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Optimisation Problems for the Determinant of a Sum
of 3× 3 Matrices

FINBARR HOLLAND

Abstract. Given a pair of positive definite 3 × 3 matrices
A, B, the maximum and minimum values of det(U∗AU +

V ∗BV ) are determined when U, V vary within the collection

of unitary 3× 3 matrices.

1. Introduction

Let m,n be a pair of natural numbers. Suppose A1, A2, . . . , An are
m×m Hermitian positive definite matrices. What are the maximum
and minimum values of the expression

det
( n∑

i=1

U∗
i AiUi

)
as U1, U2, . . . , Un range over the group Gm of m×m unitary matri-
ces? The case m = 2 of this arose in the context of an interesting
maximum-likelihood problem which is discussed in [3], and the min-
imum value was determined there when the given matrices were real
and symmetric, and the Us members of the subgroup of G2 of or-
thogonal matrices.

In this note we address the above problem only in the case m = 3,
and resolve it when n = 2. However, the methods used here don’t
appear to generalise to the case of general m, even when n = 2. Ac-
cordingly, a different strategy has been devised to deal with this more
general case, which will be the subject of another paper. However,
at the time of writing, the general case of arbitrary m,n remains
open.
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2. Statement of the Main Result

Theorem 1. Let S and T be two 3× 3 positive definite matrices
with spectra σ(S) = {s1, s2, s3} and σ(T ) = {t1, t2, t3}, respectively,
where s1 ≥ s2 ≥ s3 > 0 and t1 ≥ t2 ≥ t3 > 0. Then

min{det(S + U∗TU) : U ∈ G3} =
3∏

i=1

(si + ti),

and

max{det(S + U∗TU) : U ∈ G3} =
3∏

i=1

(si + t4−i).

3. Two Preparatory Lemmas

Lemma 1. Let A = [aij ] be a 3× 3 matrix. Let

M =

 x + a11 a12 a13

a21 y + a22 a23

a31 a32 z + a33

 .

Then
det M = xyz + yza11 + zxa22 +xya33 +xA11 + yA22 + zA33 +det A.

Proof. Here and later, we use the customary notation Aij for the co-
factor of the typical element aij , so that, in particular, A11, A22, A33

are the principal minors of A of order 2× 2. Expanding by elements
of the first row,

detM = (x + a11)[(y + a22)(z + a33)− a23a32]

− a12[a21(z + a33)− a31a23] + a13[a21a32 − a31(y + a22)]

= (x + a11)(y + a22)(z + a33)−[xa23a32 + ya13a31 + za12a21]

− a11a23a32 − a12[a21a33 − a31a23] + a13[a21a32 − a31a22]

= (x + a11)(y + a22)(z + a33)− a11a23a32

− [xa23a32 + ya13a31 + za12a21]− a12A12 + a13A13

= xyz + xya33 + yza22 + zxa11 + x[a22a33 − a23a32]

+ y[a11a33 − a13a31] + z[a11a22 − a12a21]
+ a11A11 − a12A12 + a13A13

= xyz +xya33 + yza22 + zxa11 +xA11 + yA22 + zA33 + det A.

�
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We wish to exploit this result when A = U∗TU , where T is a
diagonal matrix with positive diagonal elements p ≥ q ≥ r > 0, and
U = [uij ] is unitary. A calculation shows that

aij = pui1uj1 + qui2uj2 + rui3uj3, i, j = 1, 2, 3.

In particular,

aii = p|ui1|2 + q|ui2|2 + r|ui3|2, i = 1, 2, 3.

In addition, A is invertible and A−1 = U∗T−1U = (det A)−1[Aij ]t,
whence

Aii

pqr
= p−1|ui1|2 + q−1|ui2|2 + r−1|ui3|2, i = 1, 2, 3,

or

Aii = qr|ui1|2 + rp|ui2|2 + pq|ui3|2, i = 1, 2, 3.

Observe too that
3∑

i=1

|uij |2 =
3∑

j=1

|uij |2 = 1, i, j = 1, 2, 3,

and so the matrix [|uij |2] is doubly-stochastic. With this in mind we
prove a rearrangement inequality.

Lemma 2. Let [pij ] stand for an arbitrary n × n doubly-stochastic
matrix. Let a, b be two real n × 1 vectors whose entries are in de-
creasing order. Then

n∑
i=1

aibn−i+1 ≤
n∑

i,j=1

aibjpij ≤
n∑

i=1

aibi.

Proof. Consider the function f defined on the convex set P of all
n× n doubly-stochastic matrices P = [pij ] by

f(P ) =
n∑

i,j=1

aibjpij , P ∈ P.

Clearly, f is linear in P , and so convex on P. Hence it attains its
maximum and minimum at an extreme point of P. But, by Birkhoff’s
theorem [1], the set of extreme points of the latter consists of the
set of permutation matrices {π(I) = [δiπ(j)] : π ∈ Sn}, where Sn
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denotes the group of permutations of {1, 2, . . . , n}. Hence

min{f(P ) : P ∈ P} = min{f(π(I)) : π ∈ Sn}

= min{
n∑

i,j=1

aibjδiπ(j) : π ∈ Sn}

= min{
n∑

j=1

aπ(j)bj : π ∈ Sn}

=
n∑

j=1

ajbn−j+1,

by the elementary rearrangement inequality, since a, b are similarly
ordered [2]. This argument establishes that

n∑
i=1

aibn−i+1 ≤
n∑

i,j=1

aibjpij ,

with equality when pij = δi(n−j+1), i, j = 1, 2, . . . , n,.
The maximum can be handled in the same way. �

4. Proof of the Main Result

Define F on the group G3 of 3× 3 unitary matrices by

F (U) = det(S + U∗TU), U ∈ G3.

In the first place, there are matrices V,W ∈ G3 such that

S = V

 s1 0 0
0 s2 0
0 0 s3

V ∗ ≡ V ∆V ∗,

and

T = W

 t1 0 0
0 t2 0
0 0 t3

W ∗ ≡ WΛW ∗,

say. Hence
F (WUV ∗) = det(∆ + U∗ΛU),

whence it’s enough to deal with the case where S = ∆, T = Λ. This
being so, we can appeal to Lemma 1, taking

A = U∗∆U =
[ 3∑

k=1

tkuikujk

]
,
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and obtain that

det(∆ +U∗ΛU) = det(∆ + A)

= s1s2s3 + s1s2s3

3∑
k=1

s−1
k akk +

3∑
k=1

skAkk + detA

= s1s2s3 + s1s2s3

3∑
i=1

s−1
i

3∑
j=1

tj |uij |2

+ t1t2t3

3∑
i=1

si

3∑
j=1

t−1
j |uij |2 + t1t2t3

= s1s2s3 + s1s2s3

3∑
i,j=1

s−1
i tj |uij |2

+ t1t2t3

3∑
i,j=1

sit
−1
j |uij |2 + t1t2t3

≥ s1s2s3 +s1s2s3

3∑
i=1

s−1
i ti + t1t2t3

3∑
i=1

sit
−1
i + t1t2t3,

by Lemma 2, since s1, s2, s3, and t−1
1 , t−1

2 , t−1
3 are oppositely ordered.

It follows that
det(∆ + U∗ΛU) ≥ s1s2s3 + t1s2s3 + t2s1s3 + t3s1s2

+ s1t2t2 + t2s1s3 + t3s1s2 + t1t2t3

= (s1 + t1)(s2 + t2)(s3 + t3),

with equality when U = I, the identity matrix. Hence

min{F (U) : U ∈ G3} =
3∏

i=1

(si + ti).

Arguing in a similar manner, it can be seen that

max{F (U) : U ∈ G3} =
3∏

i=1

(si + t4−i).

This completes the proof of Theorem 1.
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