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Advances in Computing the
Nonabelian Tensor Square of Polycyclic Groups

ROBERT FITZGERALD MORSE

The nonabelian tensor square G⊗G of the group G is the group
generated by the symbols g ⊗ h, where g, h ∈ G, subject to the
relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h) and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′)

for all g, g, h, h′ ∈ G, where gg′ = gg′g−1 is conjugation on the left.
Following the work of C. Miller [18], R. K. Dennis in [10] intro-
duced the nonabelian tensor square which is a specialization of the
more general nonabelian tensor product independently introduced
by R. Brown and J.-L. Loday [6].

By computing the nonabelian tensor square we mean finding a
standard or simplified presentation for it. In the case of finite groups,
the definition of the nonabelian tensor square gives a finite presenta-
tion that can be simplified using Tietze transformations. This simpli-
fied presentation can then be examined to determine the nonabelian
tensor square. This was the approach taken in [3], in which the non-
abelian tensor square was computed for each nonabelian group of
order up to 30. Creating a presentation from the definition of the
nonabelian tensor square, simplifying it using Tietze transformations
and computing a structure description from the simplified presenta-
tion can be implemented in few lines of GAP [16]. However, this
strategy does not scale well to finite groups G having order greater
than 100 since the initial presentation has |G|2 generators and 2|G|3
relations.

The most general method for computing the nonabelian tensor
square uses the notion of a crossed pairing (see [3]). Let G and L be
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groups. We call the mapping Φ : G×G → L a crossed pairing if for
all g, g′, g′′ ∈ G we have

Φ(gg′, g′′) = Φ(gg′, gg′′)Φ(g, g′′)

and
Φ(g, g′g′′) = Φ(g, g′)Φ(g′g, g′g′′).

The crossed pairing Φ lifts to a homomorphism Φ∗ : G⊗G → L such
that Φ∗(g ⊗ g′) = Φ(g, g′) for all g, g′ ∈ G.

To compute the nonabelian tensor square of a group G, we conjec-
ture a group L that we believe is isomorphic to G⊗G and construct
a mapping Φ : G×G → L. We then show that Φ is a crossed pairing
and that the homomorphism Φ∗ is actually an isomorphism. This
method has been used to compute the nonabelian tensor square of
nilpotent of class 2 groups [1], [21], infinite metacyclic groups [4],
and the free 2-Engel groups [5], [9]. When the nonabelian tensor
square is not abelian, constructing the function Φ and showing it is
a crossed pairing can be very difficult. For example, computing the
nonabelian tensor square of the free 2-Engel groups required com-
puter assistance to symbolically manipulate the exponent functions
that arise in proving the mapping Φ is a crossed pairing (see [5] and
[9]). The crossed pairing method is an ad hoc method at best and
does not lead to an algorithm for computing the nonabelian tensor
square. To use this method one essentially has to know the answer
a priori. However, it has been the only method available until now
for computing the nonabelian tensor square of infinite groups.

The following group construction is found in [20]. Let G and Gϕ

be isomorphic groups via ϕ : g 7→ gϕ for all g ∈ G. Define the group
ν(G) to be

ν(G) = 〈G,Gϕ | k[g, hϕ] =
[

kg,
(
kh

)ϕ
]

= kϕ

[g, hϕ] ∀ g, h, k ∈ G〉,
(1)

where the commutator [x, y] is defined to be xyx−1y−1. The signif-
icance of this group construction to the nonabelian tensor square is
found in the following proposition.

Proposition 1 ([20]). Let G be a group. The map ρ : G ⊗ G →
[G,Gϕ] ¢ ν(G) defined by ρ(g ⊗ h) = [g, hϕ] is an isomorphism.

The following structural results were also obtained.
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Theorem 2 ([20]). Let G be a group.
(i) If G is finite then ν(G) is finite.
(ii) If G is a finite p-group then ν(G) is a finite p-group.
(iii) If G is nilpotent of class c then ν(G) is nilpotent of class at

most c + 1.
(iv) If G is solvable of derived length d then ν(G) is solvable of

derived length at most d + 1.

We can use Proposition 1 and Theorem 2 to compute the non-
abelian tensor square of a finite group G. We create the finite pre-
sentation for ν(G) given by (1). By Theorem 2 we know that ν(G)
is finite and hence we can find a concrete representation of ν(G) and
compute the subgroup [G,Gϕ], which by Proposition 1 is isomorphic
to G⊗G. In general, a concrete representation of ν(G) can be found
by coset enumeration and in the special cases when G is a p-group or
is nilpotent one can use a p-quotient or nilpotent quotient algorithm
to find a concrete representation of ν(G). The presentation given by
(1) is an improvement on the presentation given by the definition
of the nonabelian tensor square. If G has the presentation 〈X | R〉
then ν(G) has 2|X| generators and 2(|R|+ |G|3) relations.

The group ν(G) can be found in the language of crossed modules
[15] and its application for computing the nonabelian tensor product
can be found in [12]. The next theorem specializes the main result
in [12] to the nonabelian tensor square.

Theorem 3 ([12]). Let G be a group. Then

ν(G) ∼= G ∗Gϕ/〈J〉 ∼= ((G⊗G)oG)oG,

where J is a normal generating set and

J = {x[g, hϕ][xhϕ, xg]}
for x ∈ G ∗Gϕ and g, h ∈ G.

The presentation of ν(G) in Theorem 3 is infinite. The following
theorem gives us a finite presentation of ν(G) when G satisfies certain
finiteness conditions.

Theorem 4 ([12]). Let G be a group generated by the set X. Set D
to be the union of a generating set of Z(G), the center of G, and a
transversal of Z(G) in G. Then ν(G) ∼= G ∗Gϕ/〈J ′〉, where

J ′ = {z[g, hϕ][zhϕ, zg]} (for g, h ∈ X and z ∈ D)

is a normal generating set.
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It follows from Theorem 4 that if G = 〈X | R〉 then ν(G) has
a presentation with 2|X| generators and 2|R| + |X|2 · |D| relations.
If G is finite then this presentation is significantly smaller than the
presentation for ν(G) given in (1).

Russell Blyth, Joanne Redden and I [9] had just completed com-
puting the nonabelian tensor square of the free 2-Engel groups using
the crossed pairing method and wanted to extend our results to the
free nilpotent groups of class 3. The complexity of the crossed pairing
method in the 2-Engel case suggested we should look for a different
approach to the new problem. It follows from Theorem 4 and Theo-
rem 2 that if G is a finitely generated nilpotent group of class c then
ν(G) is a finitely generated nilpotent group of class at most c + 1.
Hence we started investigating the group ν(G) as a possible way to
compute G ⊗ G for G a free nilpotent group of class 3 and rank n.
The following specialization of a result found in [17] pushed us to
consider the more general class of polycyclic groups.

Theorem 5 ([17]). Let G be a polycyclic group. Then ν(G) = G ∗
Gϕ/〈J ′′〉, where the subgroup 〈J ′′〉 is normally generated by the words

g[gi, g
ϕ
j ]g−1[ggi, (ggj)ϕ]−1 and gϕ[gi, g

ϕ
j ](gϕ)−1[ggi, (ggj)ϕ]−1,

where gi, gj are elements of a generating set G of G and g is an
element of a polycyclic generating sequence G for G.

The following results are part of ongoing joint work [8].

Theorem 6. Let G be a polycyclic group. Then G ⊗ G and ν(G)
are polycyclic.

Corollary 7. Let G be a polycyclic group with a polycyclic gen-
erating sequence g1, . . . , gk. Then the subgroup [G, Gϕ] of ν(G) is
generated by

{[gi, g
ϕ
i ], [gε

i , (g
ϕ
j )δ]}

for 1 ≤ i, j,≤ k, i 6= j, where

ε =

{
1, if |gi| < ∞
±1 if |gi| = ∞ δ =

{
1, if |gϕ

j | < ∞
±1 if |gϕ

j | = ∞.

Theorems 5 and 6 and Corollary 7 provide the theoretical support
for an algorithm to compute the nonabelian tensor square of any
polycyclic group. Let G be a polycyclic group with generating set G
and polycyclic generating sequence G. Then by Theorem 5 we can
construct a finite presentation of ν(G). It follows from Theorem 6
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that ν(G) is polycyclic. Using a polycyclic quotient algorithm, we
can determine a polycyclic presentation of ν(G), which gives us the
ability to compute subgroups in ν(G). In particular we can compute
the subgroup [G,Gϕ] ∼= G ⊗ G using the generating set given in
Corollary 7.

This algorithm has been implemented in GAP using the Poly-
cyclic package [14] to compute with infinite and finite polycyclic
groups and the IPCQ package [11] to compute the polycyclic quotient
of a finitely presented group. The IPCQ package is experimental and
is not yet able to find the polycyclic presentation for ν(G) for G
any nonnilpotent infinite polycyclic group we have tried to date.
However, if G is nilpotent then we can effectively find a nilpotent
presentation for ν(G) using the nq package [19]. The nonabelian
tensor square of the free 2-Engel group of rank 3 was computed
using crossed pairings in [5]. Using our GAP implementation the
nonabelian tensor square of this group can be found in a few seconds.

It must be noted that the polycyclic presentation of the non-
abelian tensor square given by the algorithm above for a nilpotent
group G must be examined to find structural information about
G ⊗ G. Routines exist in GAP to determine the nilpotency class
and find the torsion subgroup of polycyclic groups. However, other
structural information, such as whether the group is a direct product,
can only be found by closely examining the polycyclic presentation
given for G⊗G.

Finding a polycyclic presentation for ν(G) is not necessary to
find information about [G,Gϕ]. A commutator calculus, which is
equivalent to working in the nonabelian tensor square, was developed
in [20]. The following lemmas summarize part of this calculus.

Lemma 8 ([20]). Let G be a group. The following relations hold in
ν(G):

(i) [g3,gϕ
4 ][g1, g

ϕ
2 ] =[g3,g4] [g1, g

ϕ
2 ] and

[gϕ
3 ,g4][g1, g

ϕ
2 ] =[g3,g4] [g1, g

ϕ
2 ] for all g1, g2,, g3, g4 ∈ G;

(ii) [gϕ
1 , g2, g3] = [g1, g2, g

ϕ
3 ] = [gϕ

1 , g2, g
ϕ
3 ] and

[g1, g
ϕ
2 , g3] = [gϕ

1 , gϕ
2 , g3] = [g1, g

ϕ
2 , gϕ

3 ] for all g1, g2,, g3 ∈ G;

(iii) [g, gϕ] is central in ν(G) for all g ∈ G;

(iv) [g1, g
ϕ
2 ][g2, g

ϕ
1 ] is central in ν(G) for all g1, g2 ∈ G;

(v) [g, gϕ] = 1 for all g ∈ G′.
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Lemma 9 ([20]). Let a, b and x be elements of a group G such that
[x, a] = 1 = [x, b]. Then in ν(G),

[a, b, xϕ] = 1 = [[a, b]ϕ, x].

Lemma 10 ([20]). Let x and y be elements of a group G such that
[x, y] = 1. Then in ν(G),

(i) [xn, yϕ] = [x, yϕ]n = [x, (yϕ)n] for all integers n;
(ii) If x and y are torsion elements of orders o(x) and o(y) in G,

then the order of [x, yϕ] in ν(G) divides the greatest common
divisor of o(x) and o(y).

Using this commutator calculus and the structural information
for ν(G) found in Theorem 2, we compute in [8] the nonabelian
tensor square of the free nilpotent group of class 3 and rank n. The
following group is needed to state our result.

Example 11. Let F be the free group of rank n(n − 1) and set N
to be F/γ3(F ) = 〈yi,j | 1 ≤ i, j ≤ n; i 6= j〉, the free nilpotent group
of class two and rank n(n− 1). Set

N = 〈[yi,j , yj,i], [yi,j , yk,l][yi,j , yl,k], [yi,j , yk,l][yj,i, yk,l],

[yi,j , yk,l][yl,k, yj,i] | 1 ≤ i, j, k, l ≤ n; i 6= j; k 6= l〉.
Since N ≤ N ′ ≤ Z(N ), the subgroup N is normal in N . Set

Wn = N/N = 〈wi,j | 1 ≤ i, j ≤ n; i 6= j〉,
where wi,j = yi,jN for 1 ≤ i, j ≤ n and i 6= j.

Theorem 12. Let G be a free nilpotent group of class 3 and rank
n. Then G⊗G ∼= Wn×Af(n) where Wn is the group in Example 11
and Af(n) is the free abelian group of rank

f(n) =
n(3n3 + 14n2 − 3n + 10)

24
.

The proof of Theorem 12 does not rely on computer calculations
but the identities and counting arguments found in the proof were
motivated and verified by using our GAP program to compute the
nonabelian tensor square for the free nilpotent groups of class 3 of
rank 3, 4 and 5.

Russell Blyth and I are extending the results above to compute the
nonabelian exterior square of polycyclic groups [7]. The nonabelian
exterior square of a group G, denoted by G ∧ G, is the group (G ⊗
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G)/O(G) where O(G) = 〈x ⊗ x | x ∈ G〉 is a central subgroup of
G⊗G. We denote (g ⊗ h)O(G) by g ∧ h for all g, h in G.

Computing the nonabelian exterior square has group theoretic
applications. We can compute the Schur multiplier M(G) of a group
G from the short exact sequence

0 → M(G) → G ∧G
κ′→ G′ → 1,

where κ′ : G ∧G → G′ is defined by κ′(g ∧ h) = [g, h] (see [3]). The
epicenter Z∗(G) of a group G is the intersection of all the central
extensions of G. We can compute the epicenter of a group from
the nonabelian exterior square in the following way. We define the
exterior center Z∧(G) of a group G as

Z∧(G) = {a ∈ G | a ∧ g = 1∧,∀g ∈ G}.
Theorem 13 ([13]). For any group G, the epicenter coincides with
the exterior center, i.e. Z∗(G) = Z∧(G).

We say a group G is capable if there exists a group H such that
H/Z(H) ∼= G. The following theorem shows that computing the
epicenter of a group provides a definitive test as to whether the
group is capable or not.

Theorem 14 ([2]). A group G is capable if and only if Z∗(G) = 1.

Let G and Gϕ be isomorphic groups via ϕ : g 7→ gϕ for all g ∈ G.
Define the group τ(G) to be

τ(G) = 〈G, Gϕ | k [g, hϕ] =
h

kg,
�

kh
�ϕi

= kϕ

[g, hϕ] , [g, gϕ] = 1 ∀ g, h, k ∈ G〉.
Our analysis of τ(G) follows that of ν(G). For example,

Proposition 15. Let G be a group. The map σ : G∧G → [G,Gϕ]¢
τ(G) defined by σ(g ∧ h) = [g, hϕ] is an isomorphism.

If G is polycyclic then it follows from Theorem 6 that G ∧G and
τ(G) are also. We have implemented GAP routines to compute the
nonabelian exterior square of any finitely generated nilpotent group
and to compute its Schur multiplier. Our computations for comput-
ing the nonabelian tensor square of the free nilpotent groups of class
3 and rank n can be adjusted to compute the nonabelian exterior
square of these groups. We are able to show that the epicenter of
these groups are trivial. Hence they are capable.
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Our plans are to formalize our GAP programs and publish them as
a GAP package. This package would compute the nonabelian tensor
square and exterior square for finite groups and infinite nilpotent
groups, their Schur multiplier, and the tensor and exterior centers
of these groups. We also hope to generalize some of our results to
a more general class of finitely generated groups than the polycyclic
groups.
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