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Locally Nilpotent Linear Groups

A. S. DETINKO AND D. L. FLANNERY

Dedicated to Martin L. Newell

Abstract. This article examines aspects of the theory of
locally nilpotent linear groups. We also present a new clas-
sification result for locally nilpotent linear groups over an
arbitrary field F.

1. Why Locally Nilpotent Linear Groups?

Linear (matrix) groups are a commonly used concrete representation
of groups. The first investigations of linear groups were undertaken
in the second half of the 19th century, and currently linear group
theory is a highly developed branch of group theory. In the past few
decades interest in matrix groups has revived and increased, driven
partly by the rapid development of computational group theory.

Locally nilpotent groups are a generalization of nilpotent groups.
Over the years, many structural and classification results for locally
nilpotent linear groups have been obtained. Further progress in the
study of these groups is possible using computational techniques.

Group theoretical algorithms take as input a finite generating set
for a group. The celebrated ‘Tits alternative’ states that a finitely
generated linear group G either is solvable-by-finite (that is, G con-
tains a normal solvable subgroup of finite index), or G contains a
nonabelian free subgroup. For linear groups of the latter type, some
basic computational problems, such as membership testing and the
conjugacy problem, are undecidable in general. Nilpotent linear
groups on the other hand are solvable-by-finite and so are more suit-
able for computation (note that the class of nilpotent-by-finite linear
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groups—which includes all locally nilpotent linear groups—forms an
important subclass of

This point is underlined by Gromov’s result [5], which implies that
a finitely generated group has polynomial growth if and only if it
is nilpotent-by-finite: hence, as explained in [1], certain algorithmic
efficiency problems can be successfully overcome for locally nilpotent
linear groups.

Another motivation for further study of locally nilpotent linear
groups lies in possible application to abstract group theory con-
cerns. Here an example is recent work [11] on the Carter conjecture
for finite groups. Another example is the almost crystallographic
groups, which are nilpotent-by-finite and arise naturally as linear
groups over Q (see [4, §5.3]). Note that a finitely generated nilpo-
tent group is polycyclic and so isomorphic to a subgroup of GL(n,Z)
for some n; hence algorithms for nilpotent subgroups of GL(n,Q)
serve as a key step toward algorithms for abstract finitely generated
nilpotent groups.

2. Structure of Locally Nilpotent Linear Groups

Research into locally nilpotent linear groups relies heavily on knowl-
edge of the structure of such groups. Systematic study of the struc-
ture of locally nilpotent linear groups was carried out by D. A. Supru-
nenko, beginning in the late 1940s [14]. Among other things, Supru-
nenko classified the maximal locally nilpotent subgroups of GL(n,F)
when F is algebraically closed. Various authors extended some of
Suprunenko’s results to other fields. In particular, criteria for finite-
ness of the number of conjugacy classes of maximal locally nilpotent
subgroups of GL(n,F), as well as classification of such groups in
some partial cases, have been obtained from a detailed description
of the structure of locally nilpotent linear groups over an arbitrary
field (see e.g. [8]).

In the rest of this section we outline some of the most important
structural results for locally nilpotent linear groups. A natural point
of focus is the maximals, because each locally nilpotent subgroup of
GL(n,F) is contained in a maximal locally nilpotent subgroup (by
way of contrast, note that a nilpotent subgroup of GL(n,F) may not
be contained in a maximal nilpotent subgroup).

We proceed via a standard reduction scheme: reducible → com-
pletely reducible→ irreducible→ absolutely irreducible→ primitive.
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2.1. Reducible Locally Nilpotent Linear Groups. We use stan-
dard terminology for linear groups, as in [14, 15]. A reducible sub-
group G of GL(n,F) is conjugate to a group of block upper triangular
matrices, where the diagonal blocks form the irreducible parts of G,
which are irreducible representations of G over F in smaller degree.
If G is indecomposable locally nilpotent then a stronger statement
holds: the irreducible parts of G are pairwise equivalent ([15, p.223,
Theorem 2]), so that G is conjugate to a group of block upper tri-
angular matrices




a(g) a12(g) · · · a1k(g)
0 a(g) · · · a2k(g)
...

...
. . .

...
0 0 · · · a(g)


 , g ∈ G

where a(G) = {a(g) | g ∈ G} ≤ GL(m,F) is irreducible locally
nilpotent for some m dividing n, and aij(g) ∈ Mat(m,F). If F is a
perfect field then aij(g) = cij(g)a(g) where cij(g) ∈ CMat(m,F)(a(G));
that is, G is contained in the direct product of a completely reducible
group over F with equivalent irreducible parts, and a unitriangular
group over a division algebra. This reduces study of locally nilpotent
linear groups to the irreducible case.

Another way to obtain a reduction to the completely reducible
case is to use the Jordan decomposition. For each g ∈ GL(n,F)
there is a unique unipotent matrix gu ∈ GL(n,F) and a unique
diagonalizable matrix gd ∈ GL(n,F) such that g = gdgu = gugd

(here F is the algebraic closure of F); see [16, p. 91, 7.2]. If F is
perfect then gu and gd are both in GL(n,F).

Theorem 2.1. ([16, p.97, 7.11] and [15, p.240, Theorem 6]) Let G ≤
GL(n,F) be locally nilpotent, and define Gu = {g ∈ G | g unipotent},
Gd = {g ∈ G | g diagonalizable}. Then Gu and Gd are normal
subgroups of G, and 〈Gu, Gd〉 = Gu ×Gd.

The theorem implies that if G is a completely reducible locally
nilpotent subgroup of GL(n,F) then every subgroup of G is com-
pletely reducible, and in particular every element of G is diagonaliz-
able ([16, p.98, 7.12] and [15, p.239, Theorem 5]).

Corollary 2.2. ([16, p.98, 7.13]) If G ≤ GL(n,F) is locally nilpotent,
and if for each g ∈ G we have gu, gd ∈ G, then G = Gu ×Gd.
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The hypothesis gu, gd ∈ G for all g ∈ G is satisfied if F is finite.
This is a partial case of the following.

Theorem 2.3. ([12, p. 136, Proposition 3]) Let F be perfect and G

be nilpotent. Define Ĝu = {gu | g ∈ G} and Ĝd = {gd | g ∈ G}.
Then Ĝu, Ĝd are subgroups of GL(n,F), and G ≤ Ĝu × Ĝd.

The group Ĝd defined in Theorem 2.3 is completely reducible
over F.

2.2. Irreducible locally nilpotent linear groups. Each irreduc-
ible maximal locally nilpotent subgroup of GL(n,F) can be thought
of as an absolutely irreducible maximal locally nilpotent subgroup
of GL(m,E) for some m dividing n and field E ⊇ F (see [15, p.217,
Theorem 4]). This affords a reduction to the absolutely irreducible
case, particularly in the classification of irreducible maximal locally
nilpotent linear groups. Further investigation is possible in two di-
rections, which are not mutually exclusive: reduction to p-subgroups
of PGL(n,F), and reduction to primitive groups. The former is based
on the following theorem.

Theorem 2.4. ([15, pp.220–221, Theorems 8, 9])

(i) Let n = pa1
1 · · · pak

k be the prime factorisation of n, where the
pi are pairwise distinct primes. If G is a maximal absolutely
irreducible locally nilpotent subgroup of GL(n,F) then G =
G1 ⊗ · · · ⊗Gk where Gi ≤ GL(pai

i ,F) is maximal absolutely
irreducible locally nilpotent, 1 ≤ i ≤ k.

(ii) Let p be a prime. An absolutely irreducible subgroup G of
GL(pa,F) containing F×1pa is a maximal absolutely irre-
ducible locally nilpotent subgroup of GL(pa,F) if and only
if G/F×1pa is a Sylow p-subgroup of PGL(pa,F).

Irreducible locally nilpotent linear groups are center-by-periodic;
in fact, the central quotient of each is a direct product of p-groups
(see [13, Corollary 3.2.4]).

Except when F is finite or algebraically closed, the description of
Sylow p-subgroups of PGL(n,F) is quite different to the description
of Sylow p-subgroups of GL(n,F).

Sylow p-subgroups of PGL(n,F) were considered in [6], mainly for
p > 2. Classifying the Sylow 2-subgroups of PGL(n,F) is difficult.
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In [6], p-subgroups of PGL(n,F) are handled using the same tech-
niques as for locally nilpotent linear groups, including the reduction
to primitives.

The reduction to primitives is not so straightforward for locally
nilpotent linear groups as it is for some other classes of linear groups,
such as solvable groups. To appreciate this disparity, note that an
irreducible imprimitive solvable subgroup of GL(n,F) is conjugate to
a subgroup of GoT where G is a primitive solvable linear group and T
is a transitive solvable permutation group ([15, p.129, Theorem 5]);
however, the wreath product of a locally nilpotent linear group and
a nilpotent permutation group need not even be (locally) nilpotent.

A discussion of techniques for studying nilpotent primitive sub-
groups G of GL(n,F) can be found in [8, Section 2]. One technique is
to use the series G ≥ H ≥ K ≥ 1 where K = [G,G] and H = CG(K).

A basic result here is as follows.

Theorem 2.5. ([8, Theorem 2]) Let G ≤ GL(pa,F) be primitive
absolutely irreducible locally nilpotent, p 6= charF. Then K is an
abelian p-group, Σ = 〈K〉F is a field, G/H ∼= Gal(Σ/F), [H, H] ≤
F×1pa , and H is an absolutely irreducible primitive class 2 nilpotent
subgroup of GL(m, Σ), m = pa/|Σ : F|.

The primitive nilpotent subgroups of GL(n,F) for finite fields F
have been completely classified, in [3].

The paper [8] also summarizes results and methods for classifying
maximal locally nilpotent subgroups of GL(n,F) over an arbitrary
field F.

Considerable attention has been paid to the problem of deter-
mining when the number of GL(n,F)-conjugacy classes of maximal
locally nilpotent subgroups of GL(n,F) is finite. Finiteness of that
number depends on finiteness of the groups F×/(F×)m, for m divid-
ing n.

Groups over an algebraically closed field have been the most in-
tensively studied.

Theorem 2.6. ([14, Chapter III] and [15, Chapter VII]) Let F be
algebraically closed.

(i) Irreducible locally nilpotent subgroups of GL(n,F) exist if and
only if charF = 0 or charF does not divide n, in which cases
there exists an irreducible nilpotent subgroup of GL(n,F) of
nilpotency class l, for each and every nilpotency class l ≥ 1.
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(ii) Irreducible maximal locally nilpotent subgroups of GL(n,F)
are monomial and pairwise conjugate.

The matrix form of the groups in (ii) is given in [14, Chapter
III, §7]. Note that (ii) implies that a completely reducible locally
nilpotent linear group over an algebraically closed field is monomial.

In summary, locally nilpotent linear groups constitute a well-
studied class of groups, for which a lot of structural information
and efficient methods of investigation are known. However the the-
ory still has significant gaps. Most results deal only with absolutely
irreducible maximal locally nilpotent subgroups of GL(n,F). Those
results do not readily yield analogous results for locally nilpotent
linear groups that are not maximal or are not absolutely irreducible
(cf. [3]). Complete classifications of locally nilpotent subgroups of
GL(n,F) are feasible only by placing restrictions on the field F or
the degree n. In the sequel we allow arbitrary fields but restrict the
degree.

3. Prime Degree Locally Nilpotent Linear Groups

We now give an illustration of how techniques in the theory of locally
nilpotent linear groups may be applied to obtain a full classification
in that theory. Specifically, in this section we classify the irreducible
maximal locally nilpotent subgroups of GL(q,F), where q is prime
and F is any field. This classification is in the form of a complete list
of GL(q,F)-conjugacy class representatives of the groups, with each
listed group defined by a generating set of matrices. Also we pro-
vide criteria to decide conjugacy between listed groups. Restricting
to prime degree has several advantages: an irreducible subgroup G
of GL(q,F) is either abelian or absolutely irreducible, and is either
primitive or monomial. Additionally, if G is absolutely irreducible
locally nilpotent then lies in a Sylow q-subgroup of PGL(q,F), and
Sylow q-subgroups of PGL(q,F) have a simpler description than do
Sylow subgroups of PGL(n,F) for composite degree n.

Certainly, a partial classification of the irreducible maximal locally
nilpotent subgroups of GL(q,F) can be derived from a description
of the absolutely irreducible maximal locally nilpotent subgroups
of GL(qa,F). However, here we propose other methods and give
a complete, self-contained result, which can be extended to get a
complete classification in prime power degrees qa. In particular we
give an exact description of the Sylow 2-subgroups of PGL(2,F),
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omitted by other authors. This is of special importance because
(for example) classification of the Sylow 2-subgroups of PGL(n,F)
in arbitrary degree n depends on classification in degree 2 (cf. the
case of 2-subgroups of GL(n,F) in [7, 10]).

The methods used in this section were originally developed to
classify the maximal irreducible periodic subgroups of PGL(q,F),
in [2]. We begin by considering absolutely irreducible groups; abelian
groups will be treated at the end.

By [15, Theorem 6, p. 217], GL(q,F) contains absolutely irre-
ducible locally nilpotent subgroups if and only if F× has an element
ξ of order q (of course charF 6= q). Let D = {diag(ββ1, . . . , ββq) |
βi ∈ Sylq(F×), β ∈ F×}. For α ∈ F×, define

Iα =
(

0 1q−1

α 0

)
∈ GL(q,F)

and write I in place of I1. For H ≤ GL(q,F) let Det(H) = {det(h) |
h ∈ H}.

Assuming ξ ∈ F× we define Hα = 〈D, Iα〉. The subgroup Hα of
GL(q,F) is monomial and absolutely irreducible. Since Hα/F×1q is a
q-subgroup of PGL(q,F), Hα is locally nilpotent. If Sylq(F×) is finite
then Hα is nilpotent with nilpotency class 1+(q−1) logq |Sylq(F×)|.

Denote by π the natural homomorphism from the group of all
monomial matrices in GL(q,F) onto the group Sym(q) of q×q permu-
tation matrices. The kernel of π is the group D(q,F) of all diagonal
matrices in GL(q,F).
Lemma 3.1. (Cf. [2, Lemma 20]) Let a, b ∈ D(q,F). The following
statements are equivalent.

(i) Ia, Ib are GL(q,F)-conjugate.
(ii) Ia, Ib are D(q,F)-conjugate.
(iii) det(a) = det(b).

Lemma 3.2. Let H be an irreducible monomial locally nilpotent
subgroup of GL(q,F). Then H is conjugate in GL(q,F) to a subgroup
of Hα for some α ∈ F×.

Proof. If H is abelian then π(H) ≤ Sym(q) is a transitive abelian
group i.e. a cycle of order q, and H ∩D(q,F) ≤ F×1q. On the other
hand if H is absolutely irreducible then HF×/F×1q is a q-group, so
that H∩D(q,F) ≤ D, and π(H) is again a cycle of order q. Hence up
to conjugacy H ≤ 〈D, Ia〉 for some a ∈ D(q,F). Then H is conjugate
to a subgroup of Hdet(a) by Lemma 3.1. ¤
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Denote the set Det(D) = Sylq(F×)(F×)q by S.

Lemma 3.3. If α ∈ S then Hα is D(q,F)-conjugate to H1. If
α1, α2 6∈ S then Hα1 and Hα2 are GL(q,F)-conjugate if and only if
Det(Hα1) = Det(Hα2) i.e. 〈α1S〉 and 〈α2S〉 are identical subgroups
of F×/S of order q.

Proof. Suppose α = β1β
q for some β1 ∈ Sylq(F×) and β ∈ F×. Then

det(Iα) = det(Ib) where b = diag(β1β, β, . . . , β) ∈ D. Therefore Hα

is D(q,F)-conjugate to 〈Ib, D〉 = H1 by Lemma 3.1.
Now suppose α1, α2 6∈ S and α1 ∈ 〈α2, S〉. Then det(Iα1) =

det(Ir
α2

c) for some c ∈ D and 1 ≤ r ≤ q − 1. Also there exists
x ∈ Sym(q) such that xIr

α2
cx−1 = Ib for some b ∈ D(q,F). Hence

by Lemma 3.1 once more, Hα1 and Hα2 are conjugate (this time by
a monomial matrix). ¤
Corollary 3.4. Define H = {Hα | α ∈ F× \ S}. The GL(q,F)-
conjugacy classes of the groups in H are in one-to-one correspon-
dence with the distinct subgroups of F×/S of order q. Consequently
the number of such classes is finite if and only if F×/S is finite.

Remark 3.5. If F is algebraically closed or finite then H is empty: a
maximal absolutely irreducible monomial locally nilpotent subgroup
of GL(q,F) is conjugate to H1.

We turn next to primitive groups.

Lemma 3.6. Let H be a primitive locally nilpotent subgroup of
GL(q,F). Then H has an irreducible abelian normal subgroup.

Proof. First we show that H has an abelian noncentral normal sub-
group. As H is locally nilpotent, it is solvable, and thus has an
abelian normal subgroup A of finite index (see e.g. [15, p.135, Theo-
rem 6]). If A ≤ Z(H) then H/Z(H) is finite and thus H is nilpotent.
But a nonabelian nilpotent group certainly contains an abelian non-
central normal subgroup.

Any abelian noncentral normal subgroup A of H must be irre-
ducible. For if A were reducible then it would be diagonalizable
with inequivalent irreducible parts, which contradicts primitivity
of H. ¤

Lemma 3.6 implies that a primitive locally nilpotent subgroup of
GL(q,F) is contained in the GL(q,F)-normalizer of the multiplica-
tive group of a field extension ∆ of F1q of degree q. Since this
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degree is prime, ∆ is a cyclic extension of F, with Galois group of or-
der q. As long as F× has an element ξ of order q, ∆ = 〈h〉F for some
h ∈ GL(q,F) such that hq = β1q ∈ F×1q by [9, p. 289, Theorem 6.2].
As β ∈ (F×)q implies that h is scalar, we have β = αrγq for some
α, γ ∈ F× and 1 ≤ r ≤ q−1. Then γ−1h and Ir

α have the same char-
acteristic (minimal) polynomial Xq − αr1q, and because Xq − αr1q

is F-irreducible, γ−1h and Ir
α are conjugate. Hence ∆ is conjugate

to ∆α := 〈Iα〉F, α 6∈ (F×)q, and NGL(q,F)(∆×
α ) = 〈∆×

α , d〉 where
d = diag(1, ξ, . . . , ξq−1). Denote by G(α, b) the subgroup 〈Aα, db〉
of 〈∆×

α , d〉, where Aα ⊇ F×1q, Aα/F×1q is the Sylow q-subgroup
of ∆×

α /F×1q, and b ∈ ∆×
α . Since Aα is a noncentral irreducible

subgroup, G(α, b) is absolutely irreducible.

Lemma 3.7. An absolutely irreducible primitive locally nilpotent
subgroup H of GL(q,F) is conjugate to a subgroup of some G(α, b).

Proof. Up to conjugacy H = 〈H ∩∆×
α , db〉 for some α ∈ F× \ (F×)q

and b ∈ ∆×
α . Then H ∩∆α ≤ Aα by Theorem 2.4. ¤

We use the notation εk to stand for an element of multiplicative
order 2k in the algebraic closure of F. If k = 2 then we drop the
subscript; that is, ε is a square root of −1.

Lemma 3.8. Suppose F does not have characteristic 2, and ε 6∈ F.
Let E = F(ε), and let σ be the F-involution of E. If Syl2(E×) = 〈εm〉
is cyclic then Syl2(E×/F×) is cyclic. Explicitly, one of the following
must be true:

(i) σ(εm) = −ε−1
m , and Syl2(E×/F×) = 〈εmF×〉 of order 2m−1;

or
(ii) σ(εm) = ε−1

m , and Syl2(E×/F×) = 〈(1+εm)F×〉 of order 2m.

Proof. We make some preliminary observations. First, either σ(εm)=
ε−1

m or σ(εm) = −ε−1
m . Suppose σ(εk) = ε−1

k . Then

σ((1+εk)2
k

) = σ(1+εk)2
k

= (1+ε−1
k )2

k

=
(

1 + εk

εk

)2k

= (1+εk)2
k

.

Thus (1 + εk)2
k ∈ F and so

(1 + εk)F× ∈ Syl2(E×/F×) (1)

if k ≥ 2. Also, if k > 2 then ε−1
k (εk−1+1) = ε−1

k (ε2
k +1) = εk +ε−1

k ∈
F× and so

1 + εk−1 ∈ 〈εk〉F×. (2)
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Now let xF× be a nontrivial element of Syl2(E×/F×) of order 2l,
meaning that x2l ∈ F× \ (F×)2.

Suppose l = 1. Write x = a + εb, a, b ∈ F. Then 2abε ∈ F implies
a = 0 i.e.

x ∈ 〈εF×〉 ≤ 〈εmF×〉. (3)
Suppose l ≥ 2. We have σ(x) = yx for some y ∈ Syl2(E×),

y2l

= 1. Then y 6= −1, because y = −1 implies |xF×| = 2 < 2l.
Further, x = σ2(x) = σ(yx) = σ(y)yx and so

σ(y) = y−1. (4)

As tr(x) = (1 + y)x ∈ F,
x ∈ (1 + y)−1F× = (1 + σ(y))F× = (1 + y−1)F×. (5)

At last we are ready to complete the proof that either (i) or (ii)
must be true. Let σ(εm) = −ε−1

m ; then m > 2. By (3), we may take
l ≥ 2, in which event 4 < |y| ≤ 2m−1 by (4). Then (1 + y−1)F× ⊆
〈εm〉F× by (2), and by (5), (i) is proved.

If σ(εm) = ε−1
m then by (1), 〈(1 + εm)F×〉 ⊆ Syl2(E×/F×). Also

εmF× ∈ 〈(1 + εm)F×〉2, since σ fixes ε−1
m (1 + εm)2. Part (ii) now

follows from (2), (3), and (5). ¤

Corollary 3.9. If Syl2(E×) is quasicyclic then Syl2(E×/F×) is also
quasicyclic, and Syl2(E×/F×) = {〈εkF×〉 | εk ∈ Syl2(E×)}.
Proof. For each εk ∈ Syl2(E×), σ(εk) = ε−1

k i.e. σ(εk) = −ε−1
k is

impossible. The corollary is then a consequence of Lemma 3.8 (ii)
and (2) in the proof of the lemma. ¤

Lemma 3.10. Let |E : F| = q and E = F(a), where aql ∈ F. Suppose
ξ ∈ F×, and E 6= F(ε) if q = 2. Then Sylq(E×/F×) = 〈aF×〉.
Proof. If q > 2, or q = 2 and ε ∈ F, then the lemma follows from [8,
Lemma 2].

Let q = 2 and xF× ∈ E×/F× be of order 2m, m ≥ 1, so that
x2m

= α for some α ∈ F× \ (F×)2. If α = −4γ4, γ ∈ F×, then
x2m−1

/2γ2 is a square root of −1, contradicting E 6= F(ε).
Suppose α 6∈ −4(F×)4. The polynomial X4 − α is F-irreducible,

so that if m ≥ 2 then |E : F| ≥ 4. Therefore m = 1, a =
√

β for some
β ∈ F× and x =

√
α. For some x1, x2 ∈ F we have

√
α = x1 +x2

√
β.

Then α = x2
1 + βx2

2 + 2x1x2

√
β implies x1 = 0 or x2 = 0; as the

latter is impossible we get x ∈ 〈aF×12〉 as required. ¤
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Lemma 3.11. If q > 2 or α 6∈ −(F×)2 then Aα is the monomial
group 〈Iα,F×1q〉; otherwise, Aα is primitive.

Proof. In Lemma 3.10 put E = ∆α and a = Iα. Then Aα =
〈Iα,F×1q〉 unless q = 2 and ∆α

∼= F(ε) i.e. α ∈ −(F×)2. If A−γ2

were monomial then A2
−γ2 would be in F×1q; however A−γ2/F×1q

contains the element (12 + γ−1I−γ2)F×1q of order 4. ¤
We refer to the set of hypotheses q = 2 and α ∈ −(F×)2 as case

(∗). Lemma 3.8 and Corollary 3.9 give an explicit description of
the Aα in case (∗). Actually, a group G(−γ2, b) in this case is con-
jugate to some G(−1, b′), since I−γ2 is D(q,F)-conjugate to γI−1

by Lemma 3.1. In all but case (∗), |G(α, b)/F×1q| = q2 (because
(db)q = det(b)1q and [Iα, d ] is scalar) and so G(α, b) is class 2 nilpo-
tent. The group G(−1, b) is locally nilpotent, and it is nilpotent only
if Syl2(∆

×
−1) is cyclic; then G(−1, b)/F×1q is a dihedral 2-group, and

G(−1, b) has nilpotency class log2 |Syl2(∆
×
−1)/F×12|.

Lemma 3.12. In case (∗), G(α, b) is primitive. In all other cases,
G(α, b) is primitive if and only if det(b) 6∈ 〈(−1)q−1α, (F×)q〉 =
Det(Aα).

Proof. By Lemma 3.11, assume we are in a case other than (∗).
Then [8, Lemma 1] yields that G(α, b) is primitive if and only if all
elements of G(α, b) of order q are scalar. Suppose det(b) 6∈ Det(Aα)
and let h ∈ G(α, b), |h| = q. If h 6∈ Aα i.e. h = dbb1, b1 ∈ Aα, then
hq = det(bb1)1q implies that det(b) ∈ Det(Aα). Thus h ∈ Aα, and
h is scalar by Lemma 3.11. Conversely, if det(b) ∈ Det(Aα) then for
some x ∈ Aα, dbx is a nonscalar element of G(α, b) of order q. ¤
Remark 3.13. Except in case (∗), if F is finite then G(α, b) is mono-
mial.

Lemma 3.14. For i = 1, 2, let gi = dbi where bi ∈ ∆α. The
following statements are equivalent.

(i) g1 and g2 are GL(q,F)-conjugate.
(ii) g1 and g2 are ∆α-conjugate.
(iii) det(b1) = det(b2).

Proof. See [2, Lemma 21]. ¤
Corollary 3.15. Apart from case (∗), primitive groups G(α, b1),
G(α, b2) are conjugate if and only if Det(G(α, b1)) = Det(G(α, b2))
and det(b1) = det(b2c) for some c ∈ Aα.
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Proof. Suppose tG(α, b1)t−1 = G(α, b2). Since t normalizes Aα as a
consequence of Lemma 3.12, so t ∈ 〈d, ∆×

α 〉. Then it can be checked
that tdb1t

−1 ∈ db2Aα. The other direction is clear by Lemma 3.14.
¤

Denote by G the set of all groups G(α, b) that are primitive, sub-
ject to the proviso that the only groups in case (∗) included in G are
the G(−1, b).

Remark 3.16. Note that G is empty if F is algebraically closed, for
then G(α, b) is not defined. When F is finite, G is nonempty if and
only if q = 2 and |F| ≡ 3 mod 4.

Lemma 3.17. If nonempty, the subset G̃ of G consisting of the
groups not in case (∗) splits up into finitely many GL(q,F)-conjugacy
classes if and only if F×/(F×)q is finite.

Proof. If G̃ has only finitely many non-conjugate elements then
F×/(F×)q is finitely generated and so finite. Conversely, if F×/(F×)q

is finite then there are only finitely many subsets of F× that are pos-
sibilities for Det(G(α, b)); hence the number of GL(q,F)-conjugacy
classes in G̃ is finite by Corollary 3.15. ¤

The next theorem is our main classification result.

Theorem 3.18. Suppose ξ ∈ F×. A subgroup G of GL(q,F) is an
absolutely irreducible maximal locally nilpotent subgroup of GL(q,F)
if and only if G is conjugate to a group in N = {H1} ∪ H ∪ G, with
the following exceptions when q = 2 and ε 6∈ F :

(i) H1 is a proper subgroup of G(−1, 1) ∈ G;
(ii) if α 6∈ −(F×)2 and either det(b) ∈ −(F×)2 or det(b) ∈

α(F×)2, then G(α, b) is conjugate to a proper subgroup of
G(−1, c) where det(c) = α.

Proof. We have observed previously that all of the groups in N are
absolutely irreducible locally nilpotent. By Lemmas 3.2, 3.3, and
3.7, and remarks after Lemma 3.11, an absolutely irreducible locally
nilpotent subgroup of GL(q,F) is conjugate to a subgroup of a group
in N . Therefore it remains to show that the Hα and G(α, b) ∈ G are
really maximal locally nilpotent, apart from the stated exceptions.

Let G be a maximal locally nilpotent subgroup of GL(q,F) con-
taining Hα. If G is monomial then tGt−1 = Hβ for some Hβ and
t ∈ GL(q,F). If tDt−1 6= D then tDt−1∩D is scalar of index q in D,
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so |Hβ/F×1q| = q2; but Hβ/F×1q has cardinality at least qq+1. Thus
tDt−1 = D, and then q = |Hβ : D| ≥ |tHαt−1 : D| = |Hα : D| = q.
Therefore tHαt−1 = Hβ i.e. Hα = G. Now suppose G is primitive,
hence conjugate to some G(α1, b). In a case other than (∗) we have
|G/F×1q| = q2, which is less than the cardinality of Hα/F×1q. Hence
q = 2, ε 6∈ F×, G is conjugate to G(−1, b), and Hα = 〈d, Iα,F×12〉.
Either Iα or I−α = dIα is conjugate to nonscalar h ∈ A−1 such that
h2 ∈ F×12. Now h has the form γI−1, γ ∈ F×, and by comparing
determinants we get α = ±γ2. Thus if Hα ∈ H then Hα is maximal.
However H1 = 〈d, I−1,F×12〉 is a proper subgroup of G(−1, 1).

Let G be a maximal locally nilpotent subgroup of GL(q,F) con-
taining G(α, b) ∈ G. For some t ∈ GL(q,F),

tGt−1 = G(α1, b1) ∈ G.

Apart from when q = 2, ε 6∈ F×, and α1 = −1, we have

|G(α, b)/F×1q| = |G(α1, b1)/F×1q| = |G/F×1q| = q2,

and thus G(α, b) = G. Suppose now that q = 2, ε 6∈ F, and α1 = −1.
If α ∈ −(F×)2 then G(α, b) is conjugate to some G(−1, b2), so that
G(α, b) = G. Therefore if G(α, b) is not maximal then α 6∈ −(F×)2.
For the rest of the proof α 6∈ −(F×)2, which means that G(α, b) =
〈Iα, db,F×12〉. One of the following must occur: tIαt−1 6∈ A−1 and
tdbt−1 ∈ A−1, or tIαt−1 6∈ A−1 and tdbt−1 6∈ A−1.

In the first case, det(b) ∈ −(F×)2. In the second case, the condi-
tion that [Iα, db] is scalar forces tdbt−1 ∈ I−1tIαt−1F×, so det(b) ∈
α(F×)2. Suppose det(b) ∈ −(F×)2. Then det(db) = det(γI−1)
for some γ ∈ F×. Since also tr(db) = 0 = tr(γI−1), there exists
s ∈ GL(2,F) such that sdbs−1 = γI−1.

Since IαdbI−1
α = −db, we have that sIαs−1 normalizes ∆×

−1.
Hence sIαs−1 = dc, where c ∈ ∆×

−1 and det(c) = α. It follows
that G(α, b) is conjugate to a proper subgroup of G(−1, c). The rea-
soning that leads to this same conclusion in the case det(b) ∈ α(F×)2

is entirely similar. ¤

With the next lemma we complete our classification of the irre-
ducible maximal locally nilpotent subgroups of GL(q,F).

Lemma 3.19. Suppose GL(q,F) has irreducible abelian subgroups,
and let H be an irreducible maximal abelian subgroup of GL(q,F).
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(i) If ξ 6∈ F× then H is a maximal locally nilpotent subgroup of
GL(q,F), and moreover any maximal locally nilpotent sub-
group of GL(q,F) is abelian.

(ii) Let ξ ∈ F×. Then H is a maximal locally nilpotent subgroup
of GL(q,F) unless q = 2 and ε 6∈ F. If q = 2 and ε 6∈ F then
H is a maximal locally nilpotent subgroup of GL(q,F) if and
only if H/F×12 is not a 2-group.

Proof. so that if H is not maximal locally nilpotent then q = 2,
ε 6∈ F, and H = Aα ≤ G(α, β) ∈ G, by Lemma 3.11. ¤

One situation in which all irreducible maximal locally nilpotent
subgroups of GL(q,F) are nonabelian is when q = 2 and |F| is a
Mersenne prime.
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