers.

Proof. Let N = 2p−1(2p − 1) be a perfect number.
Case 1. (Whitney/Padwa) Assume that N is a Fibonacci number.
Since all even perfect numbers are given according to (2), this implies
that all even perfect numbers greater than 28 are also divisible by 16.
Now, the only Fibonacci numbers divisible by 16 are also divisible
by 9. Thus, a Fibonacci number cannot be of the form 2p−1(2p− 1).
Therefore, no Fibonacci number is even perfect.
Case 2. (Luca) Assume that N is a Lucas number. First, if p = 2
then N = 6, and, if p = 3 then N = 28. Since both of these are not
Lucas numbers, it is without loss of generality that we assume p > 3.
In light of (2), this implies that 8 | Lk. However, this is impossible,
as no Lucas number is divisible by 8. Therefore, there are no even
perfect Lucas numbers. �

4. Generating Fn and Ln from the Lucas Sequences

Before we proceed with our demonstration that Fn and Ln cannot be
odd perfect numbers, we will need to view these numbers as iterations
of a specific Lucas and companion Lucas sequence, respectively.

To this end, let P and Q be relatively prime integers. The Lucas
sequences are defined recursively by

Un+2(P,Q) = PUn+1−QUn, U0 = 0, U1 = 1, n ∈ {0, 1, . . .}. (3)

Similarly, the companion Lucas sequences are

Vn+2(P,Q) = PVn+1−QVn, V0 = 2, V1 = P, n ∈ {0, 1, . . .}. (4)

We point out that the Fibonacci numbers, {Fn}, are produced by
the Lucas sequence {Un(1,−1)} and the Lucas numbers {Ln} are
generated by the companion Lucas sequence {Vn(1,−1)}. Further-
more, since (3) and (4) are linear they are solvable. In particular,
for n ∈ {0, 1, . . .},

Fn = Un(1,−1) =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]
; (5)

Ln = Vn(1,−1) =

(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n

. (6)
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5. Fn and Ln are not Odd Perfect

Our proof of the nonexistence of Fibonacci and Lucas odd perfect
numbers relies on the following proposition of Servais which places an
upper bound on the least prime divisor of an odd perfect number [38].

Theorem 2. (Servais) The least prime divisor of an odd perfect
number with k distinct prime factors does not exceed k.

The next result demonstrated by Luca in [23] will also be utilized
in our argument.

Lemma 1. Let either Fn or Ln be an odd perfect number. Then, n
is prime.

In a given Lucas sequence, the rank of apparition of p is the index
of the first term that contains p as a divisor. A prime factor of either
Un or Vn is primitive provided that its rank of apparition is n. Such
a factor is called intrinsic if it divides n. Otherwise, it is said to be
extrinsic.

The following three lemmas come from either [2] or [25].

Lemma 2. The odd extrinsic factors of Un are of the form rn± 1.

Lemma 3. The odd extrinsic factors of Vn are of the form 2kn±1.

Lemma 4. Assume that p - PQ and let ω denote the rank of
apparition of an odd prime p in the sequence {Un(P,Q)}. Then,
p | Un if and only if n = kω.

Lemma 5 is based on results found in [2].

Lemma 5. For any p 6= 5, both p - Fp and p - Lp.

We are now ready to offer a proof of the nonexistence of odd
perfect Fibonacci numbers and odd perfect Lucas numbers. Both
cases are demonstrated at once.

Theorem 3. There are no odd perfect Fibonacci or Lucas numbers.

Proof. By Lemma 1 and the fact that F2 = 1, L2 = 3, F5 = 5,
and L5 = 11 are all not perfect, it suffices to consider only the
case where n = p is an odd prime not equal to 5. Now, for the
sake of contradiction, let’s assume that there exists a prime p for
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which either Fp (Lp) is an odd perfect number. Let d be the least
prime divisor of Fp (Lp). Since the index p of Fp (Lp) is prime, it
follows from Lemma 4 that d is a primitive prime factor of that term.
Furthermore, since p 6= 5, it follows by Lemma 5 that every prime
factor of Fp (Lp) is extrinsic. As F3 and L3 are respectively, the
only even Fibonacci and Lucas numbers of prime index, we conclude
that for all p > 3, every primitive factor of Fp (Lp) is odd. Since
d and p are odd, it then follows from Lemma 2 and Lemma 3 that
d = rp± 1 = 2kp± 1. Hence, d ≥ 2p− 1. Moreover, Theorem 2 tells
us that Fp (Lp) has at least 2p−1 distinct prime factors. Therefore,
utilizing (5), (6), and Lemma 3, we obtain

2

(
1 +

√
5

2

)2p−1

>

(
1 +

√
5

2

)2p−1

+

(
1−

√
5

2

)2p−1

= L2p−1 > Lp ≥

≥ (2p− 1)(2p + 1)(4p− 1)(4p + 1)

. . . [2(2p− 2)− 1][2(2p− 2) + 1][2(2p− 1)− 1],

where the last product consists of 2p − 1 terms, which for all p, is
impossible. �
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