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EDITORIAL

Do you publish in the “list”? The “list” here refers to the ISI or
Thomson Scientific impact factor list, which ranks a number of math-
ematical journals (and many other scientific periodicals, altogether

more than 9,000) according to their impact factor. For a particular
journal and year, the journal impact factor is computed by calculating
the average number of citations to articles in the journal during the
preceding two years from subsequent articles published in the collec-

tion of indexed journals in that given year. (It should be immediately
noted that Thomson Scientific indexes less than half the mathematics
journals covered by Mathematical Reviews and Zentralblatt.) Origi-

nally intended “not to be used without careful attention to the many
phenomena that influence citation rates, as for example the average
number of references cited in the average article. The impact factor
should be used with informed peer review.” [Thomson], the impact

factor has nowadays become one of the most important (sometimes
the sole) bibliometric data on which the quality of a journal—and
by extrapolation, the quality of the articles and their authors—are

judged.

Research funding bodies, such as governments and research coun-
cils, increasingly rely on what they deem to be simple and objective
criteria to assess the quality of research. One is expected to publish
in good journals. This is decisive for the award of a grant and for

promotion prospects. Committees base their judgement of what is
good on these bibliometrics rather than on “subjective” assessment
methods such as peer review. Mostly because this approach is easier

to understand and capable of handling large numbers of applications.
However, there are serious problems with an oversimplified method-
ology to assess mathematical research—this has been pointed out by
many before and is very impressively demonstrated in a detailed re-

port commissioned by the IMU, which can be found at

http://www.mathunion.org/fileadmin/IMU/Report/CitationStatistics.pdf



iv Editorial

The main Canadian research council NSERC write in their guide-
lines “Selection committees and panels are advised by NSERC to nei-
ther rely on numbers of publications in their assessment of productiv-

ity nor create or use lists of ‘prestigious’ or ‘unacceptable’ journals in
their assessment of quality. The quality of the publication’s content
is the determining factor, not that of the journal in which it appears,
and the onus is on the applicant to provide convincing evidence of

quality.” and “The ultimate tests of quality of any research contribu-
tion or publication are its significance and use by other researchers
and end-users, and the extent to which it influences the direction of

thought and activity in the target community.”
Of course, it is each of us own decision where we submit our pa-

pers, and there are manifold reasons for choosing a particular jour-

nal. Even if oneself does not feel “bound” to the list, maybe your
co-author insists on publishing in a periodical that it highly ranked.
Maybe your head of department.

As editor of the Bulletin I am glad that this journal is not in the

list. And I hope that, in the medium and long term, enough people
who have a say will agree with the IMU’s statement that “Research
is too important to measure its value with only a single coarse tool.”

and “If we set high standards for the conduct of science, surely we
should set equally high standards for assessing its quality.”

—MM
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Applying for I.M.S. Membership

1. The Irish Mathematical Society has reciprocity agreements with
the American Mathematical Society, the Irish Mathematics Teach-
ers Association, the New Zealand Mathematical Society and the
Real Sociedad Matemática Española.

2. The current subscription fees (as from 1 January 2009) are given
below:

Institutional member 160 euro
Ordinary member 25 euro
Student member 12.50 euro
I.M.T.A., NZMS or RSME reciprocity member 12.50 euro
AMS reciprocity member 15 US$

The subscription fees listed above should be paid in euro by means
of a cheque drawn on a bank in the Irish Republic, a Eurocheque,
or an international money-order.

3. The subscription fee for ordinary membership can also be paid in
a currency other than euro using a cheque drawn on a foreign bank
according to the following schedule:

If paid in United States currency then the subscription fee is
US$ 30.00.
If paid in sterling then the subscription is £20.00.
If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$ 30.00.

The amounts given in the table above have been set for the current
year to allow for bank charges and possible changes in exchange
rates.

4. Any member with a bank account in the Irish Republic may pay
his or her subscription by a bank standing order using the form
supplied by the Society.

5. Any ordinary member who has reached the age of 65 years and
has been a fully paid up member for the previous five years may
pay at the student membership rate of subscription.
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6. Subscriptions normally fall due on 1 February each year.

7. Cheques should be made payable to the Irish Mathematical So-
ciety. If a Eurocheque is used then the card number should be
written on the back of the cheque.

8. Any application for membership must be presented to the Com-
mittee of the I.M.S. before it can be accepted. This Committee
meets twice each year.

9. Please send the completed application form with one year’s sub-
scription to:

The Treasurer, I.M.S.
Department of Mathematics
St Patrick’s College
Drumcondra
Dublin 9, Ireland



55

IRISH MATHEMATICAL SOCIETY

President’s Report 2008

Introduction: I have delegated a large number of my duties to
members of the Committee, whom I gratefully thank. This ensures
that such members maintain an active interest in the Society, with-
out hopefully being over-burdened with administrative duties. In
particular attendance at the Committee meetings in December 2007
and September 2008 was notably high.

Meetings: I represented the IMS at the first meeting of Presidents
of European mathematical societies in Marseilles in April, which
was hosted by the European Mathematical Society. It was of note
that increasingly new employees in mathematics are not joining their
respective national societies, despite the low cost.

I also attended the Council Meeting of the European Mathemat-
ical Society in Utrecht in July. At this meeting Kracow was elected
as the host for the 2012 European Congress of Mathematics.

Ireland at the moment only has 16 members of the European
Mathematical Society, which will cost e 24 to join next year as a
reciprocity member from the IMS. The EMS reciprocity fee can be
paid to the Treasurer of the IMS at the same time as your normal
IMS membership fee, or it can be paid directly via the EMS website.
Benefits of EMS membership now include free access to Zentralblatt
(for the next two years).

Local Representatives: The local representatives of the IMS have
been refreshed, mostly with present members of the Committee.
Their job is to recruit members from their respective institutions.

Membership communication: An insert was placed in one of the
Bulletins this year for members to update their details including e-
mail addresses. The number of e-mail addresses received was about
two-thirds of the membership. My thanks to Gordon Lessells for
taking on the administration of this task and his continued help in
the production and distribution of the Bulletin.

Treasurer: My thanks to Sinead Breen for being the Society’s Trea-
surer this year, a job she executed without any fuss. She will inves-
tigate the possibility of making membership payments by electronic
transfer, bearing in mind the potential for fraud. She is also consid-
ering a new policy for the allocation of funds to support conferences.
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Links: The Society now has a formal reciprocity agreement with the
New Zealand Mathematical Society. My thanks to Niamh O’Sullivan,
who is currently looking after all reciprocity matters.

Website: The IMS website http://www.maths.tcd.ie/pub/ims/

continues to be maintained and regularly updated by Richard Tim-
oney, my thanks to him. We have decided to discontinue the general
IMS e-mailing facility through Trinity as it is no longer used.

SFI Mathematics Initiative: As members are aware this scheme
is not running this year, and is unlikely to be resurrected given the
present economic situation.

Bulletin: Thanks to Martin Mathieu for continuing to act as Editor
of the Bulletin and in particular in producing issue 61, Summer 2008.
Issue 62 should be distributed in January 2009. Professor Boland
(UCD) has given the Society a nearly complete run of the Bulletin,
which Martin is keeping on behalf of the Society.

Annual conferences: The annual conference and AGM was suc-
cessfully held in Cork IoT on September 1st and 2nd with a wide
variety of talks. My thanks to Shane O’Rourke for not only organiz-
ing the conference, but also acting as Secretary of the Society.

Fergus Gaines’ Cup: The Irish Mathematical Society awards the
Fergus Gaines’ Cup annually to the best performer in the Irish Math-
ematical Olympiad. I awarded the cup in St Patrick’s College on
15th November 2007 to Stephen Dolan, and on 6th November 2008
to Galin Ganchev in the presence of the Bulgarian ambassador. I
also made two special presentations on 6th November 2008 on be-
half of the Society to Professor Tom Laffey (UCD) and Mr Gordon
Lessells (UL) for their long and continued service to Irish Mathe-
matical Olympiad training. Thanks were expressed to St Patrick’s
College and Maurice O’Reilly for hosting and arranging the event
respectively.

Teaching: A policy document on service teaching of mathematics
was formally approved in September with one minor amendment and
has been posted on the IMS website as a position paper:
http://www.maths.tcd.ie/pub/ims/business/

2008.09.02.serviceteaching.pdf
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Public Relations: Brendan Guilfoyle is the Public Relations Of-
ficer of the Society. His name together with that of Ann O’Shea
(as a reserve) have been given to IBEC, the Irish Times, the Irish
Independent, and Engineer’s Ireland.

National Science and Engineering Commemorative Plaques
Committee: Maurice O’Reilly was appointed as the representative
of the IMS on this Committee.

Institute of Technology members: Jim Cruickshank has been
chairing the sub-committee on IoT members and reported on its
progress in September. This report has been posted on the IMS
website as a discussion document:
http://www.maths.tcd.ie/pub/ims/business/2008-09-01-IoT.pdf

Conference support: The Society supported the following confer-
ences in 2008:

• International Workshop on Multi-Rate Processes & Hystere-
sis, UCC, 31 March–5 April

• Complex Function Theory Meeting, UCC, 18 April
• Operator Theory & Operator Algebras in Cork (in memory

of Gerard Murphy), UCC, 7–9 May
• Third Conference on Mathematics Service Teaching, WIT,

26–27 May
• 23rd British Topology Meeting, QUB, 25–27 August
• Instructional Workshop on Subfactors & Planar Algebras,

QUB, 26–28 August

David Armitage: There was a dinner in Belfast to mark the re-
tirement of David Armitage (a former President of the Society). I
expressed the best wishes of the Society to David by e-mail and Mau-
rice O’Reilly represented the Society at the dinner and spoke on its
behalf.

Irish Mathematical Trust: Stephen Buckley is the Society’s rep-
resentative in this regard. There was one meeting on this topic in
May, which was attended by Maurice O’Reilly in the absence of
Stephen.

RIA Mathematical Sciences Committee: Stephen Buckley has
kindly volunteered to be the Society’s next representative on this
committee.
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Future meetings: Future planned meetings of the IMS are as fol-
lows:

• April 6-9 2009, NUI Galway: Joint meeting of the British
Mathematical Colloquium & the IMS

• September 2010, Dublin IT: IMS Conference & AGM
• September 2011, University of Limerick: IMS Conference &

AGM
• September 2012, IT Tallaght: IMS Conference & AGM

A special arrangement will have to be made for the AGM in 2009,
since it must be held after July 31st.

Russell Higgs
President of the Irish Mathematical Society

5th December 2008
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Minutes of the Meeting
of the Irish Mathematical Society

Annual General Meeting
2nd September 2008

The Irish Mathematical Society held its Annual General Meeting
from 12:00 to 13:00 on Tuesday 2nd September at Cork Institute of
Technology. There were 22 members present at the meeting.

1. Minutes

The minutes of the meeting of September 2007 were approved and
signed.

2. Matters arising

The President clarified that the new membership rate in sterling
would be £20 rather than £18 in light of the adverse conversion rate
to the e.

3. Correspondence

There was only routine correspondence.

4. New Members

Institutional member : St Patrick’s College, Drumcondra.
Ordinary members: Mary Hanley, Conor Muldoon, Norah Daly,
David Barrett, Christina Naughton, Francesca O’Rourke, Kevin Jen-
nings, Garry Plunkett, Claas Roever, Gavin Bradley, David Henry,
George Wyatt, Sarah Mitchell, Kevin Murphy.
Student member : Jo Anne McLoughlin (NUIG).

5. President’s Report

The President presented an interim report on issues that have arisen
this year. He thanked Sinéad Breen for her efficient work as Trea-
surer over the year, and Richard Timoney for maintaining the IMS
website. He also thanked Gordon Lessells and Martin Mathieu, re-
spectively, for their sterling work on producing and editing the Bul-
letin.

6. Treasurer’s Report

The Treasurer presented her report for 2007. It shows a surplus of
2,142.07e. It was noted that there were relatively few applications
for funding conferences this year. The report was approved.
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7. The Bulletin

The Editor reported that Volume 61 is ready and is being distributed.
He noted that there were few research articles from Irish mathemati-
cians, though he received many submissions from other parts of the
world, and he encouraged members to submit articles to the Bulletin.
The section on announcements of conferences will be discontinued as
the Society’s on-line diary is a better medium. He suggested that
the section on Departmental News be revived, and should include
retirements and new appointments.

8. Election to Committee

The following were elected unopposed to the committee:

Committee Member Proposer Seconder
J. Cruickshank (President) R. Higgs M. Mathieu
S. Wills (Vice President) J. Cruickshank S. O Rourke
C. Stack R. Higgs R. Ryan

As editor, M. Mathieu will be invited to committee meetings. The to-
tal number of years each existing member will have been on the com-
mittee as of 31 December 2008 will be: J. Cruickshank (6), T. Carroll
(5), N. O’Sullivan (5), R. Timoney (4), R. Higgs (4), N. Kopteva (3),
B. Guilfoyle (3), S. Breen (2), S. O’Rourke (2).

The following will then have one more year of office: T. Carroll,
N. O’Sullivan.

9. EMS Membership

The President noted that there were currently only 16 members of
the European Mathematical Society with addresses in Ireland. He
encouraged IMS members to join the EMS, noting that the member-
ship rate for existing IMS members will be 24e next year.

10. David Armitage retirement

M. O Reilly represented the Society at a dinner to mark David Ar-
mitage’s retirement, and conveyed the Society’s thanks for his service
to it.
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11. Visit of John Curran

It was noted that John Curran, a member of the New Zealand Math-
ematical Society, was visiting Ireland, and it was suggested that he
be invited to speak at seminars.

12. Adoption of Service Teaching Report

This report was formally adopted by the meeting without objection.
Cora Stack had made a written submission suggesting that the re-
port could have a wider scope, and could go further to emphasise
the benefits of a rounded mathematical education. Maurice O Reilly
emphasised the importance that the report be implemented. The
President agreed to disseminate the report to the heads of Irish uni-
versities and IoTs.
He thanked the Committee for Service Teaching of Mathematics

and the IMS Subcommittee for Educational Issues for their work.

13. Any Other Business
There were four other items of business.

(i) Irish Mathematical Trust Maurice O Reilly and Stephen
Buckley attended a meeting to examine the possibility of set-
ting up an Irish Mathematical Trust. Such a body would play
a leading role in second-level mathematics competitions includ-
ing publicity. A group is looking into the financial, legal and
other arrangements required for setting up the Trust.

(ii) Institute of Technology Subcommittee Jim Cruickshank
chaired a subcommittee to consider the role that the IMS can
play for mathematicians in the IoT sector. He presented his
report to the meeting. The report highlights the fact that there
are many mathematicians in the IoT sector with PhDs but who
are no longer active in research or who feel isolated, and who
might be encouraged or supported by greater interaction both
with the university sector and between institutes. It was noted
however that many mathematicians in the IoT sector are not
interested in research, seeing their role as primarily a teaching
role. Such mathematicians might welcome a greater empha-
sis on mathematics education in the IMS meetings. Finbarr
Holland suggested the possibility of IoTs and universities in
different regions jointly organising colloquia.
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It is anticipated that there will be an ongoing discussion on
this matter.

(iii) Future Meetings There will be a joint BMC/IMS meeting in
NUI Galway on 6-9 April 2009. It was suggested that the next
AGM take place in Dublin, possibly in TCD, after 31 July.

(iv) Thanks to Outgoing President Russell Higgs was warmly
thanked by the meeting for his tireless work as President of the
Society over the last two years.

Shane O Rourke
CIT.

These minutes still need to be approved by the next AGM.



PROGRAMME

21st SEPTEMBER MEETING

CIT Cork

1–2 September 2008

Monday, 1 September

10:00–10:45 Registration and coffee

10:45–11:00 Opening remarks

11:00–11:50 Daphne Gilbert (DIT)
Singular Sturm–Liouville boundary value problems
on the line

12:00–12:25 Patrick Quill (CSO)
An Input-Output model of the Irish economy

12:30–12:55 Sander Zwegers (UCD)
Mock modular forms

13:00–14:00 Lunch

14:00–14:50 Bill Lynch (NCCA)
Project Maths—developments in
post-primary mathematics education

15:00–15:25 Jerome Sheahan (NUIG)
Linking probability and statistics

15:30–16:00 Coffee

16:00–16:50 Martin Bridson (Oxford)
The geometry and complexity of
finitely presented groups

17:00–18:00 IMS Committee Meeting

19:30 Conference Dinner
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Tuesday, 2 September

9:30–9:55 Robin Harte (TCD)
Where algebra and topology meet:
a cautionary tale

10:00–10.25 Cora Stack (IT Tallaght)
On the powers of a nilpotent algebra

10:30–11:00 Coffee

11:00–11:50 Niall Smith (CIT)
Castles, martians and algorithms

12:00–13:00 IMS Annual General Meeting

13:00–14:00 Lunch

14:00–14:50 Conor Houghton (TCD)
Understanding spike trains

15:00–15:25 Ciaran Mac an Bhaird (NUIM)
The use of technologies to create an
active mathematical environment for students

15:30–15:55 Martin Kilian (UCC)
On the Lawson conjecture

16:00–16:30 Coffee



Irish Math. Soc. Bulletin 62 (2008), 15–20 15

The IMS September Meeting 2008 at CIT, Cork

Abstracts of Invited Lectures

Singular Sturm - Liouville Boundary
Value Problems on the Line

Daphne Gilbert (DIT)

We consider the relationship between the asymptotic behaviour of
solutions of the singular Sturm-Liouville equation and spectral prop-
erties of the corresponding self-adjoint operators. In particular, we
review the main features of the theory of subordinacy by considering
two standard cases, the half-line operator on L2([0,∞)) and the full-
line operator on L2(R). It is assumed that the coefficient function
q is locally integrable, that 0 is a regular endpoint in the half-line
case, and that Weyl’s limit point case holds at the infinite endpoints.
We note some consequences of the theory for the well-known infor-
mal characterisation of the spectrum in terms of bounded solutions.
We also consider extensions of the theory to related differential and
difference operators, and discuss its application in conjunction with
other asymptotic methods to some typical problems in spectral anal-
ysis.

An Input-Output Model of the Irish Economy

Patrick Quill (CSO)

This talk presents the supply and use framework applied by the
national accounts section of CSO. This framework is employed to
balance different measures of GDP, to give meaningful estimates of
transactions within the economy in a given year as well as to inte-
grate national accounts aggregates with business survey results. A
matrix transformation converts the use table into an input-output
table. Methods used for expanding the number of rows and columns
are examined. The Leontief Inverse is defined and interpreted. Tech-
niques for analysing input-output tables over time are discussed.
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Mock modular forms

Sander Zwegers (UCD)

Ramanujan wrote his last letter to Hardy in January of 1920, a few
months before his death, telling him about a new class of functions he
had discovered which he called “mock theta functions”. Many people
have studied these functions, including famous mathematicians like
Watson, Selberg and Andrews, who found many wonderful identities
concerning them. However, for a long time, no natural definition
was known that described what these functions are intrinsically and
hence could give a natural explanation for the identities between
them. More recently, an interpretation was found for these mock
theta functions within the theory of modular forms, which enables
us to give a natural definition.

This interpretation has opened the way to further progress and
to the construction of infinitely many new examples.

In this talk we will describe Ramanujan’s original examples and
the nature of their modularity, and discuss some of the further
progress that has been made.

Project Maths - developments in post-primary
mathematics education

Bill Lynch (NCCA)

Following a review of post-primary mathematics education, changes
in mathematics syllabuses at second level get under way in a small
group of schools from September 2008, with roll-out to all schools
commencing in September 2010. Project Maths is a new initiative in
curriculum development, which sees a phased, incremental approach
to syllabus revision in tandem with, and informed by, professional
development and support for teachers in introducing a changed ap-
proach to the teaching and learning of mathematics. The project is
aimed at both Junior Certificate and Leaving Certificate mathemat-
ics and also takes into consideration the links between mathematics
in the primary school and that in the first year at second level.

This presentation looks briefly at the background to Project Maths
and the proposals that have been adopted for its introduction. The
structure and format of the revised syllabuses at different levels are
described, together with the revised assessment arrangements that
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are seen as key to reinforcing and supporting changed methodol-
ogy in the classroom. The changed approach sees greater emphasis
being placed on the students understanding of the mathematical con-
cepts involved, together with a focus on the development of problem-
solving skills and strategies rather than reliance on rote learning of
procedures. An overview is given of the timescale for the project,
with detail being provided on the two revised syllabus strands which
are being introduced in 24 schools from September. Finally, the pro-
gramme of teacher professional development and support which has
been put in place is described, as well as an outline of the resources
being developed to support the project.

Linking Probability and Statistics

Jerome Sheahan (NUIG)

Probability and statistics books introduce, but generally treat in an
isolated manner, terms like ‘sample space’, ‘population’, ‘random
variable’ and ‘distribution’. By differentiating and linking these
concepts, we hope to de-mystify and unify the undergraduate and
graduate level teaching of the (scientifically opposite) fields of prob-
ability and statistics. On the way, we give recent developments on a
number of issues in mathematical modelling, including the question
of whether probability is the only way of modelling random varia-
tion, and we give the latest results on a famous probability problem
with an unexpected answer.

The geometry and complexity of finitely presented groups

Martin Bridson (Oxford)

I’ll begin with a general discussion about why one should regard
groups as objects that belong not so much to algebra as to mathe-
matics as a whole. I’ll discuss why finite presentability is a natural
constraint to impose on groups, and I will explain why Dehn’s de-
cision problems are so fundamental to the understanding of groups.
Following a brief sketch of the universe of finitely presented groups,
I’ll focus on a fascinating class of groups closely related to free groups
– limit groups – where one finds particularly deep connections be-
tween geometry, topology, algebra and logic.
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Where algebra and topology meet: a cautionary tale

Robin Harte (TCD)

In a sense the Kuratowski axioms reduce topology to algebra. In an-
other sense one of the cornerstones of Banach algebra theory ushers
in a curious topology for rings.

On the powers of a nilpotent algebra

Cora Stack (IT Tallaght)

An algebra R over a field K is said to be nilpotent if Rn = 0 some
n ≥ 1. It is widely accepted that the structure of nilpotent algebras
is not well understood. A better understanding of the structure is
crucial if further significant breakthroughs are to be made in the
theory of these algebras. Questions in nilpotent algebras have also
a very important bearing on other questions in more general ring
theory, group theory, coding theory etc. In this talk I will discuss
and prove some recent results in the structure theory by considering
certain relationships between the various powers Ri of the algebra R.

Castles Martians and Algorithms

Niall Smith (CIT)

In 2007 Blackrock Castle in Cork opened its interactive science cen-
ter to the public. Based upon the theme of “The Search for Life
in the Universe” and called “Cosmos at the Castle”, the award-
winning center informs visitors about our present knowledge of the
universe, and examines the likelihood that we may not be alone. The
Castle also houses Ireland’s first robotic observatory, operated by
researchers’ from CIT’s Astronomy & Instrumentation Group. The
group recently launched its PlanetSearch Programme. This talk will
summarise the Blackrock Castle Observatory project, describe our
experiences to date and our plans for the future. The project website
is http://www.bco.ie

Understanding spike trains

Conor Houghton (TCD)

Axons connect neurons; axons are thin, membrane-walled tubes the
interior fluid of which is at a lower voltage to the exterior. Axons sup-
port the propagation of what are called spikes, brief voltage pulses of
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stereotypical profile and amplitude. In the brain information propa-
gates between neurons in the form of spike trains, sequences of spikes.
It is not known in any detail how information is coded in spike trains,
this is a difficult problem because the spike trains themselves are un-
reliable, the same stimulus acting on a neuron leads to different spike
trains from trial to trial. Here I will describe how defining a met-
ric on the space of spike trains can help determine properties of the
information coding.

The use of technologies to create an
active mathematical environment for students

Ciaran Mac an Bhaird (NUIM)

One of the main challenges in third level Mathematics education is how
to address the issue of the weak mathematical background of incoming
students. The numbers of students with poor understanding of core math-
ematical material seems to be constantly increasing. Recent reports have
expressed concern with the mathematical competences of Irish students at
second level (State Examinations Commission, 2005; NCCA, 2006), and
low attainment in Mathematics is often cited as a contributing factor in
low enrollment and low retention rates in science and technology courses
(Task Force on the Physical Sciences, 2002).

Students have widespread access to complex technologies including ad-
vanced computer software, state of the art mobile phones and ipods. We
should take advantage of their interest in such technologies, and incorpo-
rate as much Mathematics as possible into similar environments.

Such initiatives aim to equip students with the mathematical skills they
need to succeed at university. The Mathematics Support Centre (MSC)
and the Department of Mathematics in NUI Maynooth are actively en-
gaged in introducing new methods of mathematical teaching including the
use of podcasting, screencasting and touchscreen technologies. Students,
especially weaker students, have been shown to respond very positively
to these innovations. We will discuss all the feedback from these develop-
ments, as well as the challenges that face anyone hoping to follow a similar
path. There will also be a brief demonstration of some of the software and
equipment that we use.

On the Lawson Conjecture

Mrtin Kilian (UCC)

While there are no compact minimal surfaces in Euclidean 3-space, Law-
son showed in 1970 that the curvature of the 3-sphere allows for embedded
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compact minimal surfaces of arbitrary genus. In particular, in collabora-
tion with Hsiang he investigated minimal tori in the 3-sphere, and con-
jectured that the only embedded minimal torus in the 3-sphere is a torus
which possesses a 2-parameter family of isometries, the so-called Clifford
torus. In recent work in collaboration with M.U. Schmidt, I proved that
Lawson’s conjecture indeed holds, and in this talk I will give an outline
of the proof, which uses modern methods from the theory of integrable
systems.



ANNOUNCEMENTS OF

MEETINGS AND CONFERENCES

This section contains the announcement of the annual meeting of the
IMS and closely related conferences (satellites) as supplied by organ-
isers. The Editor does not take any responsibility for the accuracy
of the information provided.

Joint Meeting of the

61st British Mathematical Colloquium and the

22nd Annual Meeting of the IMS

NUI Galway

April 6–9, 2009

The second joint meeting of the BMC and the annual IMS meeting,
following on to the first such meeting at Queen’s University Belfast
in 2004, will be held at the National University of Ireland, Galway
between 6 and 9 April 2009.

The speakers comprise David Eisenbud (Berkeley), Ben Green
(Cambridge), Ron Graham (San Diego), Rostislav Grigorchuk (Texas
A&M) and Frances Kirwan (Oxford), together with twelve Morning
Speakers. A Public Lecture will be held by Tom Koerner (Cam-
bridge). There will be a Special Session on Computational Algebra
led by Eamonn O’Brien (Auckland) and Goetz Pfeiffer (Galway) and
a Special Session on Analysis led by David Preiss (Warwick), Sean
Dineen (Dublin) and Ray Ryan (Galway). There will be opportuni-
ties to present talks at various splinter groups.

The meeting is supported by the London Mathematical Society
and the Irish Mathematical Society.

Full information on registration and the programme is available at

http://www.maths.nuigalway.ie/bmc2009/
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3rd International Workshop on

Elementary Operators and their Applications (ElOp2009)

Queen’s University Belfast

April 14–17, 2009

As a satellite to the BMC2009 (see the announcement above), the
third international workshop on elementary operators and appli-
cations will be held in the Pure Mathematics Research Centre of
Queen’s University, Belfast between April 14-17, 2009. The work-
shop is organised by Dr. Martin Mathieu and supported by the Lon-
don Mathematical Society and the Irish Mathematical Society.

Graduate students studying in the RoI or the UK can be supported;
for details please contact elop2009@qub.ac.uk

Full information on registration, the programme and a list of speak-
ers is available on the conference website

http://elop2009.awardspace.co.uk/
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Methods of Ascent and Descent in
Multivariable Spectral Theory

Derek Kitson
dk@maths.tcd.ie

This is an abstract of the PhD thesis Methods of ascent and de-
scent in multivariable spectral theory written by Derek Kitson under
the supervision of Professor Richard M. Timoney at the School of
Mathematics, Trinity College Dublin and submitted in June 2008.

In this thesis the classical notions of ascent and descent for an
operator acting on a vector space are extended to arbitrary collec-
tions of operators. The resulting theory is applied to the study of
joint spectra for commuting tuples of bounded operators acting on
a complex Banach space. Browder joint spectra are constructed and
shown to satisfy a spectral mapping theorem.

For a set A of operators on a vector space X we define the ascent
α(A) and descent δ(A) as the smallest non-negative integers such
that

N(A) ∩R(Aα(A)) = {0} and N(Aδ(A)) +R(A) = X

where N(A) denotes the joint null space, R(A) the joint range space
and Ak the set of all products of k elements. We show that the
collection A has finite ascent and finite descent if and only if there
exist A-invariant subspaces X1, X2 with X = X1 ⊕ X2 such that
the restriction of A to X1 satisfies a nilpotent condition while A
restricted toX2 satisfies a bijectivity condition. Moreover, the ascent
and descent of A are necessarily equal and determine X1 and X2

uniquely:

X1 = N(Ar) and X2 = R(Ar) where r = α(A) = δ(A).
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For commuting n-tuples a = (a1, . . . , an) of bounded operators on
a complex Banach space we define a Browder joint spectrum

σb(a) = {λ ∈ Cn : a− λ /∈ B}
where B is the collection of commuting Fredholm n-tuples with finite
ascent and finite descent. This Browder joint spectrum is smaller
than the Taylor-Browder spectrum of [1] but contains the upper
and lower semi-Browder spectra of [3]. We show that this Browder
joint spectrum is compact-valued, has the projection property and
consequently satisfies a spectral mapping theorem:

σb(f(a)) = f(σb(a))

for all mappings f holomorphic on the Taylor spectrum of a. We
also give a characterisation

σb(a) =
⋂

r∈R
σπ(a+ r) ∪ σδ(a+ r)

where σπ and σδ denote respectively the joint approximate point
and defect spectra and R denotes the collection of all commuting
n-tuples of Riesz operators which commute with a1, . . . , an.

Analogous results are obtained for the Harte spectrum, the Tay-
lor spectrum, the Slodkowski spectra σπ,k ∪ σδ,l and their split ver-
sions. We show that necessary and sufficient for a commuting n-
tuple a = (a1, . . . , an) to be Taylor-Browder is that a = c + s
where c = (c1, . . . , cn) is a commuting tuple of compact operators,
s = (s1, . . . , sn) is Taylor-invertible and cisj = sjci for all i, j.

Multivariable analogues of the notion of a pole and a Riesz point
for an operator are introduced for commuting tuples a = (a1, . . . , an).
We use poles to investigate a several variable version of N. Dunford’s
minimal equation theorem and Riesz points are used to characterise
commuting tuples of Riesz operators. Applications to a multivariable
Weyl’s Theorem are considered.
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Polynomials on Riesz Spaces

John Loane
johnloane@yahoo.com

This is an abstract of the PhD thesis Polynomials on Riesz Spaces
written by John Loane under the supervision of Dr. Ray Ryan at the
Department of Mathematics, National University of Ireland, Galway
and submitted in December 2007.

Mathematicians have been exploring the concept of polynomial
and holomorphic mappings in infinite dimensions since the late 1800’s.
From the beginning the importance of representing these functions
locally by monomial expansions was noted. Recently Matos stud-
ied the classes of homogeneous polynomials on a Banach space with
unconditional basis that have pointwise unconditionally convergent
monomial expansions relative to this basis. More recently still Grecu
and Ryan noted that these polynomials coincide with the polynomi-
als that are regular with respect to the Banach lattice structure of
the domain.

In this thesis we investigate polynomial mappings on Riesz spaces.
This is a natural first step towards building up an understanding
of polynomials on Banach lattices and thus eventually gaining an
insight into holomorphic functions.

We begin in Chapter 1 with some definitions. A polynomial is
defined to be positive if the corresponding symmetric multilinear
mappings are positive. We discuss monotonicity for positive homo-
geneous polynomials and then give a characterization of positivity
of homogeneous polynomials in terms of forward differences.

In Chapter 2 we show that, as in the linear case positive multilin-
ear and positive homogeneous polynomial mappings are completely
determined by their action on the positive cone of the domain and
furthermore additive mappings on the positive cone extend to the
whole space. We conclude by proving formulas for the positive part,
the negative part and the absolute value of a polynomial mapping.

In Chapter 3 we prove extension theorems for positive and regular
polynomial mappings. We consider the Aron-Berner extension for
homogeneous polynomials on Riesz spaces.

In Chapter 4 we first review the Fremlin tensor product for Riesz
spaces and then consider a symmetric Fremlin tensor product. We
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discuss symmetric k-morphisms and define the concept of polymor-
phism. We give several characterizations of k-morphisms in terms of
these polymorphisms. Finally we consider orthosymmetric multilin-
ear mappings.
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A Theoretical Study of Spin Filtering and its Application
to Polarizing Antiprotons

Domhnaill O’Brien
donie@maths.tcd.ie

This is an abstract of the PhD thesis “A theoretical study of spin
filtering and its application to polarizing antiprotons” written by
Domhnaill O’Brien under the supervision of Dr. Nigel Buttimore
at the School of Mathematics, Trinity College Dublin and submitted
in June 2008.

There has been much recent research into possible methods of po-
larizing an antiproton beam, the most promising being spin filtering,
the theoretical understanding of which is currently incomplete. The
method of polarization buildup by spin filtering requires many of the
beam particles to remain within the beam after repeated interaction
with an internal target in a storage ring. Hence small scattering an-
gles, where we show that electromagnetic effects dominate hadronic
effects, are important. All spin-averaged and spin-dependent elec-
tromagnetic cross-sections and spin observables for elastic spin 1/2
- spin 1/2 scattering, for both point-like particles and non-point-
like particles with internal structure defined by electromagnetic form
factors, are derived to first order in QED. Particular attention is
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paid to spin transfer and depolarization cross-sections in antiproton-
proton, antiproton-electron and positron-electron scattering, in the
low | t | region of momentum transfer. A thorough mathematical
treatment of spin filtering is then presented, identifying the key phys-
ical processes involved and highlighting the dynamical properties of
the physical system. We present and solve sets of differential equa-
tions which describe the buildup of polarization by spin filtering in
many different scenarios of interest. The advantages of using a lepton
target are outlined, and finally a proposal to polarize antiprotons by
spin filtering off an opposing polarized electron beam is investigated.



DEPARTMENTAL NEWS

This section contains important news (such as permanent appoint-
ments, retirements, prizes awarded, etc.) as supplied by the Mathe-
matics Departments of Universities in Ireland.

The Editor does not take any responsibility for the accuracy of
the information provided.

University College Cork

Newly appointed to UCC were: Dr Christian Ewald, Senior Lecturer
in Financial Mathematics, since September 2008; Dr Edward Lee,
one-year research contract, since September 2008; Dr Jesse Ratzkin,
one-year research contract, since September 2008.

On the other hand, Professor Brian Twomey retired in May 2008
after many years of service. His retirement was marked by a well-
attended conference on Complex Function Theory held at UCC in
April and supported, in part, by the IMS.

Trinity College Dublin

Dr Rupert Levene was appointed to a J. L. Synge Instructorship at
TCD for 2008–10. Dr Derek Kitson was appointed to a temporary
lectureship. Pietro Giudice, Anton Ilderton, Osvaldo Santillán and
Ryo Suzuki were appointed as postdocs.

Dr Donal O’Donovan was elected Head of the School of Mathe-
matics, following the completion of Professor Samson Shatashvili’s
term as Head. Dr Richard Timoney was promoted to Associate Pro-
fessor while Drs Michael Peardon, John Stalker and Dmitri Zaitsev
became Senior Lecturers.

Profesor Adrian Constantin resigned the Erasmus Smith’s Chair
of Mathematics at TCD (which he held from 2004) to take up a
Chair in Vienna.
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University College Dublin

Professor Tom Laffey (UCD) and Mr Gordon Lessels (UL) were each
presented with a clock by the IMS in November, on the occasion of
the presentation of the Fergus Gaines’ cup, in recognition of their
long and continued work with the Irish Mathematical Olympiad
team.

National University of Ireland Galway

Dr Aisling McCluskey, Mathematics Department, NUI Galway, won
a President’s Award for Excellence in Teaching.

University of Limerick

New postdoctoral researchers in MACSI, UL are: Marguerite Robin-
son, who completed her PhD at UL; Jonathan Ward, who completed
his PhD at the University of Bristol; Joanna Mason, who completed
her PhD at the University of Bristol.
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Optimisation Problems for the Determinant of a Sum
of 3× 3 Matrices

FINBARR HOLLAND

Abstract. Given a pair of positive definite 3 × 3 matrices
A,B, the maximum and minimum values of det(U∗AU +

V ∗BV ) are determined when U, V vary within the collection

of unitary 3× 3 matrices.

1. Introduction

Let m,n be a pair of natural numbers. Suppose A1, A2, . . . , An are
m×m Hermitian positive definite matrices. What are the maximum
and minimum values of the expression

det
( n∑

i=1

U∗
i AiUi

)

as U1, U2, . . . , Un range over the group Gm of m×m unitary matri-
ces? The case m = 2 of this arose in the context of an interesting
maximum-likelihood problem which is discussed in [3], and the min-
imum value was determined there when the given matrices were real
and symmetric, and the Us members of the subgroup of G2 of or-
thogonal matrices.

In this note we address the above problem only in the case m = 3,
and resolve it when n = 2. However, the methods used here don’t
appear to generalise to the case of general m, even when n = 2. Ac-
cordingly, a different strategy has been devised to deal with this more
general case, which will be the subject of another paper. However,
at the time of writing, the general case of arbitrary m,n remains
open.

2000 Mathematics Subject Classification. Primary 15A45.
Key words and phrases. Positive definite matrices, unitary matrices, doubly-

stochastic matrices, extreme points, rearrangement inequality.
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2. Statement of the Main Result

Theorem 1. Let S and T be two 3× 3 positive definite matrices
with spectra σ(S) = {s1, s2, s3} and σ(T ) = {t1, t2, t3}, respectively,
where s1 ≥ s2 ≥ s3 > 0 and t1 ≥ t2 ≥ t3 > 0. Then

min{det(S + U∗TU) : U ∈ G3} =

3∏

i=1

(si + ti),

and

max{det(S + U∗TU) : U ∈ G3} =
3∏

i=1

(si + t4−i).

3. Two Preparatory Lemmas

Lemma 1. Let A = [aij ] be a 3× 3 matrix. Let

M =




x+ a11 a12 a13
a21 y + a22 a23
a31 a32 z + a33


 .

Then
detM = xyz+ yza11+ zxa22+xya33+xA11+ yA22+ zA33+detA.

Proof. Here and later, we use the customary notation Aij for the co-
factor of the typical element aij , so that, in particular, A11, A22, A33

are the principal minors of A of order 2× 2. Expanding by elements
of the first row,

detM = (x+ a11)[(y + a22)(z + a33)− a23a32]

− a12[a21(z + a33)− a31a23] + a13[a21a32 − a31(y + a22)]

= (x+ a11)(y + a22)(z + a33)−[xa23a32 + ya13a31 + za12a21]

− a11a23a32 − a12[a21a33 − a31a23] + a13[a21a32 − a31a22]

= (x+ a11)(y + a22)(z + a33)− a11a23a32

− [xa23a32 + ya13a31 + za12a21]− a12A12 + a13A13

= xyz + xya33 + yza22 + zxa11 + x[a22a33 − a23a32]

+ y[a11a33 − a13a31] + z[a11a22 − a12a21]

+ a11A11 − a12A12 + a13A13

= xyz+xya33 + yza22 + zxa11 +xA11 + yA22 + zA33+ detA.

�
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We wish to exploit this result when A = U∗TU , where T is a
diagonal matrix with positive diagonal elements p ≥ q ≥ r > 0, and
U = [uij ] is unitary. A calculation shows that

aij = pui1uj1 + qui2uj2 + rui3uj3, i, j = 1, 2, 3.

In particular,

aii = p|ui1|2 + q|ui2|2 + r|ui3|2, i = 1, 2, 3.

In addition, A is invertible andA−1 = U∗T−1U = (detA)−1[Aij ]
t,

whence

Aii

pqr
= p−1|ui1|2 + q−1|ui2|2 + r−1|ui3|2, i = 1, 2, 3,

or

Aii = qr|ui1|2 + rp|ui2|2 + pq|ui3|2, i = 1, 2, 3.

Observe too that

3∑

i=1

|uij |2 =
3∑

j=1

|uij |2 = 1, i, j = 1, 2, 3,

and so the matrix [|uij |2] is doubly-stochastic. With this in mind we
prove a rearrangement inequality.

Lemma 2. Let [pij ] stand for an arbitrary n × n doubly-stochastic
matrix. Let a, b be two real n × 1 vectors whose entries are in de-
creasing order. Then

n∑

i=1

aibn−i+1 ≤
n∑

i,j=1

aibjpij ≤
n∑

i=1

aibi.

Proof. Consider the function f defined on the convex set P of all
n× n doubly-stochastic matrices P = [pij ] by

f(P ) =
n∑

i,j=1

aibjpij , P ∈ P.

Clearly, f is linear in P , and so convex on P. Hence it attains its
maximum and minimum at an extreme point of P. But, by Birkhoff’s
theorem [1], the set of extreme points of the latter consists of the
set of permutation matrices {π(I) = [δiπ(j)] : π ∈ Sn}, where Sn
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denotes the group of permutations of {1, 2, . . . , n}. Hence

min{f(P ) : P ∈ P} = min{f(π(I)) : π ∈ Sn}

= min{
n∑

i,j=1

aibjδiπ(j) : π ∈ Sn}

= min{
n∑

j=1

aπ(j)bj : π ∈ Sn}

=
n∑

j=1

ajbn−j+1,

by the elementary rearrangement inequality, since a, b are similarly
ordered [2]. This argument establishes that

n∑

i=1

aibn−i+1 ≤
n∑

i,j=1

aibjpij ,

with equality when pij = δi(n−j+1), i, j = 1, 2, . . . , n,.
The maximum can be handled in the same way. �

4. Proof of the Main Result

Define F on the group G3 of 3× 3 unitary matrices by

F (U) = det(S + U∗TU), U ∈ G3.

In the first place, there are matrices V,W ∈ G3 such that

S = V




s1 0 0
0 s2 0
0 0 s3


V ∗ ≡ V∆V ∗,

and

T = W




t1 0 0
0 t2 0
0 0 t3


W ∗ ≡ WΛW ∗,

say. Hence

F (WUV ∗) = det(∆ + U∗ΛU),

whence it’s enough to deal with the case where S = ∆, T = Λ. This
being so, we can appeal to Lemma 1, taking

A = U∗∆U =
[ 3∑

k=1

tkuikujk

]
,
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and obtain that

det(∆+U∗ΛU) = det(∆ +A)

= s1s2s3 + s1s2s3

3∑

k=1

s−1
k akk +

3∑

k=1

skAkk + detA

= s1s2s3 + s1s2s3

3∑

i=1

s−1
i

3∑

j=1

tj |uij |2

+ t1t2t3

3∑

i=1

si

3∑

j=1

t−1
j |uij |2 + t1t2t3

= s1s2s3 + s1s2s3

3∑

i,j=1

s−1
i tj |uij |2

+ t1t2t3

3∑

i,j=1

sit
−1
j |uij |2 + t1t2t3

≥ s1s2s3+s1s2s3

3∑

i=1

s−1
i ti+ t1t2t3

3∑

i=1

sit
−1
i + t1t2t3,

by Lemma 2, since s1, s2, s3, and t−1
1 , t−1

2 , t−1
3 are oppositely ordered.

It follows that

det(∆ + U∗ΛU) ≥ s1s2s3 + t1s2s3 + t2s1s3 + t3s1s2

+ s1t2t2 + t2s1s3 + t3s1s2 + t1t2t3

= (s1 + t1)(s2 + t2)(s3 + t3),

with equality when U = I, the identity matrix. Hence

min{F (U) : U ∈ G3} =
3∏

i=1

(si + ti).

Arguing in a similar manner, it can be seen that

max{F (U) : U ∈ G3} =

3∏

i=1

(si + t4−i).

This completes the proof of Theorem 1.
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Hermitian Morita Theory:
a Matrix Approach

DAVID W. LEWIS AND THOMAS UNGER

Abstract. In this note an explicit matrix description of her-

mitian Morita theory is presented.

1. Introduction

Let K be a field of characteristic different from two and let A be a
central simple K-algebra equipped with an involution ∗. By a well-
known theorem of Wedderburn, A is of the formMn(D), a full matrix
algebra over a division K-algebra D. Furthermore, there exists an
involution—on D of the same kind as ∗ such that ∗ and—have the
same restriction to K. Then ∗ is the adjoint involution adh0

of some
nonsingular ε0-hermitian form h0 over (D,−),

h0 : Dn ×Dn −→ D,

with ε0 = ±1. Thus

X∗ = adh0
(X) = SX

t
S−1, ∀X ∈ Mn(D),

where S ∈ GLn(D) is the matrix of h0, so that S
t
= ε0S.

Let Grε(A, ∗) and Wε(A, ∗) denote the Grothendieck group and
Witt group of ε-hermitian forms over (A, ∗), respectively. Hermitian
Morita theory furnishes us with isomorphisms

Grε(A, ∗) ∼= Grε0ε(D,−) and Wε(A, ∗) ∼= Wε0ε(D,−).

These isomorphisms are the result of the following equivalences of
categories



ε-hermitian
forms over
(Mn(D), ∗)





ooscaling //




ε0ε-hermitian
forms over
(Mn(D),−t)





oo Morita

equivalence
//




ε0ε-hermitian
forms over
(D,−)
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(all forms are assumed to be nonsingular) which respect isometries,
orthogonal sums and hyperbolic forms.

In this note we describe these correspondences explicitly. In par-
ticular we give a matrix description of Morita equivalence which does
not seem to be generally known. Other explicit descriptions can be
found in [3, 4, 5]. The subject is often treated in a more abstract
manner, such as in [1] and [2, Chap. I, §9].

2. Scaling

Let M be a right Mn(D)-module and let h : M ×M −→ Mn(D) be
an ε-hermitian form with respect to ∗, i.e.

h(y, x) = εh(x, y)∗ = εSh(x, y)
t
S−1.

Proposition 2.1. The form

S−1h : M ×M −→ Mn(D), (x, y) 7−→ S−1h(x, y)

is ε0ε-hermitian over (Mn(D),−t).

Proof. Sesquilinearity of S−1h with respect to −t follows easily from
sesquilinearity of h with respect to ∗:

(S−1h)(xα, y) = S−1h(xα, y) = S−1α∗h(x, y)

= S−1SαtS−1h(x, y) = αtS−1h(x, y)

for any α ∈ Mn(D) and any x, y ∈ M .

Furthermore, using the fact that S
t
= ε0S, we get

(S−1h)(y, x) = S−1h(y, x)

= S−1εSh(x, y)
t
S−1

= εh(x, y)
t
S−1

= εε0h(x, y)
t
(S−1)

t

= εε0(S−1h)(x, y)
t

for any x, y ∈ M .

Remark 2.2. By the first part of the proof, scaling of a sesquilinear
form h (rather than an ε-hermitian form h) with respect to ∗ results
in a sesquilinear form S−1h with respect to −t.
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Remark 2.3. The matrix S is not determined uniquely, but only
up to scalar multiplication by λ ∈ K, since λS and S give the same
involution adh0

. Hence the scaling correspondence is not canonical.

3. Morita Equivalence

Every module over Mn(D) ∼= EndD(Dn) is a direct sum of simple
modules, namely copies of Dn. Let (Dn)k be such a module. We
identify (Dn)k with Dk×n, the k×n-matrices over D. We view each
row of a k×n-matrix over D as an element of Dn. Note that Mn(D)
acts on Dk×n on the right.

Now let
h : Dk×n ×Dk×n −→ Mn(D)

be an ε-hermitian form over (Mn(D),−t).

Proposition 3.1. There exists an ε-hermitian k × k-matrix B ∈
Mk(D) such that

h(x, y) = xtBy, ∀x, y ∈ Dk×n. (1)

Proof. Let B = (bij). We will determine the entries bij . Let eij ∈
Dk×n, e′ij ∈ Dn×k and Eij ∈ Mn(D) respectively denote the k × n-
matrix, the n×k-matrix and the n×n-matrix with 1 in the (i, j)-th
position and zeroes everywhere else. One can easily verify that

eifEf` = ei`, (2)

where 1 ≤ i ≤ k and 1 ≤ f, ` ≤ n. Also note that if C ∈ Mn(D),
then computing the product EijC picks the j-th row of C and puts
it in row i while making all other entries zero. Similarly, computing
the product CEij picks the i-th column of C and puts it in column j
while making all other entries zero. The matrices eij and e′ij behave
in a similar fashion.

The matrices {eij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} generate Dk×n as a
right Mn(D)-module. Thus it suffices to compute h(eif , ejg) where
1 ≤ i, j ≤ k and 1 ≤ f, g ≤ n. Let us first compute h(eii, ejj):

h(eii, ejj) = h(eiiEii, ejjEjj)

= Eiih(eii, ejj)Ejj

= mijEij ,

where mij is the (i, j)-th entry of h(eii, ejj) ∈ Mn(D). In other
words, the matrix h(eii, ejj) has only one non-zero entry, namely
mij in position (i, j).
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Next, let us compute h(eif , ejg). We will use the fact that

eif = eiiEif ,

where 1 ≤ i ≤ k and 1 ≤ f ≤ n, which follows from (2). We get

h(eif , ejg) = h(eiiEif , ejjEjg)

= Efih(eii, ejj)Ejg

=
(
h(eii, ejj)

)
ij
Efg

= mijEfg.

Let bij = mij where 1 ≤ i, j ≤ k. We have

eif
tBejg = e′fiBejg

= bijEfg

= mijEfg.

Therefore, h(eif , ejg) = eif
tBejg where 1 ≤ i, j ≤ k and 1 ≤ f, g ≤

n, which establishes (1).
Finally,

mjiEji = h(ejj , eii) = εh(eii, ejj)
t
= εmijEji, for 1 ≤ i, j ≤ k,

which implies mji = εmij , for 1 ≤ i, j ≤ k. In other words, mji =

εmij , for 1 ≤ i, j ≤ k, so that B
t
= εB, which finishes the proof.

So, given an ε-hermitian form h over (Mn(D),−t), we have ob-
tained an ε-hermitian form over (D,−) with matrix B as in Propo-
sition 3.1. Conversely, given an ε-hermitian form

ϕ : Dk ×Dk −→ D,

represented by the matrix B (i.e., B =
(
ϕ(ei, ej)

)
for a D-basis {ei}

of Dk), we define

h : Dk×n ×Dk×n −→ Mn(D)

by

h(x, y) := xtBy, ∀x, y ∈ Dk×n,

which gives an ε-hermitian form over (Mn(D),−t).

Remark 3.2. The correspondence h ↔ ϕ already works for forms
that are just sesquilinear, without assuming any hermitian symme-
try. Since scaling also preserves sesquilinearity, as remarked earlier,
we conclude that the category equivalences of §1 already hold for
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sesquilinear forms over (Mn(D), ∗), (Mn(D),−t) and (D,−), respec-
tively.
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Recent Trends on Order Bounded Disjointness
Preserving Operators 1

KARIM BOULABIAR

1. Introduction

Disjointness preserving operators have been introduced in some form
or other in the forty’s. Indeed, linear multiplicative operations in the
work [55] by Vulikh are disjointness preserving operators in disguise.
However, only during the last decades have they made a formal entry
into the development of vector lattices. A first systematic study of
disjointness preserving operators goes back to the pioneering note [4]
by Abramovich, Veksler, and Koldunov published in the end of the
seventies. From then on, the interest in disjointness preserving oper-
ators has steadily grown and a series of works devoted to the subject
appeared in the literature. In this regard, spectral properties of order
bounded disjointness preserving operators were considered in great
details in [8, 30]. On the other hand, invertible disjointness preserv-
ing operators occupied a prominent role in a vast literature, such as
[7, 20, 33, 35] and mainly the remarkable memoir [3] by Abramovich
and Kitover. One of the external reasons for the continuing inter-
est in disjointness preserving operators is the fact that precisely the
order bounded disjointness preserving operators allow multiplicative
representations as weighted composition operators and, more gen-
erally, polar decompositions [2, 19, 28, 39]. They thus found appli-
cations in the theory of singular and integral equation, dynamical
system, and differential equations with delayed time [38, 46, 51].

The present survey on order bounded disjointness preserving oper-
ators has two main objectives. First, convince the young researchers
in vector lattices that disjointness preserving operators constitute
an honorable research activity. Secondly, inform the experts about

1Most of the content of this survey was presented by the author in the In-
structional Workshop organized by Professor Anthony Wickstead in the summer

of 2008 at Queen’s University Belfast.
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results on the subject obtained recently by the author. In fact, this
is a study of modest length—selectivity is a must—with the choices
of illustrations being left, for good or ill, to personal taste and preju-
dices. In this prospect, no attention has been paid to aspects of order
bounded disjointness preserving operators evoked in the preceding
paragraph, except of their representations as weighted composition
operators.

The exposition is divided in six sections. This introduction is
followed by a section dealing with what is considered today as the
most important result in the theory of order bounded disjointness
preserving operators, namely, Meyer’s Theorem [43]. In the third
section, order bounded disjointness preserving operators on certain
spaces of continuous functions are characterized. In this prospect,
some results are presumably known. However, the author has not
been able to locate precise references for them. For this reason,
complete proofs will be given. The fourth section contains extensions
of results in Section 3 to the more general setting of functions algebra
in the sense of Birkhoff and Pierce [15]. Section 5 gives a look at
disjointness preserving operators from a different ‘global’ point of
view. Indeed, the lattice structure of certain sets of order bounded
operators preserving disjointness are investigated and facts on the so-
called orthomorphisms are extended to such sets. Some results in this
section are new and they will be proved completely. The last section
concerns algebraic (in the sense of Kaplansky [37]) order bounded
disjointness preserving operators. To be a little more precise, we
focus on order bounded disjointness preserving operators that satisfy
a nontrivial polynomial equation. At last, we point out that this
survey contains some open problems. The hope of the author is that
the reader will find them rather worthy of interest.

The books [1, 6, 41, 45, 59] on the theory of vector lattices and
operators between them are used in this survey as the sources of
unexplained terminology and notation.

2. Meyer’s Theorem

Unless otherwise stated, L and M stand throughout for Archime-
dean vector lattices. A (linear) operator T from L into M is said to
be disjointness preserving (or to preserve disjointness) if

f, g ∈ L and |f | ∧ |g| = 0 in L imply |T (f)| ∧ |T (g)| = 0 in M.



Order Bounded Disjointness Preserving Operators 45

It is not hard to see that the operator T from L into M preserves
disjointness if and only if |T (f)| ∧ |T (g)| = 0 for all f, g ∈ L with
f ∧ g = 0. Also, |T (f)| = |T (|f |)| for all f ∈ L is a necessary and
sufficient condition for the operator T from L into M in order to be
disjointness preserving. Obviously, the operator T from L into M
is a lattice homomorphism if and only if T is a positive disjointness
preserving operator. As mentioned in the title, this survey will deal
with disjointness preserving operators that are order bounded. It
should be pointed out here that a disjointness preserving operator
need not be order bounded. An example in this direction is given
next.

Example 2.1. A real-valued function f defined on the real interval
[0,∞) is said to be essentially polynomial if there exist a real polyno-
mial pf and a real number λf with f (x) = pf (x) for all x ∈ [λf ,∞).
The set L of all essentially polynomial functions on [0,∞) is an
Archimedean vector lattice with respect to the usual pointwise op-
erations and ordering. The operator T from L into the vector lattice
R of all real numbers defined by Tf = pf (0) for all f ∈ L preserves
disjointness but is not order bounded.

At this point, recall that the set L (L,M) of all operators from
L into M is an Archimedean ordered vector space with respect to
the usual pointwise operation and ordering. The set Lb (L,M) of all
order bounded operators from L intoM is an ordered vector subspace
of L (L,M). It is well-known that L (L,M) is not a vector lattice,
in general. In this regard, even an order bounded operator from L
into M need not have an absolute value nor in L (L,M) neither in
Lb (L,M). In spite of that, Lb (L,M) is a Dedekind complete lattice-
subspace [1] of L (L,M) as soon asM in addition Dedekind complete.
This leads us to the what is considered today as the fundamental
theorem of order bounded disjointness preserving operators, namely,
the following very famous Meyer’s Theorem.

Theorem 2.2. Let T be an order bounded disjointness preserving
operator from L into M . Then there exist unique lattice homomor-
phisms T+, T− from L into M such that T = T+ − T− and

T+ (f) = (T (f))
+
, T− (f) = (T (f))

−
for all f ∈ L+.

In particular, T has an absolute value |T | in L (L,M) and |T | =
T+ + T−. Moreover, |T | is a lattice homomorphism from L into M
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such that

|T | (|f |) = |T (f)| = ||T | (f)| for all f ∈ L.

The first proof of the Theorem 2.2 was given in [43] by Meyer
himself. Meyer’s proof is not constructive, that is, it is based upon
the Zorn’s Lemma (i.e., the Axiom of Choice). Later, two Zorn’s
Lemma free proofs of Theorem 2.2 were provided by Bernau in [12]
and de Pagter in [47], respectively.

Meyer’s Theorem is in many ways the starting point of our in-
vestigation of order bounded disjointness preserving operators. Let
us collect some consequences. First of all, it is readily verified that
the kernel kerT of a lattice homomorphism T from L into M is
an order ideal of L. Theorem 2.2 yields directly that if T is an
order bounded disjointness preserving operator from L into M then
kerT = ker |T |. So, the kernel of any order bounded disjointness pre-
serving linear operator is again an order ideal. However, contrary
to lattice homomorphisms, the range ImT of the order bounded dis-
jointness preserving linear operator T from L into M need not be
a vector sublattice of M . To see this, consider the order bounded
disjointness preserving operator from the Archimedean vector lattice
C ([0, 1]) of all real-valued continuous functions on the real interval
[0, 1] into itself defined by (T (f)) (x) = xf (x) for all f ∈ C ([0, 1])
and x ∈ [0, 1]. Another nice application of Meyer’s Theorem was
obtained by Huijsmans and Wickstead in [34]. That is, if T is a
bijective order bounded disjointness preserving operator from L into
M , then the inverse T−1 is an order bounded disjointness preserv-
ing operator from M into L. Moreover, the equality |T |−1

=
∣∣T−1

∣∣
holds in L (M,L). In [8], Arendt proved that if L and M are Banach
lattices then an operator T from L into M is an order bounded dis-
jointness preserving operator if and only if |T (f)| ≤ |T (g)| holds in
M whenever |f | ≤ |g| holds in L. Relying on Meyer’s Theorem, [33]
Huijsmans and de Pagter extended the characterization obtained by
Arendt to arbitrary Archimedean vector lattices. This result is in-
teresting in part because it gives one equivalent condition to both or-
der boundedness and disjointness preservation. Since we are evoking
Arendt and his work [8], we point out that he called order bounded
disjointness preserving operators shortly Lamperti operators.

Now, we shift our emphasis from the general case to the particular
setting of band preserving operators. Let T be an operator on L
(i.e., from L into L) and recall that a nonvoid subset D of L is
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said to be T -invariant whenever T maps D into D. An operator T
on L is said to be band preserving if every band of L is T -invariant.
Hence, the operator T on L is band preserving if and only if |T (f)|∧
|g| = 0 for all f, g ∈ L with |f | ∧ |g| = 0. Obviously, if any band
preserving operator on L preserves disjointness. This implication is
not reversible, of course. On the other hand, the following example
(obtained by Meyer in [44]) shows that a band preserving operators
need not be order bounded.

Example 2.3. The set PL ([0, 1)) of all piecewise linear functions
on [0, 1) is an Archimedean vector lattice with respect to the usual
pointwise operations and ordering. Notice here that f ∈ PL ([0, 1)) if
and only if there exists a partition 0 = x0 < x1 < ... < xn−1 < xn =
1 of [0, 1) such that f is linear on [xi−1, xi) for each i ∈ {1, ..., n}.
The band preserving operator T on PL ([0, 1)) defined by

T (f) (x) = f ′
r (x) for all f ∈ PL ([0, 1)) and x ∈ [0, 1) ,

where f ′
r indicates the right derivative of f , is not order bounded.

Only order bounded band preserving operators will be considered
in this study. In this prospect, an order bounded band preserving
operator T on L is called an orthomorphism on L. Obviously, the
identity operator IL on L is an orthomorphism on L. Moreover,
the set Orth (L) of all orthomorphisms on L is an ordered vector
subspace of L (L) = L (L,L). Actually, Orth (L) is much more than a
simple ordered vector subspace of L (L). Indeed, Bigard and Keimel
in [14] and, independently, Conrad and Diem in [24] proved that
Orth (L) is a generalized vector sublattice (in the sense of [5]) of
L (L) with the lattice operations given pointwise, meaning that, if
S, T ∈ Orth (L) then (S ∨ T ) (f) = S (f) ∨ T (f) and (S ∧ T ) (f) =
S (f) ∧ T (f) for all f ∈ L+. In particular, if T ∈ Orth (L) then
the absolute value |T | exists and |T | (|f |) = |T (f)| = ||T | (f)| for all
f ∈ L. The latter can be obtained alternatively from Theorem 2.2
since T in particular preserves disjointness.

3. Concrete Situations

By and large, the notation and terminology of the great text [27] by
Gillman and Jerison will be used in this section unless it conflicts
with the by now standard notation used by workers in vector lattices.
In particular, RX will indicate the universally complete [6] vector lat-
tice of all real-valued functions on a nonvoid set X under the usual
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pointwise addition, scalar multiplication, and ordering. Moreover,
the constant function on X whose constant value is the real number
r is denoted by rX . Furthermore, if X is a topological space then
C (X) denoted the (relatively) uniformly complete [41] vector sub-
lattice of RX of all continuous functions on X. The main objective of
this section is to characterize order bounded disjointness preserving
operators on C (X)-type vector lattices under suitable restrictions
on X.

A topological space is called a Tychonoff space if it is a subspace
of a compact Hausdorff space. In [54], Tychonoff himself proved that
the topological space X is Tychonoff if and only if X is Hausdorff
and completely regular, that is, whenever F is a closed set in X and
xF ∈ X with xF /∈ F , there exists f ∈ C (X) such that f (xF ) = 0
and f (x) = 1 for all x ∈ F . It was known to both Stone [53] and
Čech [25] that for each topological space X, there is a Tychonoff
space X∗ such that C (X) and C (X∗) are isomorphic as vector lat-
tices. In fact, X∗ is obtained by first identifying those points which
cannot be separated by continuous functions, inducing the functions
of C (X) on X∗ in the obvious manner, and then furnishing X∗ with
the weakest topology in which these functions are continuous (see
Theorem 3.9 in [27] for more details). This observation eliminates
any reason for considering vector lattices of real-valued continuous
functions on other than Tychonoff spaces. Therefore, it will be as-
sumed henceforth that X is a Tychonoff space unless the contrary is
stated explicitly.

Hewitt’s great paper [32] built on the aforementioned works of
Stone and Čech and laid the foundation for the study of the inter-
play between C (X) and X. In today’s terminology the Tychonoff
space X is said to be realcompact if there is no strictly large Ty-
chonoff space Y such that X is dense in Y and every f ∈ C (X)
has an extension in C (Y ). Actually, Hewitt in [32] used the termi-
nology Q-space instead of realcompact space and proved that X is
realcompact if and only if it is homeomorphic to a closed subspace
of a product of real lines equipped with the usual product topology.
This characterization is often used as a definition of realcompact
spaces. Later, Shirota [52] showed that X is realcompact if and only
if to each algebra homomorphism ϕ from C (X) onto the real field
R there corresponds a point x of X such that ϕ (f) = f (x) for all
f ∈ C (X). This remarkable necessary and sufficient condition for
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a Tychonoff space to be realcompact was obtained very recently by
Ercan and Önal [26] via an elementary approach. These observa-
tions will be used next to obtain an alternative characterization of
realcompact spaces which is a little more fit for our study.

Lemma 3.1. Let X be a Tychonoff space X. Then the following
are equivalent.

(i) X is realcompact
(ii) To each lattice homomorphism ϕ from C (X) onto R with

ϕ (1X) = 1 there corresponds a point x of X such that
ϕ (f) = f (x) for all f ∈ C (X).

Proof. By the above Shirota’s result, it suffices to prove that if ϕ
is a mapping of C (X) to R with ϕ (1X) = 1, then ϕ is a lattice
homomorphism if and only if ϕ is an algebra homomorphism. So, let
ϕ be such a mapping and assume ϕ to be an algebra homomorphism.
If f ∈ C (X) then

0 ≤
(
ϕ
(
|f |1/2

))2

= ϕ (|f |) =
(
ϕ
(
f2

))1/2
=

(
(ϕf)

2
)1/2

= |ϕ (f)| .
It follows that ϕ is a lattice homomorphism. Conversely, suppose
that ϕ is a lattice homomorphism and let f, h ∈ C (X) such that
ϕ (h) = 0. For every ε ∈ (0,∞), the inequalities 0X ≤ |fh| ≤
ε
∣∣f2h

∣∣+ ε−1 |h| hold in C (X). Thus,

0 ≤ |ϕ (fh)| ≤ εϕ
(∣∣f2h

∣∣)+ ε−1ϕ (|h|) = εϕ
(∣∣f2h

∣∣) .
As ε is arbitrary in (0,∞), we get ϕ (fh) = 0. We derive that if
g ∈ C (X) then ϕ (g − ϕ (g)1X) = 0. Therefore,

ϕ (fg) = ϕ (fg)− ϕ ((g − ϕ (g)1X) f) = ϕ (f)ϕ (g) .

So, ϕ is an algebra homomorphism and we are done. �
From now on, Y stands for an arbitrary topological space. The

cozero-set of a function w ∈ C (Y ) is the set

coz (w) = {y ∈ Y : w (y) 6= 0}
Now, let w ∈ C (Y ) and τ be a function of Y toX which is continuous
on coz (w). It is readily verified that the mapping T from C (X) into
C (Y ) defined by

T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y

is an order bounded disjointness preserving operator. Such a map-
ping is usually called a weighted composition operator. Next, we
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discuss the question whether this implication is reversible. Surpris-
ingly, this question has an affirmative answer if X in addition is
realcompact.

Theorem 3.2. Let T be a mapping of C (X) to C (Y ) and assume
X to be realcompact. Then the following are equivalent.

(i) T is an order bounded disjointness preserving operator.
(ii) There exists w ∈ C (Y ) and a function τ of Y into X such

that τ is continuous on coz (w) and

T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y.

Proof. Only necessity will be proved. Let T be an order bounded
disjointness preserving operator from C (X) into C (Y ). Hence T+ is
a lattice homomorphism from C (X) into C (Y ) (see Theorem 2.2).
Put w+ = T+ (1X) and define for each f ∈ C (X) the function
S (f) ∈ C (coz (w+)) by

S (f) (y) =
T+ (f) (y)

w+ (y)
for all y ∈ coz (w+) .

The mapping S thus defined from C (X) into C (coz (w+)) is linear,
obviously. Moreover, if y ∈ coz (w+) then

(δy ◦ S) |f | = S (|f |) (y) = T+ (|f |) (y)
w+ (y)

=
|T+ (f) (y)|

w+ (y)
= |S (f) (y)| = |(δy ◦ S) f | .

Hence, δy ◦ S is a lattice homomorphism from C (X) onto R with
(δy ◦ S) (1X) = 1. Lemma 3.1 yields that a point xy of X can be
found so that

S (f) (y) = (δy ◦ S) (f) = f (xy) for all f ∈ C (X) .

Let τ+ be the mapping of coz (w+) to X defined by τ+ (y) = xy for
all y ∈ coz (w+). By Theorem 3.8 in [27], τ+ is continuous. We get
also

T+ (f) (y) = w+ (y) (f ◦ τ+) (y) for all f ∈ C (X) , y ∈ coz (w+) .

On the other hand, let f ∈ C (X) and y ∈ Y such that T+ (1X) (y) =
0. Also, let ε ∈ (0,∞) and observe that

0X ≤ |f | ≤ |f | ∧ ε1X + ε−1f2.
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Therefore,

0 ≤
∣∣T+ (f) (y)

∣∣
≤

∣∣T+ (f) (y)
∣∣ ∧ εT+ (1X) (y) + ε−1T+

(
f2

)
(y)

= ε−1T+
(
f2

)
(y) .

So, (T+ (f)) (y) = 0 because ε is arbitrary in (0,∞). Now, choose an
arbitrary extension of τ+ to Y and denote such an extension again
by τ+. We derive directly that

(
T+ (f)

)
(y) = w+ (y) f (τ+ (y)) for all f ∈ C (X) and y ∈ Y.

Analogously, if w− = T− (1X) then we may find a function τ− of Y
into X such that τ− is continuous on coz (w−) and

T− (f) (y) = w− (y) f (τ− (y)) for all f ∈ C (X) and y ∈ Y.

Observe now that

w+ ∧ w− = T+ (1X) ∧ T− (1X) = (T (1X))
+ ∧ (T (1X))

−
= 0X

(where we use once more Theorem 2.2). But then

coz (w+) ∩ coz (w−) = ∅ and coz (w+) ∪ coz (w−) = coz (w) ,

where w = w+−w− ∈ C(Y ). Choose a function τ of Y to X so that

τ (y) = τ+ (y) if y ∈ coz (w+) and τ (y) = τ− (y) if y ∈ coz (w−) .

Since T = T+ − T−, we derive that

T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y

and we are done. �

Next, we shall say a few words to see that the condition of realcom-
pactness imposed on the Tychonoff space X in Theorem 3.2 is close
to being the best possible for order bounded disjointness preserv-
ing operators from C (X) into C (Y ) to be automatically weighted
composition operators. Indeed, assume that RC(X) is endowed with
the usual product topology. The mapping π of X to RC(X) defined
by π (x) (f) = f (x) for all x ∈ X and f ∈ C (X)sends X homeo-
morphically to π (X) = {π (x) : x ∈ X} (see [27]). Let υX denote
the closure of π (X) in RC(X). Hence, υX is the unique (up to a
homeomorphism leaving X pointwise fixed) realcompact topological
space such that X is dense in υX and every function f ∈ C (X)
has a unique extension fυ ∈ C (υX). The realcompact space υX is
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referred to as the realcompactification of X (see again [27]). More-
over, the mapping υ of C (X) to C (υX) defined by υ (f) = fυ for
all f ∈ C (X) is a lattice isomorphism as it was observed by Shirota
in [52] and Henriksen [31].

At this point, assume that X and Y are both locally compact
(and then Tychonoff). Recall that the set C0 (X) (C∞ (X) in the
book [27]) of all real-valued continuous functions on X vanishing at
infinity is a vector sublattice of RX . Meyer-Nieberg proved in [45]
that a mapping T of C0 (X) to C0 (Y ) is a lattice homomorphism
if and only if there exist a positive (real-valued) function w on Y
which is continuous on coz (w) and a continuous function τ of coz (w)
to X such that, if f ∈ C0 (X), then T (f) (y) = w (y) f (τ (y)) if
y ∈ coz (w) and T (f) (y) = 0 of y /∈ coz (w). In view of Theorem
2.2, a same argument as previously used in the end of the proof of
Theorem 3.2 leads straightforwardly to the following result.

Theorem 3.3. Assume that X and Y are locally compact and let T
be a mapping of C0 (X) to C0 (Y ). Then the following are equivalent.

(i) T is an order bounded disjointness preserving operator.
(ii) There exist a real-valued function w on Y which is continu-

ous on coz (w) and a continuous function τ of coz (w) to X
such that, if f ∈ C0 (X), then

T (f) (y) =





w (y) f (τ (y)) if y ∈ coz (w)

0 if y /∈ coz (w) .

At last, it should be pointed out that Theorem 3.3 was obtained
in an alternative way by Jeang and Wong in [36]. Also, notice that
Theorem 3.2 and Theorem 3.3 have the same compact version. Such
a version has been obtained earlier by Arendt in [8] (see [35] by
Jarosz for a different approach). In this regard, one might hope that
Theorem 3.3 can be obtained from its compact version by extending
the order bounded disjointness preserving operator T from C0 (X)
into C0 (Y ) to an order bounded disjointness preserving operator Tα

from C (αX) into C (αY ), where αX denotes the one-point compact-
ification of X (see [27]). However, Jeang and Wong provided in [36]
the following example of an order bounded disjointness preserving
operator T from C0 (X) into C0 (Y ) which does not have any such
extension.
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Example 3.4. Let X = [0,∞) and Y = R with the usual topology
and define w, τ from R into R by

w (y) =





1 if y > 2

y − 1 if 0 ≤ y ≤ 2

−1 if y < 0

and τ (y) =





y if y ≥ 0

−y if y < 0.

Let T be the mapping from C0(X) to C0(Y ) defined by T (f)(y) =
w(y fτ(y)) for all f ∈ C(X) and y ∈ Y . Clearly, T is an order
bounded disjointness preserving operator from C0 (X) into C0(Y ).
But no extension T a from C(αX) into C(αY ) of T can be an order
bounded disjointness preserving operator.

4. A Multiplicative Aspect

In this section, we show how can results in Section 3 be extended to
the more general setting of function algebras in the sense of Birkhoff
and Pierce [15]. A vector lattice L which is simultaneously an asso-
ciative algebra such that fg ∈ L+ for all f, g ∈ L+ is called a lattice
ordered algebras (briefly, an `-algebra). In [15], Birkhoff and Pierce
called the `-algebra L a function algebra (shortly, an f -algebra) if
(fh) ∧ g = (hf) ∧ g = 0 for all f, g, h ∈ L+ with f ∧ g = 0. One
of the most classical examples of f -algebras is RX for any nonvoid
set X. Moreover, if X is a topological space, then C (X) is a uni-
formly complete f -subalgebra of RX . In this space, we focus only on
Archimedean f -algebras. The Archimedean f -algebra L with a mul-
tiplicative unity is semiprime, meaning that, 0 is the only nilpotent
element of L. Orthomorphisms on an Archimedean vector lattice L is
an important example of f -algebras. Indeed, the Archimedean vec-
tor lattice Orth (L) is f -algebra with respect to the composition and
the identity operator IL on L is a multiplicative unity in Orth (L).
On the other hand, if L is an Archimedean semiprime f -algebra,
then L can be embedded in Orth (L) as an f -subalgebra. Below,
we shall identify L with an f -subalgebra of Orth (L) without further
ado. The reader is referred to the surveys [22, 23] for more infor-
mation on f -algebras. Also, Chapter 20 in [60] by Zaanen presents
an excellent study of f -algebras based upon the Ph.D. thesis [48] of
de Pagter. Next, we shall describe another important instance of
f -algebras, namely, the f -algebra of all extended orthomorphisms
on an Archimedean vector lattice.
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Let L be an Archimedean vector lattice. Luxemburg and Schep
in [40] defined an order bounded operator T from an order dense
order ideal DT of L into L to be an extended orthomorphism of L
if |f | ∧ |g| = 0 in DT implies |Tf | ∧ |g| = 0 in L. Of course, an ex-
tended orthomorphism T of L is an orthomorphism of L if DT = L.
A natural equivalence relation can be introduced in the set of all
extended orthomorphisms of L as follows. Two extended orthomor-
phisms of L are equivalent whenever they agree on an order dense
order ideal in L or, equivalently, they are equal on the intersection of
their domains. Notice that the intersection of two order dense order
ideals in L is obviously again an order dense order ideal in L. The
set of all equivalence classes of extended orthomorphisms of L is de-
noted by Orth∞ (L). With respect to the pointwise addition, scalar
multiplication, and ordering, Orth∞ (L) is an Archimedean vector
lattice. The lattice operations in the vector lattice Orth∞ (L) are
given pointwise. It turns out that the vector lattice Orth∞ (L) is an
f -algebra under the composition as multiplication. Moreover, since
extended orthomorphisms are order continuous, the set Orth (L) of
all orthomorphisms of L can be embedded naturally in Orth∞ (L)
as an f -subalgebra. Obviously, the identity operator IL of L serves
as a multiplicative unity in Orth∞ (L). All these facts can be found
in the fundamental papers [40] by Luxemburg and Schep and [49] by
de Pagter.

As previously pointed out, this section gives a look at concrete
situations presented in Section 3 from a ‘purely algebraic’ point of
view. In this prospect, some extra observations are needed. Let X
be a realcompact space and Y be a Tychonoff space. It is shown in
Theorem 3.2 that if T is an order bounded disjointness preserving
operator from C (X) into C (Y ) then there exist w ∈ C (Y ) and a
function τ of Y into X which is continuous on coz (w) such that
T (f) (y) = w (y) f (τ (y)) for all f ∈ C (X) and y ∈ Y . The ob-
servation to make here is that if f is in C (X) then the real-valued
function S (f) defined on Y by S (f) (y) = f (τ (y)) for all y ∈ Y need
not be in C (Y ). However, it is readily verified that S (f) is contin-
uous on some dense open set in Y . In other words, S (f) belongs to
Orth∞ (C (Y )). Indeed, Orth∞ (C (Y )) is essentially the algebra of
all continuous functions defined on some dense open set of Y (see
[29] by Hager, [49] by de Pagter, and [57] by Wickstead). Accord-
ingly, the mapping S defined from C (X) into RY by S (f) = f ◦τ for
all f ∈ C (X) is actually a lattice and algebra homomorphism from
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C (X) into Orth∞ (C (Y )). Summarizing, Theorem 3.2 can be stated
algebraically as follows. A mapping T from C (X) into C (Y ) is an
order bounded disjointness preserving operator if and only if there
exist w ∈ C (Y ) and a lattice and algebra homomorphism S from
C (X) into Orth∞ (C (Y )) such that T (f) (y) = w (y) (S (f)) (y) for
all f ∈ C (X) and y ∈ Y . It seems to be natural therefore to ask
whether this ‘algebraic’ version of Theorem 3.2 can be extended to
the more general setting of f -algebras. From now on, A and B stand
for Archimedean semiprime f-algebras with B uniformly complete.

Theorem 4.1. Assume A to have a multiplicative unity and let T
be a mapping from A into B. Then the following are equivalent.

(i) T is an order bounded disjointness preserving operator.
(ii) There exist w ∈ B and a lattice and algebra homomorphism

from A into Orth∞ (B) such that T (f) = wS (f) for all
f ∈ A.

Next, we focus on Theorem 3.3 in which we have seen that if X
and Y are locally compact spaces and T is an order bounded dis-
jointness preserving operator from C0 (X) into C0 (Y ), then there
exist a real-valued function w on Y which is continuous on coz (w)
and a continuous function τ of coz (w) to X such that, if f ∈ C0 (X),
then T (f) (y) = w (y) f (τ (y)) if y ∈ coz (w), and T (f) (y) = 0 if
y /∈ coz (w). In [17], it shown that Cb (Y ) and Orth (C0 (Y )) are
isomorphic as f -algebras. Also, the f -algebras Orth∞ (Cb (Y )) and
Orth∞ (C (Y )) are isomorphic (see again [29, 49, 57]). Hence, the
above result can be stated as follows. A mapping T from C0 (X)
into C0 (Y ) is an order bounded disjointness preserving operator if
and only if there exist w ∈ Orth∞ (Cb (Y )) and a lattice and al-
gebra homomorphism S from C (X) into Orth∞ (Cb (Y )) such that
T (f) (y) = w (y) (S (f)) (y) for all f ∈ C0 (X) and y ∈ Y . This result
holds in f -algebras as we shall see next. First of all, the f -algebra
A is said to be nth-root closed for some nonzero natural number n
if for every g ∈ A+ there exists f ∈ A+ such that fn = g (such an
f is unique since A is assumed to be semiprime). The proof of the
following theorem can be found in the recent survey [23].

Theorem 4.2. Assume that A is nth-root closed for some positive
integer and let T be a mapping from A into B. Then the following
are equivalent.

(i) T is an order bounded disjointness preserving operator.
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(ii) There exist w ∈ Orth∞ (Orth (B)) and a lattice and algebra
homomorphism S from A into Orth∞ (Orth (B)) such that
T (f) = wS (f) for all f ∈ A.

The proof of Theorem 4.2 presented in [23] is based upon a beau-
tiful theorem by Hart [30], namely, if L and M are Archimedean
vector lattices and T is an order bounded disjointness preserving
operator T from L into M , then there exists a lattice and alge-

bra homomorphism T̃ from Orth (L) into Orth (R (T (L))) (where
R (T (L)) is the vector sublattice of M generated by T (L)) such

that T̃ (S) (T (f)) = T (S (f)) for all T ∈ Orth (L) and f ∈ L.We
end this section with an example (see [23]) showing that the condi-
tion imposed on A in Theorem 4.2 cannot be deleted.

Example 4.3. Let A be the f -algebra of the piecewise polynomial
functions on [0, 1] that are 0 at 0. Then the real-valued lattice ho-
momorphism T on A that assigns to a function its right derivative at
0 is not representable as in the main theorem above. Indeed, denote
the identity function on [0, 1] by f . Suppose that T has a represen-
tation as above with S a lattice and algebra homomorphism from
A onto R and α a nonzero real number such that T = αS. Then
S(f) 6= 0, hence S(f2) 6= 0, but T (f2) = 0, a contradiction.

5. A Global Point of View

In this section, we look at disjointness preserving operators from a
certain ‘global’ point of view. Indeed, we focus on the lattice struc-
ture of certain sets of operators preserving disjointness rather that
the behavior of the disjointness preserving operators themselves. We
start our investigation by introducing the notion of disjointness pre-
serving sets. A nonvoid subset D of Lb (L,M) is called a disjointness
preserving set in Lb (L,M) if |S (f)| ∧ |T (g)| = 0 for all S, T ∈ D
and f, g ∈ L with |f | ∧ |g| = 0. Several elementary properties follow
straightforwardly from the definition. Let us single out a few as par-
ticularly worthy. For instance, an order bounded operator T from
L into M preserve disjointness if and only if {T} is a disjointness
preserving set in Lb (L,M). Therefore, any element in a disjoint-
ness preserving set in Lb (L,M) is an order bounded disjointness
preserving operator. Moreover, the non-void subset D of Lb (L,M)
is a disjointness preserving set in Lb (L,M) if and only if each pair
{S, T} of elements of D is a disjointness preserving set in Lb (L,M).
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Thus, if D is a disjointness preserving set in Lb (L,M) then so is
any nonvoid subset of D. However, the next property of disjointness
preserving sets is not so visible at first sight. Indeed, it turns out
that each pair in a disjointness preserving set in Lb (L,M) has a
supremum and an infimum in L (L,M). More details are given in
the following.

Lemma 5.1. Let D be a disjointness preserving set in Lb (L,M).
Then each pair {S, T} of elements of D has a supremum S ∨ T and
a infimum S ∧ T in L (L,M) such that

(S ∨ T ) (f) = S (f) ∨ T (f) and (S ∧ T ) (f) = S (f) ∧ T (f)

for all f ∈ L+.

Proof. Let S, T ∈ D and f, g ∈ L such that |f | ∧ |g| = 0. Since D
is a disjointness preserving set in Lb (L,M), the sets {S (f) , T (f)}
and {S (g) , T (g)} are disjoint. Hence,

0 ≤ |S (f)− T (f)| ∧ |S (g)− T (g)| = 0

So, the difference S − T is an order bounded disjointness preserving
operator from L into M . By Theorem 2.2, S − T has an absolute
value |S − T | in the ordered vector space L (L,M) such that

|S − T | (f) = |S (f)− T (f)| for all f ∈ L+.

This yields quickly that the pair {S, T} has a least upper bound
S ∨ T and a great lower bound S ∧ T in L (L,M) given by

S ∨ T =
1

2
(S + T + |S − T |) and S ∧ T =

1

2
(S + T − |S − T |) .

Now, we prove that these supremum and infimum are given point-
wise. On the other hand, if f ∈ L+ then

(S ∨ T ) (f) =

(
1

2
(S + T + |S − T |)

)
(f)

=
1

2
(S (f) + T (f) + |S − T | (f))

=
1

2
(S (f) + T (f) + |S (f)− T (f)|) = S (f) ∨ T (f) .

The formula

(S ∧ T ) (f) = S (f) ∧ T (f) for all f ∈ L+

is obtained in the same way completing the proof of the lemma. �
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Now, let S, T be order bounded disjointness preserving operators
from L into M . A short’s moment thought (see the first lines of the
previous proof) reveals that if {S, T} is a disjointness preserving set
in Lb (L,M) then the sum S+T preserves disjointness. The question
wether this implication is reversible is discussed next.

Lemma 5.2. Let S, T be order bounded disjointness preserving op-
erators from L into M . Then the following are equivalent.

(i) S + T preserves disjointness
(ii) The pair {S, T} is a disjointness preserving set in Lb (L,M).

Proof. Only necessity is proved. So, assume S+T to be disjointness
preserving. By Theorem 2.2, the absolute value |S + T | exists in the
ordered vector space L (L,M). Furthermore, if f ∈ L+ then

0≤ |(|S| − |T |) (f)|= |S (f)|−|T (f)| ≤ |S (f) + T (f)|= |S + T | (f) .
It follows readily that |S| − |T | preserves disjointness. So, the ab-
solute value ||S| − |T || of |S| − |T | exists in L (L,M) and if f ∈ L+

then

||S| − |T || (f) = ||S| (f)− |T | (f)| = ||S (f)| − |T (f)|| .
As in the proof of Lemma 5.1, the pair {|S| , |T |} has a supremum
|S| ∨ |T | and a infimum |S| ∧ |T | in L (L,M). Moreover, if f ∈ L+

then

(|S| ∨ |T |) (f) = |S (f)|∨|T (f)| and (|S| ∧ |T |) (f) = |S (f)|∧|T (f)|.
At this point, let f, g ∈ L such that |f | ∧ |g| = 0. Since |S| and |T |
are lattice homomorphisms from L into M , we can write

(|S| ∨ |T |) (|f |)+ (|S| ∨ |T |) (|g|) = (|S| ∨ |T |) (|f |+ |g|)
= (|S| ∨ |T |) (|f | ∨ |g|)
= (|S| (|f | ∨ |g|)) ∨ (|T | (|f | ∨ |g|))
= |S |f || ∨ |S |g|| ∨ |T |f || ∨ |T |g||
= |S |f || ∨ |T |f || ∨ |S |g|| ∨ |T |g||
= (|S| ∨ |T |) (|f |) ∨ (|S| ∨ |T |) (|g|) .

Thus,

0 ≤ |S (f)| ∧ |T (g)|
= ||S| (f)| ∧ ||T | (g)| = |S (f)| ∧ |T (g)|
≤ (|S| ∨ |T |) (|f |) ∧ (|S| ∨ |T |) (|g|) = 0.
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We derive that {S, T} is a disjointness preserving set and we are
done. �

In [13], Bernau, Huijsmans, and de Pagter studied sums of order
bounded disjointness preserving operators and gave various proper-
ties of such sums. More recently in [50], de Pagter in collaboration
with Schep furnished several necessary and sufficient conditions for a
sum of two order bounded disjointness preserving operators in order
to be again preserving disjointness. Lemma 5.2 above can be seen
as a modest contribution to this study.

Now, recall that the set Orth (M) of all orthomorphisms on M
is a generalized vector sublattice of L (M) the lattice operations of
which are given pointwise. Actually, this nice property of Orth (M)
has something to do with the fact that Orth (M) is a particular
disjointness preserving set in Lb (M). Let us say some additional
words in order to explain our point of view. Assume that D is a dis-
jointness preserving set in Lb (M) that contains Orth (M). Hence,
IM ∈ D and {IM , T} is a disjointness preserving set in Lb (M) for
all T ∈ D. It follows that T is an orthomorphism on M , that is,
D = Orth (M). In other words, Orth (M) is a maximal element
in the set of all disjointness preserving sets in Lb (M) with respect
to the inclusion ordering. Surprisingly, it turns out that any max-
imal disjointness preserving set in Lb (L,M) is a generalized vector
sublattice of L (L,M). To see this, let us define a disjointness pre-
serving set M in Lb (L,M) to be maximal if there is no strictly large
disjointness preserving set in Lb (L,M). We are in position now to
prove the central theorem of this section.

Theorem 5.3. Let M be a maximal disjointness preserving set in
Lb (L,M). Then M is a generalized vector sublattice of L (L,M).
Moreover, if S, T ∈ M then

(S ∨ T ) (f) = S (f) ∨ T (f) and (S ∧ T ) (f) = S (f) ∧ T (f)

for all f ∈ L+.

Proof. Let S, T ∈ M and a be a real number. Since {S, T} is a
disjointness preserving set in Lb (L,M), Lemma 5.2 yields that the
sum S+T preserves disjointness. Now, let R ∈ M and f, g ∈ L such
that |f | ∧ |g| = 0. Hence, {R,S, T} is a disjointness preserving set
in Lb (L,M) so

|R (f)| ∧ |S (g)| = |R (f)| ∧ |T (g)| = 0
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We derive that

0 ≤ |R (f)| ∧ |(S + T ) (g)| ≤ |R (f)| ∧ (|S (g)|+ |T (g)|) = 0.

Thus, {R,S + T} is a disjointness preserving set in Lb (L,M). It
follows easily that M ∪ {S + T} is again a disjointness preserving
set in Lb (L,M). Since M is maximal, S + T ∈ M. Analogously, it
is readily checked that M∪ {aT} is a disjointness preserving set in
Lb (L,M) and then, by maximality, aT ∈ M. This implies that M
is a vector subspace of L (L,M).

At this point, let T ∈ M. Since T is an order bounded disjointness
preserving operator from L into M , the absolute value |T | of T in
L (L,M) exists (where we use Theorem 2.2). Let S ∈ M and f, g ∈ L
such that |f | ∧ |g| = 0. Theorem 2.2 together with the fact that M
is a disjointness preserving set in Lb (L,M) leads to

|R (f)| ∧ ||T | (g)| = |R (f)| ∧ |T (g)| = 0.

We derive thatM∪{|T |} is a disjointness preserving set in Lb (L,M).
Since M is maximal as a disjointness preserving set in Lb (L,M), we
get M = M∪ {|T |} so |T | ∈ M. It follows that M is a generalized
vector sublattice of L (L,M) and we are done. �

Alternative aspects of maximal disjointness preserving sets can be
found in the recent works [10, 11]. For instance, this concept is used
in [11] to give an elementary proof of the existence of the modulus
of complex order bounded disjointness preserving operators between
two arbitrary complex vector lattices. This fact was first proved
via Zorn’s Lemma by Meyer in [42] for uniformly complete com-
plex vector lattices. More recently, Grobler and Huijsmans obtained
the Meyer result constructively [28]. In [11], the result was proved
without assuming the complex vector lattices under consideration to
be uniformly complete. Another property of maximal disjointness
preserving set in Lb (L,M) is discussed next.

Wickstead proved in [56] if L in addition is Dedekind complete,
then Orth (L) is a band of the vector lattice Lb (L). This result
is extended in what follows to more general setting of maximal
disjointness preserving sets. We should recall here that if M is
Dedekind complete, then the ordered vector space Lb (L,M) is a
Dedekind complete vector lattice. The following proposition follows
from Proposition 2.2 in [10] .
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Proposition 5.4. If M is Dedekind complete, then any maximal
disjointness preserving set in Lb (L,M) is a band of Lb (L,M).

Now, assume that L has a strong order unit e > 0 (that is, the
inequality |f | ≤ a |e| holds for all f ∈ L and some real number a)
and let M be a order ideal of Lb (L,M). Define the positive operator
Πe from M into M by

Πe (T ) = T (e) for all T ∈ M.

The following result is a direct inference of Theorem 3.3 in [10].

Theorem 5.5. Assume L to have a strong order unit e and M to
be Dedekind complete. If M is an order ideal of Lb (L,M) then the
following are equivalent.

(i) M is a maximal disjointness preserving set in Lb (L,M).
(ii) Πe is a lattice isomorphism.
(iii) Πe is bijective.

In particular, if L has a strong order unit e and M is Dedekind
complete, then Lb (L,M) has a unique (up to a lattice isomorphism)
maximal disjointness preserving set, which is a vector lattice copy
of M . This fact turns out to be an extension of a classical fact
due to Zaanen in [58], namely, if M is a Dedekind complete vector
lattice with a strong order unit, then Orth (M) andM are isomorphic
as vector lattices. Actually, Zaanen proved a stronger result, viz.,
Orth (M) and M are isomorphic as vector lattices as soon as M
is uniformly complete and has a strong order unit. It seems to be
natural therefore to ask the following question.

Problem 5.6. Do the equivalences in Theorem 5.5 hold if M is only
uniformly complete?

The next paragraph deals with maximal disjointness preserving
sets on certain C (X)-spaces. First of all, let X and Y be topological
spaces and let τ be a function of Y to X. For every w ∈ C (Y ), let
Cω,τ indicate the mapping from C (X) into RY defined by

Cw,τ (f) (y) = w (f) f (τ (y)) for all f ∈ C (X) and y ∈ Y.

Moreover, put

Ωτ = {w ∈ C (Y ) : Cω,τ (f) ∈ C (Y ) for all f ∈ C (X)}
and

Oτ = ∪w∈Ωτ coz (w) .
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Obviously, Oτ is an open set in Y . In [9], Benamor observes that τ
is continuous on Oτ and defines τ to be maximal if there is no large
open set in Y on which τ is continuous. A sleight modification of the
proof of Corollary 1 in [9] yields directly to the following character-
ization of maximal disjointness preserving sets in Lb (C (X) , C (Y ))
when X in addition is compact.

Theorem 5.7. Assume that X is a compact space and let M be a
non-void set of Lb (C (X) , C (Y )). Then the following are equivalent.

(i) M is a maximal disjointness preserving set.
(ii) There exists a maximal function τ from Y into X such that

M = {Cw,τ : w ∈ Ωτ}.

At last, a careful examination of Theorem 5.7 leads naturally to
the following open problem.

Problem 5.8. Let T be a lattice homomorphism from L into M and
put

D (T ) = {S ◦ T : T ∈ Orth (M)} .

It is not hard to see thatD is a disjointness preserving set in Lb(L,M).
Under what conditions is D maximal? Conversely, if such conditions
are satisfied and D is an arbitrary maximal disjointness preserving
set in Lb (L,M). Does there exist a lattice homomorphism T from
L into M such that D = D (T )?

6. Algebraic Disjointness Preserving Operators

Consider a square matrix T for which on every row there is at most
one nonzero entry. Let n be the degree of its minimal polynomial
and let m be its valuation, that is, the multiplicity of 0 as a root of
that minimal polynomial. Then Tn! is diagonal, when restricted to
the range of Tm. The latter looks surprising and one suspects that
the result is known, but we have not been able to locate a reference
for it. In this section we offer a wide ranging generalization of this
matrix result. The condition above simply states that the matrix
represents an operator that preserves disjointness in the pointwise
ordering. The question arises naturally, as to whether general oper-
ators on vector lattices that preserve disjointness behave in a similar
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fashion. For obvious reasons, when leaving the domain of finite di-
mensional vector spaces, some form or another of continuity is rea-
sonably imposed on the operators considered. Thus we consider or-
der bounded disjointness preserving operators on Archimedean vec-
tor lattices. Fortunately, there is a concept of diagonal in vector
lattices such that, surprisingly, order bounded disjointness preserv-
ing operators that satisfy a polynomial equation do behave like the
matrix case. Indeed, the algebraic orthomorphisms serve the role of
diagonals. This brings us to the main topic of the present section,
algebraic order bounded disjointness preserving operators. Let us
recall some of the relevant notions.

First, we recall the reader that L is an Archimedean vector lattice.
As usual, R [X] indicates the ring of all polynomials with coefficients
in the real field R. An operator T on L is said to be algebraic if
Π (T ) = 0 for some nonzero polynomial Π ∈ R [X]. Hence, T ∈ L (L)
is algebraic if and only if the ring ideal

I (T ) = {Π ∈ R [X] : Π (T ) = 0}
is not equal to {0}. Let T ∈ L (T ) be an algebraic operator. Since
the ring R [X] is principal, the ring ideal I (T ) is generated by a
unique monic polynomial ΠT , usually called the minimal polynomial
of T . In particular, if Π ∈ R [X] then Π (T ) = 0 if and only if ΠT

divides Π. The notion of algebraic operators has been introduced by
Kaplansky [37] for operators on Banach spaces.

Now, we say that an operator T on L is strongly diagonal if there
exist pairwise disjoint components P1, P2, ..., Pm of the identity op-
erator II and real numbers α1, α2, ..., αn such that

T = α1P1 + α2P2 + · · ·+ αmPm.

Recall here that by a component of IL we mean a positive ortho-
morphism P such that the equality P ∧ (IL − P ) = 0 holds in the
vector lattice Orth (L) of all orthomorphisms on L. Strongly diago-
nal operators are usually called IL-step functions [6, 59]. Clearly, a
strongly diagonal operator on L is an orthomorphism. It turns out
that the converse holds if the orthomorphism under consideration is
algebraic (see Theorem 3.3 in [21]).

Proposition 6.1. Let T an operator on L. Then the following are
equivalent.

(i) T is a strongly diagonal
(ii) T is an algebraic orthomorphism.
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The proof of the main result of this section is based upon the clas-
sical Kakutani–Bohnenblust–Krein representation theorem [1] and
the representation of order bounded disjointness preserving operators
on C (X)-spaces as weighted composition operators (see Section 3).
However, the proof also uses the following lemma dealing with the
existence of invariant principal order ideals, which is of independent
interest (see Lemma 5.2 in [21]). First, recall that if T ∈ L (L) then
a subset D of L is T -invariant if T sends D to D. Also, recall that
an order ideal of L which is generated by one element is said to be
principal.

Lemma 6.2. Let T be an algebraic order bounded disjointness pre-
serving operator on L. For every f ∈ L there exists a T -invariant
principal order ideal of L containing f .

We are in position now to state the central result of this section.
The details can be found in Theorem 5.3 in [21].

Theorem 6.3. Let T be an order bounded disjointness preserving
operator on L. Then the following are equivalent.

(i) T is algebraic.
(ii) There exist natural numbers m and n with n > m such that

the restriction of Tn! to the vector sublattice of L generated
by the range Tm (L) of Tm is strongly diagonal.

Furthermore, when T is algebraic, n (respectively, m) can be chosen
as the the degree (respectively, the valuation) of the minimal polyno-
mial of T .

Once we observe that |Tn| = |T |n for all natural number n and
each order bounded disjointness preserving operator T on L, it fol-
lows quickly from Theorem 6.3 that the absolute value of an algebraic
order bounded disjointness preserving operator is algebraic as well.
This seems far from obvious without the representation in Theorem
6.3 and contrasts with the fact that the absolute value of a finite
rank operator need not be a finite rank operator (see [1]). On the
other hand, in the above theorem we really need both n and m, that
is to say, it is possible that Tn is not an orthomorphism on L for
any n. The following simple example illustrates that fact, whereas
special cases where one can take m = 0 will be discussed next.

Example 6.4. Let L be the Archimedean vector lattice R2 with co-
ordinatewise addition, scalar multiplication, and ordering and define
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T ∈ L (L) by T (x, y) = (x, x) for all (x, y) ∈ R2. Clearly, T is an or-
der bounded disjointness preserving which is not an orthomorphism.
Now, observe that Tn = T for all n ∈ N.

In [18], it is shown that if T is an algebraic operator on a vector
space, then T is injective if and only if T is surjective. Combining
this fact with Theorem 6.3 we get easily the following.

Corollary 6.5. Let T be a surjective (or injective) order bounded
disjointness preserving operator from L into M . Then the following
are equivalent.

(i) T is algebraic.
(ii) There exists a natural number n such that Tn! is a strongly

diagonal.

Furthermore, n can be chosen to be the degree the minimal polyno-
mial of T .

At this point, we turn our attention to locally algebraic disjoint-
ness preserving operators. First of all, recall that the operator T on
the vector space L is said to be locally algebraic if for every f ∈ L
there exists a nonzero polynomial Π ∈ R [X] (depending on f) such
that Π (T ) f = 0 (see again [37] by Kaplansky). Obviously, any
algebraic operator is locally algebraic. Next, we present a character-
ization of locally algebraic orthomorphism (see [21] for the proof).

Proposition 6.6. Let T an orthomorphism on L. Then the follow-
ing are equivalent.

(i) T is locally algebraic.
(ii) The restriction of T to each principal band of L is algebraic

(or strongly diagonal).

On the other hand, recently in [21], the notion of Kaplansky com-
plete vector lattice was introduced as follows. The vector lattice L is
said to be Kaplansky complete if for every infinite countable subset
D of L there exists f ∈ L and an infinite subset G of D such that
f ∧ g = 0 for all g ∈ G. For instance, Banach lattices and vector
lattices with weak order units are Kaplansky complete. This con-
cept turns out to be crucial for understanding when every locally
algebraic orthomorphism is strongly diagonal. For details, we refer
to [21].
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Theorem 6.7. The following are equivalent.

(i) L is Kaplansky complete.
(ii) Every locally algebraic orthomorphism on L is algebraic (and

then a strongly diagonal operator).

As a consequence, we conclude that, for σ-Dedekind complete
vector lattices, the condition that every orthomorphism is strongly
diagonal is very strong as we can see next (see [21] for the proof).

Corollary 6.8. If L is σ-Dedekind complete, then the following are
equivalent.

(i) Every orthomorphism on L is a strongly diagonal operator.
(ii) L is finite dimensional.

The condition of Dedekind σ-completeness is not superfluous as
it can be seen via the next Zaanen’s example [58].

Example 6.9. Let L be the Archimedean vector lattice of all real-
valued continuous functions on [0, 1] which are piecewise linear. So,
L is not σ-Dedekind complete and Orth (L) = {aIL : a ∈ R} .

Finally, it seems to be natural now to ask for the correspond-
ing versions of Proposition 6.6 and Theorem 6.7 for order bounded
disjointness preserving operators on the vector lattice L.

Problem 6.10. As for locally algebraic orthomorphisms, can a charac-
terization of locally algebraic order bounded disjointness preserving
operators be obtained in terms of algebraic operators?

Problem 6.11. What could be a necessary and sufficient condition
on L for locally algebraic order bounded disjointness preserving op-
erators on L to be algebraic?
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Boston-Berlin, 2007.
[24] P. F. Conrad and J. E. Diem, The ring of polar preserving endomorphisms

on an Abelian lattice-ordered group, Illinois J. Math., 15 (1971), 222-240.
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Minimizing Oblique Errors for Robust Estimating

DIARMUID O’DRISCOLL, DONALD E. RAMIREZ,

AND REBECCA SCHMITZ

Abstract. The slope of the best fit line from minimizing
the sum of the squared oblique errors is shown to be the

root of a polynomial of degree four. We introduce a median

estimator for the slope and, using a case study, we show that
the median estimator is robust.

1. Introduction

With ordinary least squares (OLS) regression, we have data

{(x1, Y1|X = x1), . . . , (xn, Yn|X = xn)}
and we minimize the sum of the squared vertical errors to find the
best-fit line y = h(x) = β0 + β1x. With OLS it is assumed that the
independent or causal variable is measured without error.

J. L. Gill [2] states that “some regression prediction or estimation
must be made in a direction opposite to the natural causality of
one variable by another.” This is found from the inverse function
h−1(y0) = x0 = y0/β1−β0/β1. He adds “Geometric mean regression
could be more valid than either direct or inverse regression if both
variables are subject to substantial measurement error.”

For inverse prediction we will want both h(x) and h−1(y) to model
the data. To accomplish this, we try to determine a fit so that the
squared vertical and the squared horizontal errors will both be small.
The vertical errors are the squared distances from (x, y) to (x, h(x))
and the horizontal errors are the squared distances from (x, y) to
(h−1(y), y). As a compromise, we will consider the errors at the me-
dian or midpoint to the predicted vertical and predicted horizontal
values. All of the estimated regression models we consider (includ-
ing the geometric mean and perpendicular methods) are contained
in the parametrization (with 0 ≤ λ ≤ 1) of the line from (x, h(x))
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to (h−1(y), y). For the squared vertical errors, set λ = 1 and cor-
respondingly, for the horizontal errors, set λ = 0. Our Maple codes
and the data set for our case study can be found here:

people.virginia.edu/∼der/pdf/oblique errors

Our paper first introduces the Oblique Error Method in Section 2.
In Section 3, we show how the Geometric Mean and Perpendicular
Methods are included in our parametrization. In Section 4, we in-
clude a weighted regression procedure and Section 5 contains a small
case study showing the robustness of the proposed median slope es-
timator.

2. Minimizing Squared Oblique Errors

From the data point (xi, yi) to the fitted line y = h(x) = β0 + β1x
the vertical length is ai = |yi − β0 − β1xi| , the horizontal length is
bi = |xi − (yi − β0)/β1| = |(β1xi − yi + β0)/β1| = |ai/β1| and the

perpendicular length is hi = ai/
√

1 + β2
i . With standard notation,

Sxx =
n∑

i=1

(xi − x)2, Syy =
n∑

i=1

(yi − y)2, Sxy =
n∑

i=1

(xi − x)(yi − y)

with the correlation ρ = Sxy/
√

SxxSyy. A basic fact is −1 ≤ ρ ≤ 1

or equivalently 0 ≤ S2
xy ≤ SxxSyy.

For the oblique length from (xi, yi) to (h
−1(yi)+λ(xi−h−1(yi)),yi+

λ(h(xi)− yi)), the horizontal length is (1− λ)bi = (1− λ)ai/β1 and
the vertical length is λai. Since SSEh(β0, β1, λ) =

(∑n
i=1 a

2
i

)
/β2

1

and SSEv(β0, β1, λ) =
∑n

i=1 a
2
i , we have

SSEo(β0, β1, λ) = (1− λ)2SSEh + λ2SSEv

=
n∑

i=1

{
(1− λ)2a2i

β2
1

+ λ2a2i

}
=

(1− λ)2 + λ2β2
1

β2
1

n∑

i=1

a2i .

Setting ∂SSEo/∂β0 = 0, then β0 = y − β1x and
n∑

i=1

a2i =
n∑

i=1

{(yi − y)− β1(xi − x)}2

= Syy − 2β1Sxy + β2
1Sxx.

Hence

SSEo = ((1− λ)2β−2
1 + λ2)

(
Syy − 2β1Sxy + β2

1Sxx

)
(1)
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with

∂SSEo

∂β1

= −2(1−λ)2β−3
1 Syy+2(1−λ)2β−2

1 Sxy−2λ2Sxy+2λ2β1Sxx.

Thus the oblique estimator is a root of the fourth degree polynomial
in β1, namely

P4(β1) = λ2

√
Sxx

Syy
β4
1 − λ2ρβ3

1 + (1− λ)2ρβ1 − (1− λ)2
√

Syy

Sxx
. (2)

We claim that P4(β1) has exactly two real roots, one positive and
one negative. By inspection, since the leading coefficient of P4(β1) is
positive and the constant coefficient is negative, P4(β1) necessarily
has at least one positive and one negative root. That these are the
only real roots will be important in establishing the global minimum
value for SSEo.

The Complete Discrimination System {D1, . . . , Dn} of Yang [4] is
a set of explicit expressions that determine the number (and multi-
plicity) of roots of a polynomial. In the case of a fourth degree poly-
nomial, the polynomial has exactly two real roots, each with multi-
plicity one, providedD4 < 0; whereD4 = 256a30a

3
4+...+144a20a2a4a

2
3.

The expression for D4 has 16 terms involving the five coefficients
{a0, . . . , a4} of the polynomial and it is of order 6.

For the polynomial P4(β1) (with some manipulations),

D4 = λ6(1− λ)6(−256 + 192ρ2 + 6ρ4 + 4ρ6)

−27λ4(1− λ)4ρ4
(
Sxx

Syy
(1− λ)4 + λ4 Syy

Sxx

)
.

Since |ρ| ≤ 1, it follows that D4 < 0. And thus P4(β1) has exactly
one positive and one negative root.

Evaluating ∂SSEo/∂β1 at β1 = Sxy/Sxx and using the inequality
0 ≤ S2

xy ≤ SxxSyy and the equality SxxSyy − S2
xy = (1− ρ2)SxxSyy,

∂SSEo

∂β1

=
−2(1− λ)2

β2
1

{
Syy

Sxy/Sxx
− Sxy

}
+ 2λ2

{
−Sxy +

Sxy

Sxx
Sxx

}

=
−2(1− λ)2

β2
1

1

Sxy
SxxSyy(1− ρ2)
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which has the sign of −Sxy. Similarly evaluating ∂SSEo/∂β1 at
β1 = Syy/Sxy

∂SSEo

∂β1

= 2λ2 1

Sxy
SyySxx(1− ρ2)

which has the sign of Sxy.
We use the Intermediate Value Theorem to assert that (1) If

Sxy > 0, then 0 < Sxy/Sxx ≤ β1 ≤ Syy/Sxy; (2) If Sxy < 0,
then Syy/Sxy ≤ β1 ≤ Sxy/Sxx < 0; and (3) If Sxy = 0, β1 =

±
(
((1− λ)2Syy)/(λ

2Sxx)
)1/4

.
The Second Derivative Test assures that a root of P4(β1) is a local

minimum of SSEo by

∂2SSEo

∂β2
1

=
6(1− λ)2Syy

β4
1

− 4(1− λ)2Sxy

β3
1

+ 2λ2Sxx

=
2(1− λ)2

β4
1

[3Syy − 2β1Sxy] + 2λ2Sxx,

with 3Syy − 2β1Sxy = 3Syy − 2|β1Sxy| ≥ 3Syy − 2Syy = Syy > 0.
Suppose Sxy > 0. Note from Equation (1) that SSEo(|β1|) <

SSEo(−|β1|). Let β+
1 be the positive root of P4(β1) and let β−

1

be the negative root of P4(β1). Then SSEo(β
+
1 ) ≤ SSEo(|β−

1 |) <
SSEo(β

−
1 ). This assures that the positive root gives the global min-

imum for SSE0(β1). A similar result holds when Sxy < 0.

3. Minimizing Squared Perpendicular and Squared
Geometric Mean Errors

The perpendicular error model dates back to Adcock [1] who intro-
duced it as a procedure for fitting a straight line model to data with
error measured in both the x and y directions.

For squared perpendicular errors we minimize SSEp(β0, β1) =∑n
i=1 a

2
i /(1 + β2

1) with solutions βp
0 = y − βp

1x and

βp
1 =

(Syy − Sxx)±
√
(Syy − Sxx)2 + 4S2

xy

2Sxy
, (3)

(provided Sxy 6= 0).
Note with Sxy 6= 0 and Sxx = Syy, then βp

1 = ±1 showing that
under standardization this method is functionally independent of the
correlation between x and y!
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For squared geometric mean errors, we minimize SSEg(β0, β1)

=
∑n

i=1

(√
|aibi|

)2

=
∑n

i=1 a
2
i /|β1| with solutions βg

0 = y−βg
1x and

βg
1 = ±

√
Syy/Sxx. Note that βg

1 is always functionally independent
of the correlation between x and y and also under standardization
bg1 = ±1 as in the perpendicular model.

The solutions to the above equations for both βp
1 and βg

1 are also
roots of P4(β1) for particular values of λ which can be seen from
the geometry of the model. See [3] and [2] for applications of the
perpendicular and geometric mean estimators.

4. Minimizing Squared Weighted Average Errors

If the user wishes to incorporate the effect of different variances in
x and y, this can be achieved by using a weighed average of the
squared vertical and squared horizontal errors with (0 ≤ α ≤ 1)
and SSEw = αSSEv +(1−α)SSEh. A typical value for α might be
α = σ2

y/(σ
2
x+σ2

y) to standardize the data. Recall from Section 2 that

SSEo = λ2SSEv+(1−λ)2SSEh. On setting (1−λ)2/λ2 = (1−α)/α,
we get the quadratic equation (2α− 1)λ2 − 2αλ+ α = 0, which has
root

λ =





α−
√
α(1− α)

(2α− 1)
α 6= 1

2

1

2
α =

1

2
.

(4)

5. Case Study

In this section, we introduce the median estimator βm
1 using P4(β1)

with λ = 1/2. Our small case study reveals the desirable robust-
ness inherent in the median estimator. The data set is from [2]
with n = 40. The case study shows that the perpendicular esti-
mator is highly influenced by outliers in the data, with the verti-
cal and horizontal estimators also being significantly influenced by
outliers. The geometric mean estimator, as expected, is more ro-
bust; and our median estimator, introduced in this paper, being the
most robust in this case study. For the Weighted Average proce-
dure, α = Syy/(Syy + Sxx) = 0.671 which from Equation 4 yields
λ = 0.588.
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The first table below gives the values for the slope β1, y -intercept
β0, λ, and SSE. To study the effect of outliers, we pick a row from
the data set and perturb the values by some factor.

The second table contains the basic values and, in addition, the
square of the shifts in the slope and y-intercept caused by perturbing
the x-data by a factor of 7.5 for the data point for case k = 5. Note
that the median estimator has the smallest squared shift distance.
The third table shows similar values by perturbing the y-data by a
factor of 0.5 for case k = 5. Note that the perpendicular model has
been greatly influenced by this one outlier.

Vert Horiz Perp Geom Median Wt Avg

β1 1.28 1.59 1.48 1.43 1.38 1.35
β0 136 104 115 121 126 130
λ 1.00 0.00 0.312 0.412 0.500 0.588
SSE 12565 6163 4330 4494 4908 5581

Table 1. Gill Data for Vertical (Vert), Horizontal (Horiz),
Perpendicular (Perp), Geometric Mean (Geom), Median and

Weighted Average (Wt Avg) Procedures

Vert Horiz Perp Geom Median

β1 0.0937 2.33 0.118 0.467 0.654
β0 259 −4.39 256 215 193
SSE 62007 284364 61327 95987 129360
(β∗

1 − β1)
2 1.41 0.541 1.87 0.923 0.531

(β∗
0 − β0)

2 15040 11723 19855 8818 4506

Table 2. Gill Data perturbed with x∗[5] = 7.5 x[5]

Vert Horiz Perp Geom Median

β1 0.875 1.99 1.51 1.32 1.23
β0 174 57.2 107 127 137
SSE 30977 17770 13339 13841 14521
(β∗

1 − β1)
2 0.165 0.161 0.000717 0.0116 0.0228

(β∗
0 − β0)

2 1410 4875 3446 2789 2312

Table 3. Gill Data perturbed with y∗[4] = 0.5 y[4]
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We replicated the above perturbation procedure for each of the
n = 40 cases and record in Table 4 and Table 5 the average squared
change in slope and the average squared change in the y-intercept
denoted {E(β∗

1 − β1)
2, E(β∗

0 − β0)
2} by perturbing the original x-

data and y-data values by a factor of {7.5, 0.5} respectively. Table 6
records the average squared changes where the data has been jointly
perturbed for (x[k], y[k]) by the factors {7.5, 0.5} respectively.

Vert Horiz Perp Geom Median

E(β∗
1 − β1)

2 1.41 4.01 1.87 1.07 0.656
E(β∗

0 − β0)
2 14966 57192 19820 10358 5649

Table 4. Gill Data perturbed with x∗[k] = 7.5 x[k]

Vert Horiz Perp Geom Median

E(β∗
1 − β1)

2 0.0163 0.201 0.0968 0.0333 0.0143
E(β∗

0 − β0)
2 165 2509 1276 488 229

Table 5. Gill Data perturbed with y∗[k] = 0.5 y[k]

Vert Horiz Perp Geom Median

E(β∗
1 − β1)

2 1.90 20.6 2.59 0.975 0.487
E(β∗

0 − β0)
2 20175 258272 27880 8611 3364

Table 6. Gill Data perturbed with {x∗[k] = 7.5 x[k], y∗[k] = 0.5 y[k]}

The results in Table 4 with an outlier in the x-data show the sen-
sitivity with the vertical, horizontal and perpendicular procedures.
The results in Table 5 with an outlier in the y-data show the sen-
sitivity with the horizontal and perpendicular procedures. Table 6,
with (x, y) both perturbed, shows the robustness of the geometric
and median procedures with the median estimators uniformly su-
perior to the geometric estimators in this small case study. These
preliminary results commend the method for further investigation.
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