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Hermitian Morita Theory:
a Matrix Approach

DAVID W. LEWIS AND THOMAS UNGER

Abstract. In this note an explicit matrix description of her-

mitian Morita theory is presented.

1. Introduction

Let K be a field of characteristic different from two and let A be a
central simple K-algebra equipped with an involution ∗. By a well-
known theorem of Wedderburn, A is of the form Mn(D), a full matrix
algebra over a division K-algebra D. Furthermore, there exists an
involution— on D of the same kind as ∗ such that ∗ and—have the
same restriction to K. Then ∗ is the adjoint involution adh0 of some
nonsingular ε0-hermitian form h0 over (D,−),

h0 : Dn ×Dn −→ D,

with ε0 = ±1. Thus

X∗ = adh0(X) = SX
t
S−1, ∀X ∈ Mn(D),

where S ∈ GLn(D) is the matrix of h0, so that S
t
= ε0S.

Let Grε(A, ∗) and Wε(A, ∗) denote the Grothendieck group and
Witt group of ε-hermitian forms over (A, ∗), respectively. Hermitian
Morita theory furnishes us with isomorphisms

Grε(A, ∗) ∼= Grε0ε(D,−) and Wε(A, ∗) ∼= Wε0ε(D,−).

These isomorphisms are the result of the following equivalences of
categoriesε-hermitian

forms over
(Mn(D), ∗)

 ooscaling //

ε0ε-hermitian
forms over
(Mn(D),−t)

 oo Morita

equivalence
//

ε0ε-hermitian
forms over
(D,−)
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(all forms are assumed to be nonsingular) which respect isometries,
orthogonal sums and hyperbolic forms.

In this note we describe these correspondences explicitly. In par-
ticular we give a matrix description of Morita equivalence which does
not seem to be generally known. Other explicit descriptions can be
found in [3, 4, 5]. The subject is often treated in a more abstract
manner, such as in [1] and [2, Chap. I, §9].

2. Scaling

Let M be a right Mn(D)-module and let h : M ×M −→ Mn(D) be
an ε-hermitian form with respect to ∗, i.e.

h(y, x) = εh(x, y)∗ = εSh(x, y)
t
S−1.

Proposition 2.1. The form

S−1h : M ×M −→ Mn(D), (x, y) 7−→ S−1h(x, y)

is ε0ε-hermitian over (Mn(D),−t).

Proof. Sesquilinearity of S−1h with respect to −t follows easily from
sesquilinearity of h with respect to ∗:

(S−1h)(xα, y) = S−1h(xα, y) = S−1α∗h(x, y)

= S−1SαtS−1h(x, y) = αtS−1h(x, y)

for any α ∈ Mn(D) and any x, y ∈ M .
Furthermore, using the fact that S

t
= ε0S, we get

(S−1h)(y, x) = S−1h(y, x)

= S−1εSh(x, y)
t
S−1

= εh(x, y)
t
S−1

= εε0h(x, y)
t
(S−1)

t

= εε0(S−1h)(x, y)
t

for any x, y ∈ M .

Remark 2.2. By the first part of the proof, scaling of a sesquilinear
form h (rather than an ε-hermitian form h) with respect to ∗ results
in a sesquilinear form S−1h with respect to −t.
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Remark 2.3. The matrix S is not determined uniquely, but only
up to scalar multiplication by λ ∈ K, since λS and S give the same
involution adh0 . Hence the scaling correspondence is not canonical.

3. Morita Equivalence

Every module over Mn(D) ∼= EndD(Dn) is a direct sum of simple
modules, namely copies of Dn. Let (Dn)k be such a module. We
identify (Dn)k with Dk×n, the k×n-matrices over D. We view each
row of a k×n-matrix over D as an element of Dn. Note that Mn(D)
acts on Dk×n on the right.

Now let
h : Dk×n ×Dk×n −→ Mn(D)

be an ε-hermitian form over (Mn(D),−t).

Proposition 3.1. There exists an ε-hermitian k × k-matrix B ∈
Mk(D) such that

h(x, y) = xtBy, ∀x, y ∈ Dk×n. (1)

Proof. Let B = (bij). We will determine the entries bij . Let eij ∈
Dk×n, e′ij ∈ Dn×k and Eij ∈ Mn(D) respectively denote the k × n-
matrix, the n×k-matrix and the n×n-matrix with 1 in the (i, j)-th
position and zeroes everywhere else. One can easily verify that

eifEf` = ei`, (2)

where 1 ≤ i ≤ k and 1 ≤ f, ` ≤ n. Also note that if C ∈ Mn(D),
then computing the product EijC picks the j-th row of C and puts
it in row i while making all other entries zero. Similarly, computing
the product CEij picks the i-th column of C and puts it in column j
while making all other entries zero. The matrices eij and e′ij behave
in a similar fashion.

The matrices {eij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} generate Dk×n as a
right Mn(D)-module. Thus it suffices to compute h(eif , ejg) where
1 ≤ i, j ≤ k and 1 ≤ f, g ≤ n. Let us first compute h(eii, ejj):

h(eii, ejj) = h(eiiEii, ejjEjj)

= Eiih(eii, ejj)Ejj

= mijEij ,

where mij is the (i, j)-th entry of h(eii, ejj) ∈ Mn(D). In other
words, the matrix h(eii, ejj) has only one non-zero entry, namely
mij in position (i, j).
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Next, let us compute h(eif , ejg). We will use the fact that

eif = eiiEif ,

where 1 ≤ i ≤ k and 1 ≤ f ≤ n, which follows from (2). We get

h(eif , ejg) = h(eiiEif , ejjEjg)

= Efih(eii, ejj)Ejg

=
(
h(eii, ejj)

)
ij

Efg

= mijEfg.

Let bij = mij where 1 ≤ i, j ≤ k. We have

eif
tBejg = e′fiBejg

= bijEfg

= mijEfg.

Therefore, h(eif , ejg) = eif
tBejg where 1 ≤ i, j ≤ k and 1 ≤ f, g ≤

n, which establishes (1).
Finally,

mjiEji = h(ejj , eii) = εh(eii, ejj)
t
= εmijEji, for 1 ≤ i, j ≤ k,

which implies mji = εmij , for 1 ≤ i, j ≤ k. In other words, mji =
εmij , for 1 ≤ i, j ≤ k, so that B

t
= εB, which finishes the proof.

So, given an ε-hermitian form h over (Mn(D),−t), we have ob-
tained an ε-hermitian form over (D,−) with matrix B as in Propo-
sition 3.1. Conversely, given an ε-hermitian form

ϕ : Dk ×Dk −→ D,

represented by the matrix B (i.e., B =
(
ϕ(ei, ej)

)
for a D-basis {ei}

of Dk), we define

h : Dk×n ×Dk×n −→ Mn(D)

by
h(x, y) := xtBy, ∀x, y ∈ Dk×n,

which gives an ε-hermitian form over (Mn(D),−t).

Remark 3.2. The correspondence h ↔ ϕ already works for forms
that are just sesquilinear, without assuming any hermitian symme-
try. Since scaling also preserves sesquilinearity, as remarked earlier,
we conclude that the category equivalences of §1 already hold for
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sesquilinear forms over (Mn(D), ∗), (Mn(D),−t) and (D,−), respec-
tively.
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