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Lattice Polygons in the Plane and the Number 12

JOHN M. BURNS AND DAVID O’KEEFFE

1. Introduction

A convex polygon P in R2 all of whose vertices have integer co-
ordinates is called a convex lattice polygon. If the polygon has n
lattice points on its boundary, represented by the vectors p1, . . . , pn

(in anticlockwise order), then we say that the length l(P) is n. The
dual (convex) lattice polygon P∨ is by definition the convex hull of
the difference vectors qi = pi+1 − pi, where indices throughout the
note are considered modulo n. In this note we will give a simple
proof of the fact that if P be a convex lattice polygon in R2 whose
only interior lattice point is the origin, then l(P) + l(P∨) = 12. This
result has its origin in a correspondence between convex lattice poly-
gons and certain toric varieties, and has several ingenious proofs (see
[1] and [2]). These proofs use either Noether’s formula or modular
forms to explain the occurrence of the number 12. Our proof ob-
serves that if l(P) increases by one then l(P∨) decreases by one, so
that their sum is constant. The number 12 then appears as 3 (the
smallest possible length) plus 9 (the largest possible length.) Our
proof (which grew out of the second authors project, supervised by
the first author) also supports the suggestion in [2] that the number
3 can be viewed as a discrete analogue of π in this context.

2. The Theorem

Theorem 2.1. Let P be a convex lattice polygon in R2 whose only
interior lattice point is the origin, and let P∨ be its dual. Then
l(P) + l(P∨) = 12.

It is not hard to see that up to the action of GL(2,Z) there are
16 such polygons but we will not need this fact. We will however use
the following result of P. Scott [3], the proof of which relies only on
elementary geometry.
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Lemma 2.1. Let P be a convex lattice polygon in the plane with l(P)
boundary lattice points and c ≥ 1 interior points then l(P) ≤ 2c + 7.

We will also use picks formula, which in our context states:

Lemma 2.2. The area of a lattice polygon P is given by the formula
A(P) = c + l(P)/2− 1.

In our case c = 1, so that l(P) ≤ 9 and A(P) = l(P)/2. Since
we will think of the plane as the complex plane C, we will label the
vectors pi and qi as zi and wi respectively and we let γi denote the
straight line path (parameterised on [0, 1]) joining zi to zi+1. We
will fix z1 = 1 throughout unless we state otherwise. We recall that
for a piecewise smooth curve γ in C we have

∫
γ

z̄ dz = 2iA where A

denotes the area enclosed by γ. In particular a convex lattice polygon
with vertices z1, . . . , zn has area

− i

2

n∑

i=1

∫ 1

0

(tzi+1 + (1− t)zi)(zi+1 − zi)dt

= − i

4

n∑

i=1

[|zi+1|2 − |zi|2 + z̄izi+1 − ziz̄i+1]

= − i

4

n∑

i=1

[z̄izi+1 − ziz̄i+1].

It will be convenient to introduce the notation Aij = − i
4 (z̄izj−ziz̄j),

namely the signed area of the oriented triangle with vertices o, zi, zj .
Similarly, we let A∨ij = − i

4 (w̄iwj − wiw̄j), so that

A∨ii+1 = − i

4
(z̄izi+1 − ziz̄i+1 + z̄i+1zi+ − zi+1z̄i+2 + z̄i+2zi − ziz̄i+2).

In summary A∨ii+1 = Aii+2+Ai+1i+2+Ai+2i, so that l(P∨) = 2l(P)−∑n
i=1 Aii+2. This immediately yields that when l(P) = n = 3 we

have l(P∨) = A∨12+A∨23+A∨31 = (A12+A23+A31)+(A23+A31+A12)+
(A31 +A12 +A23) = 3(A31 +A12 +A23) = 3×3 = 9 (since Aii+1 = 1
for all i). If l(P) = n = 4,

∑n
i=1 Aii+2 = A13 + A24 + A31 + A42 = 0

(since Aij = −Aji ∀i, j) and we have l(P∨) = 2l(P) = 8. In future we
will denote the sum

∑n
i=1 Aii+2 by d(P), and show that it increases

by 3 when l(P) increases by 1, thus keeping l(P) + l(P∨) constant.

Proof. The case l(P) = n = 5 is the crucial case as all others es-
sentially follow from this one. Here since A(P) = 5/2 and no edge
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contains more than 3 vertices, we may centre P at the origin with
its vertices on the unit square. Since one of the 4 lines x = 0, y = 0,
y = ±x must contain 2 of the 5 vertices of P, we will assume that
it is the x-axis. We may also assume that 2 (z2 and z3) of the re-
maining 3 vertices lie above the x-axis and that the remaining vertex
z5 lies below it. It is immediate that A41 = 0 (z4, o, and z1 being
collinear). We first consider the case where P has an edge of length 2
(i.e., containing 3 vertices). This edge consists either of the points
{z5, z1, z2} or {z3, z4, z5}, so that either A52 = 2 or A35 = 2. In
the former case A35 = −1, and in the latter A52 = −1. In both
cases the remaining Aii+2 are equal to 1, so that

∑n
i=1 Aii+2 = 3

and we are done. When P has no edge of length 2, we must have
an additional Aii+2 = 0 on account of the fact that z5 doesn’t lie
on a vertical edge of length 2. This forces the remaining Aii+2 to
be 1, and again

∑n
i=1 Aii+2 = 3. When l(P) = 6, we can (after

relabelling if necessary) delete the vertex z6 from P to obtain a con-
vex lattice polygon P′ containing the origin, and d(P) − d(P′) =
A13 +A35 +A51 +A24 +A46 +A62− (A13 +A35 +A52 +A24 +A41) =
A51 + A46 + A62 + A25 + A14 = 3. The last equality follows from
the observation that A51 + A46 + A62 + A25 + A14 = d(P′′) where
P′′ is either the convex lattice pentagon {z1, z2, z4, z5, z6} containing
the origin, so that d(P′′) = 3 by above, or else the convex lattice
hexagon (the above pentagon with the origin adjoined) with no in-
terior lattice point, where the computation is trivial. We now have
l(P∨) = 2l(P) − (d(P′) + 3) = 12 − 6 = 6. It is intriguing that the
cases l(P) = 7, 8, 9 are identical to that of l(P) = 6. In each case,
just as above d(P)−d(P′) = d(P′′) where P′′ is either a convex lattice
pentagon containing the origin, or the convex lattice hexagon with
no interior lattice point, so that d(P)− d(P′) = 3. ¤

Remark. Finally we point out some connections with [2]. There it
is shown that the vectors pi and pi+1 form a basis for the lattice Z2

with the same orientation as the standard basis {(1, 0), (0, 1)}, and

that there are matrices Mi =
(

0 1
−1 di

)
in SL(2,Z) such that

Mi

(
pi−1

pi

)
=

(
pi

pi+1

)
, where the 2×2 matrices

(
pi

pi+1

)
have

the row vectors pi and pi+1 as their rows. In addition we have that
(

0 1
−1 dn

)(
0 1

−1 dn−1

)
. . .

(
0 1

−1 d1

)
= I,
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the identity matrix. It is a simple matter to see that in fact di =
Aii+2 and that the above equations therefore contain some of our
observations above. When n = 3 they imply that A13 = A32 =
A21 = −1. When n = 4 they imply that Aii+2 = −Ai+2i ∀i. When
n = 5 they imply that the multi-set {A13, A35, A52, A24, A41} is ei-
ther the multi-set {−1, 2, 1, 0, 1} or else {0, 1, 1, 0, 1}. In either case
d(P) =

∑n
i=1 Aii+2 = 3. We also observe that our proof supports

the suggestion in [2] that 3 can be viewed as a discrete analogue of π.
Clearly d(P) has an interpretation as the sum of the “discrete exte-
rior angles” of P (as defined in [2].) We have shown that increasing
l(P) by one increases this sum by 3, whereas the sum of the exterior
angles increases by π for a general polygon.
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