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The F a,b,c Conjecture, I

GEORGE HAVAS AND EDMUND F. ROBERTSON

Abstract. In 1977 a five-part conjecture was made about
a family of groups related to trivalent graphs and one part
of the conjecture was proved. The conjecture completely de-
termines all finite members of the family. Here we prove
another part of the conjecture and foreshadow a paper which
completes the proof of the other three parts.

1. Introduction

R M Foster became interested in symmetrical graphs which could be
used as electrical networks in the 1920s, and worked on this subject
for many years. At a conference held in Waterloo, Ontario, in April
1966, Foster presented a census of symmetric trivalent graphs with
up to 400 vertices. H S M Coxeter, who had one of the few copies of
Foster’s census, became interested. As part of Coxeter’s investigation
he defined the groups F a,b,c by

F a,b,c = 〈r, s | r2, rsarsbrsc〉.
These arose because some of the groups have Cayley diagrams

which are ‘0-symmetric’ or ‘faithful’. Campbell, Coxeter and Robert-
son investigated the groups F a,b,c in [1] and, after determining the
structure of various subclasses, made ‘the F a,b,c conjecture’ which
we state after some preliminaries. Combined with some results in [1]
this conjecture completely describes the structure of all finite groups
in the F a,b,c family in terms of a specific finite quotient which is fully
understood.

Define n = a + b + c and d = (a− b, b− c). The structure of the
groups

Ha,b,c = 〈r, s | r2, s2n, rsarsbrsc〉
is completely determined in Section 3 of [1]. If n = 0 then F a,b,c

is clearly infinite. In [1] the structure of F a,b,c is fully described
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for the situation where the greatest common divisor of a, b and c
is not one, including all finite cases. The conjecture addresses the
remaining cases. Provided (a, b, c) = 1, n 6= 0 and (d, 6) 6= 6, the
groups Ha,b,c are finite metabelian groups. If d ≥ 6 the groups F a,b,c

are infinite [1].
The F a,b,c conjecture is as follows. Suppose (a, b, c) = 1 and

n 6= 0. Let
θ : F a,b,c → Ha,b,c

be the natural homomorphism. Let N = ker θ. Then

N = 1 if d = 1,

N = 1 if d = 2,

N ∼= C2 if d = 3,

N ∼= Q8 if d = 4,

N ∼= SL(2, 5) if d = 5.

The conjecture was proved true when d = 1 in [3], see also Corol-
lary 3.4 of [4] for an alternative proof. Many special cases supporting
the conjecture have been proved, see [1], [4], [5], [9], and [10]. Here
we present a proof that the conjecture holds when d = 5. The proof
was suggested from a study of small cases investigated with the ACE
coset enumerator [6], as available in GAP [7]. The way ACE helped
was by indicating that the following steps were true in specific in-
stances. The proof of the conjecture in the cases d = 2, 3 and 4 is
quite different in nature from that presented in this paper since in
these cases (d, 6) 6= 1. The proof for these remaining three cases will
appear in [8], where we make use of computer-generated proofs for
specific instances to motivate our general proofs.

2. Proof of the Conjecture when d = 5

In what follows we assume that d = 5 and N = ker θ. First we
indicate the strategy behind our proof by breaking the proof into a
number of steps.

Step 1. s2n commutes with rs5r.
Step 2. s10n is central in F a,b,c.
Step 3. u = s2n, v = rs2nr generate N .
Step 4. u5, v5, (uv)3 and (vu2)2 are central in N .
Step 5. Put M = 〈u5, v5, (uv)3, (vu2)2〉. Then N/M ∼= A5.
Step 6. N is perfect.
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Step 7. M is the multiplier of A5.
Step 8. N ∼= SL(2, 5).

We proceed to prove each of these steps in turn. We will use the
notation x ∼ y to mean that x commutes with y.
Proof of Step 1. From r2 = 1 and rsarsbrsc = 1 we have

(sarsb)(s−crs−b) = (rs−cr)(rsar) = rsa−cr.

Hence sa(rsb−cr)s−b = rsa−cr.
Similarly sb(rsc−ar)s−c = rsb−ar and sc(rsa−br)s−a = rsc−br.

From the first and third of these we have s2a(rsb−ar)s−b−c = rsa−cr,
and using the second of the three relations

s2a+b(rsc−ar)s−b−2c = rsa−cr.

Hence
s2a+bsb+2c(rsa−cr)s−2a−bs−b−2c = rsa−cr

showing that s2n ∼ rsa−cr. Similarly s2n ∼ rsb−ar so, since 5 = d =
(a− c, b− a), s2n ∼ rs5r.

This step already appears as Lemma 1.1 of [5] based on details
which are in the proof of Theorem 4.1 of [1].
Proof of Step 2 (Theorem 2.6 of [5]). Since a ≡ b ≡ c (mod 5) we
have n ≡ 3a (mod 5) so n ≡ 0 (mod 5) if and only if 5 | (a, b, c)
showing that n is coprime to 5. From Step 1, s2n ∼ rs5r so s5 ∼
rs2nr. Hence s10n ∼ rs5r and s10n ∼ rs2nr. Since (5, 2n) = 1, we
have s10n ∼ rsr. We now see that s10n ∼ rsar, so s10n ∼ s−crs−b,
showing that s10n ∼ r and so s10n is central in F a,b,c.
Proof of Step 3. To prove that 〈u, v〉 = N we need to show that
N = 〈u〉F = 〈u, v〉. Put N̂ = 〈u, v〉. Then rur = v ∈ N̂ and
s−1us = u ∈ N̂ . Also rvr = u ∈ N̂ . It remains to consider s−1vs.

Now s5 ∼ rs2nr so, if a ≡ b ≡ c ≡ 1 (mod 5), s2n−1 ∼ rs2nr.
Hence

s−1rs2nrs = s−2n.rs2nr.s2n = u−1vu.

Similarly if a ≡ b ≡ c ≡ 2 (mod 5), s−1rs2nrs = u−3vu3, while
a ≡ b ≡ c ≡ 3 (mod 5) gives s−1rs2nrs = u−2vu2 and a ≡ b ≡ c ≡ 4
(mod 5) gives s−1rs2nrs = u−4vu4.
Proof of Step 4. First we need a lemma.

Lemma 2.1. (i) s2n commutes with rs2nrs2nr.
(ii) s2n commutes with rs2nrs4nrs2nr.
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Proof. (i) s2n commutes with rsarsbr since it commutes with sc.
Since a ≡ b ≡ c (mod 5) we see that

2n− a ≡ a + 2b + 2c ≡ 0 (mod 5)

so s2n ∼ rs2n−ar.
Similarly s2n ∼ rs2n−br so

s2n ∼ rs2n−ar.rsarsbr.rs2n−br = rs2nrs2nr.

(ii) rs2nrs4nrs2nr = (rs2nrs2nr)2. ¤
We need to check that u5, v5, (uv)3 and (vu2)2 are central in N .

The first two are easy since u5 = s10n which is central in N by
Step 2. Also v5 = rs10nr. But s10n is central in F a,b,c by Step 2 so
v5 = s10n which is central in N .

Before proving the final two elements are central we prove another
lemma.

Lemma 2.2. (s2nr)6 = (rs2nrs4n)2.

Proof.

(s2nr)6 = s2n.rs2nrs2nr.s2n.rs2nrs2nr

= rs2nrs2nr.rs2nrs2nr.s4n

= rs2nrs4nrs2nrs4n

= (rs2nrs4n)2

¤
By Lemma 2.2 we see that (uv)3 = (vu2)2 so to prove these ele-

ments central it suffices to examine one of them.

u(vu2)2 = s2nrs2nrs4nrs2nrs4n

= rs2nrs4nrs2nrs6n

= (vu2)2u

Also

v(vu2)2 = rs2nr.rs2nrs4nrs2nrs4n

= rs4nrs4nrs2nrs4n

But

(vu2)2v = rs2nrs4nrs2nrs4n.rs2nr

= rs4nrs4nrs2nrs4n.

Hence v(vu2)2 = (vu2)2v as required.
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Proof of Step 5. Certainly M is a normal subgroup of N since its
generators are central. Thus N/M is a homomorphic image of

L ∼= 〈u, v | u5, v5, (uv)3, (vu2)2〉.
It is easy to see, by coset enumeration, that L ∼= A5. It remains to
prove that N is nontrivial. Suppose, by way of contradiction, that N
is trivial. Then, in this case F a,b,c ∼= Ha,b,c, so F a,b,c is metabelian.
However adding the relation s5 = 1 to the presentation for F a,b,c

gives A5 as an image of the metabelian group F a,b,c which is the
necessary contradiction.
Proof of Step 6. To prove that N is perfect we add the relation u ∼ v
to the relations for N to give N ′ and prove that u = v = 1 in N ′.

Now u ∼ v gives s2n ∼ rs2nr. But we also have s2n ∼ rs5r by
Step 1 so, since (2n, 5) = 1, we have s2n ∼ rsr.

However r = sarsbrsc and s2n commutes with the right hand side
so s2n ∼ r proving that s2n is central.

Also rs2nr = s2n so u = v. That s2n = 1 now follows from
Theorem 3.3 of [4] in which the Schur multiplier of Ha,b,c is shown
to be trivial.

This proves that N is perfect.
Proof of Step 7. We have M ≤ Z(N) and M ≤ N ′. Also N/M ∼= A5,
so M is contained in the multiplier of A5. M is nontrivial because
otherwise F a,b,c is an extension of A5 by Ha,b,c which has multiplier
C2 (see [2]). This contradicts the fact that F a,b,c has deficiency zero.
Proof of Step 8. This follows from what has been proved above.
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