Fibonacci Sequences in Groups

D. L. JOHNSON

1. INTRODUCTION

An ordered pair (x_1, x_2) of elements of a group G determines a sequence in G by the rule

$$x_n x_{n+1} = x_{n+2}, \quad n \in \mathbb{N}.$$

When this sequence is periodic, its fundamental period is called the *Fibonacci length* of (x_1, x_2) in G. When G is a finite 2-generator group, the minimum of these lengths over all generating pairs defines an invariant $\lambda(G)$ of G.

After briefly listing some known results, we launch the quest for infinite groups of finite Fibonacci length by giving three modest examples and conclude with a selection of open problems.

2. FINITE GROUPS

The cyclic case was covered by D. D. Wall in [7]. Since the classical Fibonacci series of integers modulo 5 has fundamental period equal to 20, it follows that this is the value of $\lambda(Z_5 \times Z_5)$. It is a remarkable fact [1] that the restricted Burnside group R(2,5) also has length 20. Simple groups of order less than a million are considered in [3] and, more recently, the binary polyhedral groups are studied in [2], which contains a useful list of references.

It is a pleasure to acknowledge the generous hospitality of the Maths Department at Galway during the conference and to have the opportunity to wish Martie a long and successful tenure in his new role as University Contentment Officer.

D. L. Johnson

3. Infinite Groups

Many of the Fibonacci groups themselves, which are defined by means of a presentation using the relations (1), are known to be infinite. Here we seek examples that "occur in nature".

To begin with a non-example, the Fibonacci length of the infinite cyclic group Z is not defined. Indeed, it follows from a result in [6] that for any non-zero r-tuple $(x_1, \ldots, x_r) \in \mathbb{Z}^r$ with $r \in \mathbb{N}$, the sequence defined by

$$x_n + x_{n+1} + \dots + x_{n+r-1} = x_{n+r}, \quad n \in \mathbb{N},$$
(2)

is non-periodic. Thus, a necessary condition for a group to have finite Fibonacci length is that its derived group be of finite index.

Example 1. For the group

$$Z_2 * Z_2 = \langle a, b \mid a^2 = b^2 = 1 \rangle,$$

we obtain the sequence

$$a, b, ab, bab, b, ba, a, b, \ldots,$$

showing that the infinite dihedral group has Fibonacci length at most 6. Since the Fibonacci group F(2, n) (see [6]) is finite for $n \leq 5$ this length is precisely 6.

Example 2. In the case of the right-angled Coxeter group

$$C = \langle a, b, c \mid a^2 = b^2 = c^2 = (bc)^2 = 1 \rangle,$$

we take $(x_1, x_2, x_3) = (a, b, c)$ and generalize (1) to the multiplicative version of the equations (2) with r = 3 and so define λ_3 in analogy with $\lambda = \lambda_2$ above. The resulting sequence

$$a, b, c, abc, bcabc, b, c, bca, a, b, c, \ldots$$

shows that $\lambda_3(C) \leq 8$.

Note that this group is large in the sense of [4]: the subgroup generated by x = ab and y = bc has index 2 and is given by the presentation

$$C^+ = \langle x, y \mid y^2 = 1 \rangle,$$

and the subgroup of C^+ generated by x and yxy again has index 2 and is free on these generators.

Our final example is rather more ambitious.

Definition. A permutation $\pi \in \text{Sym}(\mathbb{Z})$ is said to be *n*-periodic, $n \in \mathbb{N}$, if

$$(i+n)\pi = i\pi + n, \quad \forall i \in \mathbb{Z},$$

and then n is a *period* of π .

Remarks. 1. For such a π , we have

$$i \equiv j \pmod{n} \Longrightarrow i\pi \equiv j\pi \pmod{n},$$
 (3)

so that π acts on the residue classes modulo n and thus defines a member of the symmetric group Sym(n). Moreover, π is determined by its values on the residues $0, 1, \ldots, n-1$:

$$i\pi = i + a_i, \quad 0 \le i \le n - 1,$$

where $a_i \in \mathbb{Z}$, and we call $(a_0, a_1, \ldots, a_{n-1})$ the signature of π .

2. If $\alpha, \beta \in \text{Sym}(\mathbb{Z})$ are *m*-, *n*-periodic respectively, then $lcm\{m, n\}$ is a period of $\alpha\beta$, whence the set of all *n*-periodic permutations forms a group $\text{Sym}_n(\mathbb{Z})$. The union of the $\text{Sym}_n(\mathbb{Z})$ is the group $\text{Sym}_*(\mathbb{Z})$ of periodic permutations.

3. Taking n = 1 in (3), we see that $\operatorname{Sym}_1(\mathbb{Z})$ is just the cyclic group generated by the successor permutation σ sending i to i + 1 for all i. Since every cycle in every power of σ is periodic, we also see that $\operatorname{Sym}_*(\mathbb{Z})$ contains the group $\operatorname{Cyc}(\langle \sigma \rangle)$ of all modular permutations of \mathbb{Z} (in the sense of [5]).

4. In the light of these remarks, a little thought shows that the group $\operatorname{Sym}_n(\mathbb{Z})$ is naturally isomorphic to the wreath product Z wr $\operatorname{Sym}(n)$.

Example 3. The periodic permutations with signatures

$$\alpha = (2, -2), \quad \beta = (3, -2, -1)$$

both belong to $\text{Sym}_6(\mathbb{Z})$ and generate a subgroup H isomorphic to an extension of Z^5 by the alternating group A_6 . They determine the following Fibonacci sequence (written as a column, with parentheses and commas omitted).

2	-2	2	-2	2	-2
3	-2	-1	3	-2	-1
1	-3	0	-4	5	1
-1	$^{-1}$	-4	4	-2	4
0	-5	-4	0	9	0
-1	-1	5	-1	-6	4
-1	0	-10	-1	8	4
3	-2	5	-11	2	3
2	-2	-8	4	11	-7
7	-9	3	0	4	-5
5	-7	$^{-1}$	-5	11	-3
0	2	0	-5	3	0
5	-7	1	-2	6	-3
5	0	1	1	-4	-3
2	-2	2	-2	2	-2
3	-2	-1	3	-2	-1

We deduce that $\lambda(H) \leq 14$.

4. Some Open Problems

Problem 1. Re the last example, surely $\lambda(H) = 14$?

Problem 2. Is this group *H* torsion-free?

Problem 3. Can anything be said about the rate of growth of the sequence $\lambda(A_n)$, $n \ge 4$ where A_n is the alternating group of degree n? (It begins with 16, 12, 10.)

Problem 4. Is the containment $\operatorname{Cyc}(\langle \sigma \rangle) \leq \operatorname{Sym}_*(\mathbb{Z})$ proper?

Problem 5. Does there exist a large group $G = \langle x_1, x_2 \rangle$ in which the Fibonacci length of (x_1, x_2) is finite?

References

- H. Aydin and G. C. Smith, Finite p-quotients of some cyclically presented groups, J. London Math. Soc. 49 (1994), 83–92.
- [2] C. M. Campbell and P. P. Campbell, Search techniques and epimorphisms between certain groups and Fibonacci groups, these proceedings, pp. 21–28.
- [3] C. M. Campbell, H. Doostie and E. F. Robertson, Fibonacci length of generating pairs in groups, in: *Applications of Fibonacci numbers*, vol. 3 (ed. G. A. Bergum et al), Kluwer, Dordrecht 1990, pp. 27–35.

- [4] M. Edjvet and S. J. Pride, The concept of 'largeness' in group theory. 2, Lecture Notes in Math. 109 (1984), 29–54.
- [5] C. C. Fiddes and G. C. Smith, The cyclizer function on permutation groups, these proceedings, pp. 53–74.
- [6] D. L. Johnson, A note on the Fibonacci groups, Israel J. Math. 17 (1974), 277–282.
- [7] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 7 (1960), 525–532.

D. L. Johnson,

dlj@maths.nott.ac.uk