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Groups with Few Normalizer Subgroups

FAUSTO DE MARI AND FRANCESCO DE GIOVANNI

Dedicated to Martin L. Newell

Abstract. The behaviour of normalizer subgroups of a group
has often a strong influence on the structure of the group it-
self. In this paper groups with finitely many normalizers of
subgroups with a given property χ are investigated, for vari-
ous relevant choices of the property χ.

1. Introduction

A subgroup X of a group G is called almost normal if it has finitely
many conjugates in G, or equivalently if its normalizer NG(X) has
finite index in G. In a famous paper of 1955, B. H. Neumann [17]
proved that all subgroups of a group G are almost normal if and only
if the centre Z(G) has finite index, and the same conclusion holds if
the restriction is imposed only to abelian subgroups (see [10]). Thus
central-by-finite groups are precisely those groups in which all the
normalizers of (abelian) subgroups have finite index, and this result
suggests that the behaviour of normalizers has a strong influence on
the structure of the group. In fact, Y.D. Polovickĭı [18] has shown
that if a group G has finitely many normalizers of abelian subgroups,
then the factor group G/Z(G) is finite.

Recently, groups have been considered with finitely many normal-
izers of subgroups with a given property (see [5], [6], [7], [8], [9]); the
aim of this paper is to give a survey exposition of the main theorems
on this subject. In particular, in Section 2 we consider groups in
which all but finitely many normalizers of abelian subgroups have fi-
nite index, obtaining as a corollary the theorem of Polovickĭı quoted
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above, while in Section 3 we describe groups with finitely many nor-
malizers of non-abelian subgroups, with special emphasis on the case
of groups in which every subgroup is either normal or abelian. The
last two sections are devoted to the structure of groups with finitely
many normalizers of subnormal or non-subnormal subgroups, respec-
tively.

Most of our notation is standard and can for instance be found
in [20].

2. Normalizers of Abelian Subgroups

The following result plays a central role in the study of groups with
finitely many normalizers of subgroups with a given property. It was
proved by B. H. Neumann [16] in the more general case of groups
covered by finitely many cosets, and can for instance be used to
prove that every group covered by finitely many abelian subgroups
is central-by-finite.

Lemma 2.1. Let the group G = X1∪ . . .∪Xt be the union of finitely
many subgroups X1, . . . , Xt. Then any Xi of infinite index can be
omitted from this decomposition; in particular, at least one of the
subgroups X1, . . . , Xt has finite index in G.

Our first main result is taken from [6] and describes groups con-
taining only finitely many normalizers of abelian subgroups which
are not almost normal. Recall that the FC-centre of a group G
is the subgroup consisting of all elements of G having only finitely
many conjugates, and a group G is called an FC-group if G coincides
with its FC-centre. Thus a group G has the property FC if and only
if the centralizer CG(x) has finite index in G for each element x; in
particular, abelian-by-finite FC-groups are central-by-finite.

Theorem 2.2. Let G be a group in which all but finitely many nor-
malizers of abelian subgroups have finite index. Then the factor group
G/Z(G) is finite.

Proof. Let NG(X1), . . . , NG(Xk) be the normalizers of infinite index
of abelian subgroups of G, and let F be the FC-centre of G. Clearly,

G = F ∪NG(X1) ∪ . . . ∪NG(Xk)

and so it follows from Lemma 2.1 that G = F is an FC-group.
Another application of Lemma 2.1 yields that the set NG(X1)∪ . . .∪
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NG(Xk) is properly contained in G. Let x be an element of

G \ (NG(X1) ∪ . . . ∪NG(Xk)),

and consider any infinite abelian subgroup A of the centralizer CG(x);
as x normalizes A, the normalizer NG(A) must have finite index
in G. Thus all abelian subgroups of CG(x) are almost normal, and
so CG(x) is central-by-finite (see [10]). On the other hand, the index
|G : CG(x)| is finite, so that G is an abelian-by-finite FC-group and
hence G/Z(G) is finite. ¤

Polovickĭı’s theorem is obviously a consequence of Theorem 2.2.

Corollary 2.3. Let G be a group with finitely many normalizers of
abelian subgroups. Then the factor group G/Z(G) is finite.

If G is an arbitrary group, the norm N(G) of G is the intersection
of all the normalizers of subgroups of G; this concept was introduced
by R. Baer, and it is well known that Z(G) ≤ N(G) ≤ Z2(G). It
follows from Corollary 2.3 that if G is a group such that G/N(G) is
finite, then also G/Z(G) is finite (of course this is also a direct con-
sequence of Neumann’s theorem quoted in the introduction). Some
evidence of the fact that the factor group N(G)/Z(G) is usually
small is given by a recent result of J. C. Beidleman, H. Heineken and
M. L. Newell (see [1], Theorem 2).

3. Normalizers of Non-abelian Subgroups

This section is devoted to the study of groups with finitely many
normalizers of non-abelian subgroups. The first step is of course
the consideration of groups in which every non-abelian subgroup
is normal. Groups with this property are called metahamiltonian
groups; they were introduced and investigated by G. M. Romalis
and N. F. Sesekin ([22], [23], [24]), who proved that every locally sol-
uble metahamiltonian group is soluble with derived length at most
3 and its commutator subgroup is finite with prime-power order. As
the original papers of Romalis and Sesekin are in Russian language
and not easily available, we give here a proof of their main result in
the case of locally graded groups. Recall that a group G is locally
graded if every finitely generated non-trivial subgroup of G contains
a proper subgroup of finite index; thus all locally (soluble-by-finite)
groups are locally graded. Clearly, Tarski groups (i.e., infinite sim-
ple groups whose proper non-trivial subgroups have prime order)
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are metahamiltonian, and the assumption that the group is locally
graded is necessary in order to avoid this and other similar patholo-
gies.

Lemma 3.1. Let G be a residually finite metahamiltonian group.
Then G is either nilpotent or abelian-by-finite, and in particular it
locally satisfies the maximal condition on subgroups.

Proof. Suppose that G is not abelian-by-finite, and let H be the set
of all subgroups of finite index of G; then each element H of H is
normal in G and G/H is a Dedekind group. Therefore

γ3(G) ≤
⋂

H∈H

H = {1}

and hence G is nilpotent. ¤

Lemma 3.2. Let G be a metahamiltonian group, and let A be a
finitely generated torsion-free abelian normal subgroup of G. Then
A is contained in Z(G).

Proof. Assume by contradiction that there exists an element x of G
such that [A, x] 6= {1}, and suppose first that A∩〈x〉 = {1}. Clearly,
there exists an odd prime number p such that [Apn

, x] 6= {1} for all
positive integers n; then for each n the subgroup Apn〈x〉 is normal
in G and G/Apn〈x〉 is a Dedekind group. As p > 2, it follows that
[A, x] is contained in Apn〈x〉 for all n and so also in 〈x〉. Therefore
[A, x] = {1}, and this contradiction shows that

A ∩ 〈x〉 = 〈xm〉 6= {1}.
Let

A/A ∩ 〈x〉 = E/A ∩ 〈x〉 ×B/A ∩ 〈x〉,
where E/A ∩ 〈x〉 is finite and B/A ∩ 〈x〉 is torsion-free. As A ∩ 〈x〉
is contained in Z(〈x,A〉) and 〈E, x〉/A ∩ 〈x〉 is finite, by Schur’s
theorem we have that [E, x] is a finite subgroup of A (see [20], Part 1,
Theorem 4.12), and so [E, x] = {1}. On the other hand, A/E is a
torsion-free abelian normal subgroup of 〈x,A〉/E and 〈xE〉∩A/E =
{1}, so that it follows from the first part of the proof that [A, x] ≤ E.
Therefore [A, x, x] = {1}, and hence

[A, x]m = [A, xm] = {1}.
Thus [A, x] = {1} and this last contradiction completes the proof of
the lemma. ¤
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Lemma 3.3. Let G be a metahamiltonian group with finite commu-
tator subgroup. Then the order of G′ is a prime-power number.

Proof. As G′ is finite, there exists a finitely generated subgroup E of
G such that E′ = G′. Moreover, E/Z(E) is finite and Z(E) contains
a torsion-free subgroup A of finite index; clearly G′ = E′ ' E′A/A
and hence replacing G by E/A, it can be assumed without loss of
generality that G is finite. If X is any Sylow p-subgroup of G, by
hypothesis either X is normal in G or NG(X) = CG(X) and in the
latter case G is p-nilpotent (see for instance [21], 10.1.8). It follows
that G contains a normal non-trivial Sylow subgroup P , and by
the Schur-Zassenhaus Theorem there exists a subgroup Q of G such
that G = QnP . If Q is abelian, G′ is contained in P and hence
it has prime-power order. Suppose that Q is not abelian, so that
G = P ×Q. If P is abelian, G′ is contained on Q and by induction
on the order of G we have that G′ has prime-power order. Assume
finally that also P is not abelian. Then G/P and G/Q are Dedekind
groups and hence G′ has order at most 4. The lemma is proved. ¤

Theorem 3.4. Let G be a locally graded metahamiltonian group.
Then G is soluble with derived length at most 3 and the commutator
subgroup G′ of G is finite with prime-power order.

Proof. Suppose first that G is soluble. In order to prove that G′

is finite, it can be assumed by induction on the derived length of
G that G′′ is finite; replacing G by G/G′′ we may also suppose
that G is metabelian. Let E be a finitely generated non-abelian
subgroup of G. Then E is normal in G and G/E is a Dedekind
group; as E is residually finite (see [20], Part 2, Theorem 9.51), it
follows from Lemma 3.1 that E is polycyclic and hence G′ is finitely
generated. Thus G itself can be assumed to be finitely generated
and so even polycyclic. Moreover, Lemma 3.1 yields that G contains
a torsion-free nilpotent normal subgroup N of finite index. Let A
be a maximal abelian normal subgroup of N , so that CN (A) = A;
on the other hand, A is contained in Z(N) by Lemma 3.2 and hence
N = A is abelian. It follows again from Lemma 3.2 that N lies in
Z(G), so that G/Z(G) is finite and hence G′ is finite.

In the general case, let X be the set of all non-abelian subgroups
of G, and put

M =
⋂

X∈X

X.
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Clearly, each element X of X is a normal subgroup of G and G/X is a
Dedekind group, so that M is normal in G and G′′ ≤ M . Moreover,
M is a locally graded group whose proper subgroups are abelian, so
that M is either abelian or finite. Therefore G is soluble-by-finite.
Let R be the largest soluble normal subgroup of G. If R is a subgroup
of Z(G), it follows that G/Z(G) is finite, so that G′ is finite and
hence G is soluble by Lemma 3.3. Suppose that R is not contained
in Z(G), and let x be an element of G such that [R, x] 6= {1}; the
soluble subgroup R〈x〉 is not abelian, so that it is normal in G and in
particular R〈x〉 = R. Thus R is not abelian and G/R is a Dedekind
group, so that G is soluble also in this case. It follows now from
the first part of the proof and from Lemma 3.3 that G′ is a finite
subgroup with prime-power order.

Assume finally for a contradiction that G(3) 6= {1} and let a and
b be elements of G′′ such that [a, b] 6= 1. Then 〈a, b〉 is normal in
G and G/〈a, b〉 is a Dedekind group, so that G′′ = 〈a, b〉 and G′/G′′

has order 2. As G′ is nilpotent, it follows that G′′ = {1} and this
contradiction completes the proof of the theorem. ¤

Of course, nothing can be said about the solubility of groups
with finitely many normalizers of non-abelian subgroups; moreover,
the derived length of soluble groups with this property cannot be
bounded. Therefore the following result proved in [5] is the best
possible extension of Theorem 3.4 to this class of groups.

Theorem 3.5. Let G be a locally graded group with finitely many
normalizers of non-abelian subgroups. Then the commutator sub-
group G′ of G is finite.

The consideration of the infinite dihedral group shows that a
group with finite conjugacy classes of non-abelian subgroups may
have infinite commutator subgroup. However, if we denote by N∗(G)
the non-abelian norm of the group G (i.e. the intersection of all the
normalizers of non-abelian subgroups of G), the above theorem has
the following consequence, that can also be considered as a general-
ization of the famous Schur’s theorem on the finiteness of the derived
subgroup of central-by-finite groups.

Corollary 3.6. Let G be a locally graded group such that the factor
group G/N∗(G) is finite. Then the commutator subgroup G′ of G is
finite.
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It must be mentioned here that B. Bruno and R. E. Phillips [2] ex-
tended the investigation of Romalis and Sesekin, considering groups
whose non-normal subgroups are locally nilpotent. They worked
within the universe of W-groups (where W is the class of all groups
in which every finitely generated non-nilpotent subgroup has a finite
non-nilpotent homomorphic image), and proved that in this case
groups with the above property either are locally nilpotent or have
finite commutator subgroup. Note that all locally (soluble-by-finite)
groups have the property W. In this context, the following result on
normalizer subgroups has been obtained in [9].

Theorem 3.7. Let G be a W-group with finitely many normalizers
of non-(locally nilpotent) subgroups. Then either G is locally nilpo-
tent or its commutator subgroup G′ is finite.

It follows that if a W-group G has finitely many normalizers
of non-(locally nilpotent) subgroups, then G even has only finitely
many normalizers of non-nilpotent subgroups. However, it seems
difficult to deal with locally nilpotent groups with finitely many nor-
malizers of non-nilpotent subgroups; in fact, there exist (soluble)
groups with trivial centre in which all proper subgroups are nilpo-
tent and subnormal (see [13]) and such groups can have arbitrarily
high derived length (see [14]).

4. Normalizers of Subnormal Subgroups

A group G is called a T -group if normality is a transitive relation in
G, i.e., if all subnormal subgroups of G are normal. The structure
of soluble T -groups has been described by W. Gaschütz [12] in the
finite case and by D. J. S. Robinson [19] for arbitrary groups. It
turns out in particular that soluble groups with the property T are
metabelian and hypercyclic, and that finitely generated soluble T -
groups either are finite or abelian. In recent years, many authors
have investigated the structure of soluble groups in which normality
is imposed only on certain relevant systems of subnormal subgroups;
other classes of generalized T -groups can be introduced by imposing
that the set of all subnormal non-normal subgroups of the group is
small in some sense.

The Wielandt subgroup ω(G) of a group G is defined to be the
intersection of all the normalizers of subnormal subgroups of G; this
concept is naturally analogous to the norm of a group. Clearly, ω(G)
is a T -group, and G is a T -group if and only if it coincides with
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its Wielandt subgroup; thus the size of G/ω(G) can be considered
as a measure of the distance of the group G from the property T .
For instance, it is well known that if G is a group satisfying the
minimal condition on subnormal subgroups, then G/ω(G) is finite
(see [20], Part 1, Theorem 5.49). Moreover, if G is a group such that
G/ω(G) is finite, it is clear that each subnormal subgroup of G has
only finitely many conjugates; conversely, C. Casolo proved that if a
soluble group G has boundedly finite conjugacy classes of subnormal
subgroups, then the Wielandt subgroup ω(G) has finite index in G
(see [3], Theorem 4.8). Of course, the finiteness of G/ω(G) also
implies that the group G has finitely many normalizers of subnormal
subgroups, and groups with this latter property generalize those in
which normality is a transitive relation. The following result has
recently been proved in [8]; it shows in particular that for a periodic
soluble group G the finiteness of the set of normalizers of subnormal
subgroups is equivalent to that of the index |G : ω(G)|.
Theorem 4.1. Let G be a soluble group with finitely many nor-
malizers of subnormal subgroups. If G locally satisfies the maximal
condition on subgroups, then the Wielandt subgroup ω(G) has finite
index in G.

A better result can be proved for finitely generated soluble groups
with finitely many normalizers of subnormal subgroups. In fact, it
turns out that such groups are central-by-finite, and so in particu-
lar finitely generated torsion-free soluble groups with finitely many
normalizers of subnormal subgroups must be abelian (see [8]).

5. Normalizers of Non-subnormal Subgroups

It is well known that a finite group is nilpotent if and only if all its
subgroups are subnormal but, as we mentioned at the end of Sec-
tion 3, there exist infinite groups with trivial centre and all subgroups
subnormal. The structure of groups in which every subgroup is sub-
normal has recently obtained much attention; among many other
deep results, W. Möhres [15] proved that such groups are soluble.

As a contribution to the theory of groups with few non-subnormal
subgroups, in this section we will describe groups with finitely many
normalizers of non-subnormal subgroups; it turns out that such
groups coincide with those in which every subgroup either is sub-
normal or has finitely many conjugates (see [7]), and groups with
this latter property have been completely characterized in [11].
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Recall that the Baer radical of a group G is the subgroup gen-
erated by all abelian subnormal subgroups of G, and G is called a
Baer group if it coincides with its Baer radical. In particular, ev-
ery Baer group is locally nilpotent and all its cyclic subgroups are
subnormal. The following lemma shows in particular that groups
with finitely many normalizers of non-subnormal subgroups either
are Baer groups or have the property FC.

Lemma 5.1. Let G be a group in which all but finitely many nor-
malizers of non-subnormal subgroups have finite index. Then G is
either a Baer group or an FC-group.

Proof. Let B and F be the Baer radical and the FC-centre of G,
respectively. If x is any element of the set G \ (B ∪ F ), the sub-
group 〈x〉 is not subnormal and the index |G : NG(〈x〉)| is infinite.
Therefore

G = B ∪ F ∪NG(X1) ∪ . . . ∪NG(Xk),
where NG(X1), . . . , NG(Xk) are all normalizers of infinite index of
non-subnormal subgroups of G. It follows from Lemma 2.1 that
G = B ∪ F , so that either G = B is a Baer group or G = F is an
FC-group. ¤

Theorem 5.2. For a group G the following statements are equiva-
lent:

(i) G has finitely many normalizers of non-subnormal subgroups.
(ii) All but finitely many normalizers of non-subnormal subgroups

of G have finite index.
(iii) Every subgroup of G is either subnormal or almost normal.

The above theorem allows us to give a complete description of
groups with finitely many normalizers of non-subnormal subgroups.
In fact, it follows from Proposition 2.2 and Theorem 2.8 of [11] that a
group G has this property if and only if satisfies one of the following
conditions:

(a) all subgroups of G are subnormal;
(b) the factor group G/Z(G) is finite;
(c) G is periodic and contains a nilpotent normal subgroup N of

finite index and class 2 whose commutator subgroup is cyclic
with prime-power order pk; moreover, the Fitting subgroup
F of G has index a power of p and N ′ ≤ 〈x〉 for each element
x of G \ F .
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Since a torsion-free group in which all subgroups are subnormal
is nilpotent (see [4] or [25]), we have the following consequence.

Corollary 5.3. Let G be a torsion-free group in which all but finitely
many normalizers of non-subnormal subgroups have finite index.
Then G is nilpotent.

If G is any group, we shall denote by ω∗(G) the intersection of all
the normalizers of non-subnormal subgroups of G (with the stipula-
tion that ω∗(G) = G if all subgroups of G are subnormal).

Corollary 5.4. Let G be a group with finitely many normalizers of
non-subnormal subgroups. Then the factor group G/ω∗(G) is finite.

Proof. Clearly, it can be assumed that G contains subgroups which
are not subnormal, so that it is an FC-group by Lemma 5.1 and
Theorem 5.2. Then by the above description we may also suppose
G contains a nilpotent normal subgroup N of finite index such that
N ′ lies in every non-subnormal subgroup of G. As G/N ′ is central-
by-finite, it follows that G/ω∗(G) is finite. ¤
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[15] W. Möhres, Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal
sind, Arch. Math. (Basel) 54 (1990), 232–235.

[16] B. H. Neumann, Groups covered by permutable subsets, J. London Math.
Soc. 29 (1954), 236–248.

[17] B. H. Neumann, Groups with finite classes of conjugate subgroups, Math.
Z. 63 (1955), 76–96.
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