M. LAHROUZ AND M. ZOHRY

ABSTRACT. It is shown that, if an operator T on a complex Banach space or its adjoint T^* has the single-valued extension property, then the generalized a-Browder's theorem holds for f(T) for every complex-valued analytic function f on a neighborhood of the spectrum of T. We also study the generalized a-Weyl's theorem in connection with the single-valued extension property. Finally, we examine the stability of the generalized a-Weyl's theorem under commutative perturbations by finite rank operators.

1. INTRODUCTION

Throughout this paper X will denote an infinite-dimensional complex Banach space and $\mathcal{L}(X)$ the unital (with unit the identity operator, I, on X) Banach algebra of all bounded linear operators acting on X. For an operator $T \in \mathcal{L}(X)$, let T^* denote its adjoint, N(T)its kernel, R(T) its range, $\sigma(T)$ its spectrum, $\sigma_a(T)$ its approximate point spectrum, $\sigma_{su}(T)$ its surjective spectrum and $\sigma_p(T)$ its point spectrum. For a subset K of \mathbb{C} we write iso(K) for its isolated points and $\operatorname{acc}(K)$ for its accumulation points.

From [14] we recall that for $T \in \mathcal{L}(X)$, the ascent a(T) and the descent d(T) are given by

 $a(T) = \inf\{n \ge 0 : N(T^n) = N(T^{n+1})\}\$

and

$$d(T) = \inf\{n \ge 0 : R(T^n) = R(T^{n+1})\},\$$

²⁰⁰⁰ Mathematics Subject Classification. 47A53, 47A55.

Key words and phrases. Single-valued extension property, Fredholm theory, generalized a-Weyl's theorem, generalized a-Browder's theorem.

respectively; the infimum over the empty set is taken to be ∞ . If the ascent and the descent of $T \in \mathcal{L}(X)$ are both finite then a(T) = d(T) = p, $X = N(T^p) \oplus R(T^p)$ and $R(T^p)$ is closed.

For $T \in \mathcal{L}(X)$ we will denote by $\alpha(T)$ the nullity of T and by $\beta(T)$ the defect of T. If the range R(T) of T is closed and $\alpha(T) < \infty$ (resp., $\beta(T) < \infty$) then T is called an upper semi-Fredholm (resp., a lower semi-Fredholm) operator. If $T \in \mathcal{L}(X)$ is either upper or lower semi-Fredholm, then T is called a semi-Fredholm operator, and the index of T is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. If both $\alpha(T)$ and $\beta(T)$ are finite then T is called a Fredholm operator. For a T-invariant closed linear subspace Y of X, let $T \mid Y$ denote the operator given by the restriction of T to Y.

For a bounded linear operator T and for each integer n, define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into itself. If for some integer n the range space $R(T^n)$ is closed and $T_n = T \mid R(T^n)$ is an upper (resp., lower) semi-Fredholm operator then T is called an upper (resp., lower) semi-B-Fredholm operator. Moreover if T_n is a Fredholm operator, then T is called a B-Fredholm operator. In this situation, from [1, Proposition 2.1], T_m is a Fredholm operator and $\operatorname{ind}(T_m) = \operatorname{ind}(T_n)$ for each $m \ge n$ which permits to define the index of a B-Fredholm operator T as the index of the Fredholm operator T_n where n is any integer such that $R(T^n)$ is closed and T_n is a Fredholm operator. Let BF(X) be the class of all B-Fredholm operators and $\rho_{BF}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \in BF(X)\}$ be the B-Fredholm resolvent of T and let $\sigma_{BF}(T) = \mathbb{C} \setminus \rho_{BF}(T)$ the B-Fredholm spectrum of T. The class BF(X) has been studied by M. Berkani (see [1, Theorem 2.7]), where it was shown that $T \in \mathcal{L}(X)$ is a B-Fredholm operator if and only if $T = T_0 \oplus T_1$ where T_0 is a Fredholm operator and T_1 is a nilpotent one. He also proved that $\sigma_{BF}(T)$ is a closed subset of \mathbb{C} and showed that the spectral mapping theorem holds for $\sigma_{BF}(T)$, that is, $f(\sigma_{BF}(T)) = \sigma_{BF}(f(T))$ for any complex-valued analytic function on a neighborhood of the spectrum $\sigma(T)$.

An operator $T \in \mathcal{L}(X)$ is called a Weyl operator if it is Fredholm of index 0, a Browder operator if it is Fredholm of finite ascent and descent and a B-Weyl operator if it is B-Fredholm of index 0. The Weyl spectrum, the Browder spectrum and the B-Weyl spectrum of T are defined by

$$\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \},\$$

Weyl type Theorems

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder}\},\$$

$$\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Weyl}\},\$$

respectively. We will denote by E(T) (resp. $E^{a}(T)$) the set of all eigenvalues of T which are isolated in $\sigma(T)$ (resp., $\sigma_{a}(T)$) and by $E_{0}(T)$ (resp. $E_{0}^{a}(T)$) the set of all eigenvalues of T of finite multiplicity which are isolated in $\sigma(T)$ (resp., $\sigma_{a}(T)$).

Let SF(X) be the class of all semi-Fredholm operators on X, $SF_+(X)$ the class of all upper semi-Fredholm operators on X and $SF_+(X)$ the class of all $T \in SF_+(X)$ such that $\operatorname{ind}(T) \leq 0$. For $T \in \mathcal{L}(X)$, let

$$\sigma_{SF}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin SF(X)\},\$$
$$\sigma_{SF^{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin SF^{-}_{+}(X)\}$$

 $\rho_{SF}(T) = \mathbb{C} \setminus \sigma_{SF}(T) \text{ and } \rho_{SF_{+}^{-}}(T) = \mathbb{C} \setminus \sigma_{SF_{+}^{-}}(T).$

Similarly, let SBF(X) be the class of all semi-B-Fredholm operators on X, $SBF_+(X)$ the class of all upper semi-B-Fredholm operators on X and $SBF_+(X)$ the class of all $T \in SBF_+(X)$ such that $ind(T) \leq 0$. For $T \in \mathcal{L}(X)$, the sets $\sigma_{SBF}(T)$, $\rho_{SBF}(T)$, $\sigma_{SBF_+}(T)$ and $\rho_{SBF_-}(T)$ are defined in an obvious way.

An operator $T \in \mathcal{L}(X)$ is called semi-regular if R(T) is closed and $N(T) \subseteq R(T^n)$ for every $n \in \mathbb{N}$. The semi-regular resolvent set is defined by s-reg $(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is semi- regular}\}$, we note that s-reg $(T) = \text{s-reg}(T^*)$ is an open subset of \mathbb{C} . As a consequence of [8, Théorème 2.7], we obtain the following result.

Proposition 1.1. Let $T \in \mathcal{L}(X)$.

- (i) If T has the SVEP then s-reg $(T) = \rho_a(T) = \mathbb{C} \setminus \sigma_a(T)$.
- (ii) If T^* has the SVEP then s-reg $(T) = \rho_{su}(T) = \mathbb{C} \setminus \sigma_{su}(T)$.

We recall that an operator $T \in \mathcal{L}(X)$ has the single-valued extension property, abbreviated SVEP, if, for every open set $U \subset \mathbb{C}$, the only analytic solution $f: U \longrightarrow X$ of the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in U$ is the zero function on U. We will denote by $\mathcal{H}(\sigma(T))$ the set of all complex-valued functions which are analytic on an open set containing $\sigma(T)$.

The remainder of the following deals with Riesz points and left poles. A complex number λ is said to be Riesz point of $T \in \mathcal{L}(X)$ if $\lambda \in \operatorname{iso}(\sigma(T))$ and the corresponding spectral projection is of finitedimensional range. The set of all Riesz points of T will be denoted by
$$\begin{split} \Pi_0(T). \ \text{It is known that if } T \in \mathcal{L}(X) \ \text{and } \lambda \in \sigma(T), \ \text{then } \lambda \in \Pi_0(T) \\ \text{if and only if } T - \lambda I \ \text{is Fredholm of finite ascent and descent (see [3])}. \\ \text{Consequently } \sigma_b(T) &= \sigma(T) \setminus \Pi_0(T). \ \text{We will denote by } \Pi(T) \ \text{the set of all poles of the resolvent of } T. \ \text{A complex number } \lambda \in \sigma_a(T) \ \text{is said to be a left pole of } T \ \text{if } a(T - \lambda I) < \infty \ \text{and } R((T - \lambda I)^{a(T - \lambda I) + 1}) \\ \text{is closed, and that it is a left pole of } T \ \text{of finite rank if it is a left pole of } T \ \text{and } \alpha(T - \lambda I) < \infty. \ \text{We will denote by } \Pi^a(T) \ \text{the set of all left poles of } T \ \text{of finite rank if it is a left pole of } T \ \text{and } \alpha(T - \lambda I) < \infty. \ \text{We will denote by } \Pi^a(T) \ \text{the set of all left poles of } T \ \text{of finite rank. If } \lambda \in \Pi^a(T), \ \text{then it is easily seen that } T - \lambda I \ \text{is an operator of topological uniform descent, therefore from [4], it follows that } \lambda \\ \text{is isolated in } \sigma_a(T) \ [2, \ \text{Theorem } 2.5]. \ \text{Let } T \in \mathcal{L}(X) \ \text{and } \lambda \in \mathbb{C} \ \text{be isolated in } \sigma_a(T); \ \text{then } \lambda \in \Pi^a(T) \ \text{if and only if } \lambda \notin \sigma_{SBF^+_+}(T), \ \text{and } \lambda \in \Pi_0^a(T) \ \text{if and only if } \lambda \notin \sigma_{SF^+_+}(T). \end{split}$$

For $T \in \mathcal{L}(X)$ we will say that:

- (i) T satisfies Weyl's theorem if $\sigma_w(T) = \sigma(T) \setminus E_0(T)$;
- (ii) T satisfies generalized Weyl's theorem if

 $\sigma_{BW}(T) = \sigma(T) \setminus E(T);$

(iii) T satisfies a-Weyl's theorem if

$$\sigma_{SF^-}(T) = \sigma_a(T) \setminus E^a_0(T);$$

(iv) T satisfies generalized a-Weyl's theorem if

 $\sigma_{SBF_{\perp}^{-}}(T) = \sigma_{a}(T) \setminus E^{a}(T);$

(v) T satisfies Browder's theorem if

$$\sigma_w(T) = \sigma(T) \setminus \Pi_0(T);$$

(vi) T satisfies generalized Browder's theorem if

$$\sigma_{BW}(T) = \sigma(T) \setminus \Pi(T);$$

(vii) T satisfies a-Browder's theorem if

$$\sigma_{SF_{\perp}^{-}}(T) = \sigma_{a}(T) \setminus \Pi_{0}^{a}(T);$$

(viii) T satisfies generalized a-Browder's theorem if

$$\sigma_{SBF_{+}}(T) = \sigma_{a}(T) \setminus \Pi^{a}(T).$$

Before proving our main result we deal with some preliminary results.

Proposition 1.2. Let $T \in \mathcal{L}(X)$.

- (i) If T has the SVEP then $\operatorname{ind}(T \lambda I) \leq 0$ for every $\lambda \in \rho_{SBF}(T)$.
- (ii) If T^* has the SVEP then $\operatorname{ind}(T \lambda I) \ge 0$ for every $\lambda \in \rho_{SBF}(T)$.

Proof. (i) Let $\lambda \in \rho_{SBF}(T)$, then there exists an integer p such that $(T \mid R(T - \lambda I)^p) - \lambda I = (T - \lambda I) \mid R(T - \lambda I)^p$ is semi-Fredholm. From the Kato decomposition, there exists $\delta > 0$ such that

$$\{\lambda \in \mathbb{C} : 0 < |\mu - \lambda| < \delta\} \subseteq \operatorname{s-reg}(T \mid R(T - \lambda I)^p)$$

Since T has the SVEP, Proposition 1.1 implies that

s-reg
$$(T \mid R(T - \lambda I)^p) = \rho_a (T \mid R(T - \lambda I)^p).$$

Therefore, $N((T \mid R(T - \lambda I)^p) - \mu I) = 0$ and so $\operatorname{ind}(T - \mu I) =$ $\operatorname{ind}((T \mid R(T - \lambda I)^p - \mu I) \leq 0$, holding for $0 < |\mu - \lambda| < \delta$. Thus, by the continuity of the index we obtain $\operatorname{ind}(T - \lambda) \leq 0$.

(ii) Follows by similar reasoning, and may also be derived from the first assertion and the fact that $\operatorname{ind}(T^*) = -\operatorname{ind}(T)$.

Corollary 1.3. Let T be a bounded linear operator on X. If T^* has the SVEP, then $\sigma_{SF_+}(T) = \sigma_w(T)$.

Proof. We have only to show that $\sigma_w(T) \subseteq \sigma_{SF^-_+}(T)$, since the other inclusion is always verified. Let λ be given in $\rho_{SF^-_+}(T)$, then $T - \lambda I$ is semi-Fredholm and $\operatorname{ind}(T - \lambda I) \leq 0$. Since T^* has the SVEP, Proposition 1.2 implies that $\operatorname{ind}(T - \lambda I) \geq 0$, and hence $\operatorname{ind}(T - \lambda I) = 0$, which proves that $T - \lambda I$ is Fredholm of index 0 and $\lambda \in \rho_w(T)$. \Box

The following results relate the generalized a-Weyl's theorem and the generalized a-Browder's theorem to the single-valued extension property. As motivation for the proofs, we use some ideas in [10, 12].

Proposition 1.4. Let T be a bounded linear operator on X.

- (i) If T* has the SVEP, then T satisfies generalized a-Weyl's theorem if and only if it satisfies generalized Weyl's theorem.
- (ii) If T has the SVEP, then T* satisfies generalized a-Weyl's theorem if and only if it satisfies generalized Weyl's theorem.

Proof. (i) Since T^* has the SVEP, [6, Proposition 1.3.2] implies that $\sigma(T) = \sigma_a(T)$ and consequently $E^a(T) = E(T)$. Suppose that T satisfies generalized Weyl's theorem, then $\sigma_{BW}(T) = \sigma(T) \setminus E(T) =$

 $\sigma_a(T) \setminus E^a(T)$. Let $\lambda \notin \sigma_{SBF^+_+}(T)$ be given, then $T - \lambda I$ is semi-B-Fredholm and $\operatorname{ind}(T - \lambda I) \leq 0$. Therefore, by Proposition 1.2, it follows that $\operatorname{ind}(T - \lambda I) = 0$ and consequently $T - \lambda I$ is B-Fredholm of index 0. Hence $\lambda \notin \sigma_{BW}(T)$ and $\sigma_{BW}(T) \subset \sigma_{SBF^+_+}(T)$. Since the opposite inclusion is clear, we conclude that indeed $\sigma_{SBF^+_+}(T) = \sigma_{BW}(T) = \sigma_a(T) \setminus E^a(T)$ which proves the equivalence between generalized Weyl's theorem and generalized a-Weyl's theorem for T.

(ii) Similar to the proof of the first assertion.

Our main result reads now as follows.

Theorem 1.5. Let T be a bounded linear operator on X. If T or its adjoint T^* satisfies the SVEP, then generalized a-Browder's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. Let us establish that generalized a-Browder's theorem holds for T. If T^* has the SVEP, then by [12, Theorem 2.4], it follows that a-Browder's theorem holds for T, and consequently Browder's theorem holds for T. Thus $\sigma_{SF^-}(T) = \sigma_a(T) \setminus \Pi^a_0(T)$ and $\sigma_b(T) =$ $\sigma(T) \setminus \Pi_0(T)$. Moreover, since $\sigma_a(T) = \sigma(T)$, $\Pi_0^a(T) = \Pi_0(T)$, it follows that $\sigma_{SF_{+}}(T) = \sigma(T) \setminus \Pi_{0}(T)$. Because $\sigma_{SF_{+}}(T) = \sigma_{w}(T)$, see Corollary 1.3, it follows that $\sigma_{SF^-}(T) = \sigma(T) \setminus \Pi_0(T) = \sigma_w(T) =$ $\sigma_b(T)$. Let $\lambda \in \Pi^a(T)$ be given; then λ is isolated in $\sigma_a(T)$ and by [2, Theorem 2.8], it follows that $\lambda \notin \sigma_{SBF_{\perp}^{-}}(T)$ which shows that $\Pi^{a}(T) \subseteq \sigma_{a}(T) \setminus \sigma_{SBF_{+}^{-}}(T). \text{ Conversely if } \lambda \in \sigma_{a}(T) \setminus \sigma_{SBF_{+}^{-}}(T),$ then $T - \lambda I$ is semi-B-Fredholm and $\operatorname{ind}(T - \lambda I) \leq 0$. Then, since T^* has the SVEP, Proposition 1.2 gives $\operatorname{ind}(T - \lambda I) = 0$. Therefore $T - \lambda I$ λI is Fredholm and $\lambda \notin \sigma_w(T) = \sigma_b(T)$ which shows that $\lambda \in \Pi_0(T)$. Consequently λ is isolated in $\sigma_a(T)$ and hence $\lambda \in \Pi^a(T)$. Thus $\sigma_a(T) \setminus \sigma_{SBF_+}(T) \subset \Pi^a(T)$ and generalized a-Browder's theorem holds for T. Now if T has the SVEP, let $\lambda \in \sigma_a(T) \setminus \sigma_{SBF_+}(T)$; $\lambda \in \rho_{SBF_{+}^{-}}(T)$, then there exists an integer p such that $R(T - \lambda I)^{p}$ is closed and $(T \mid R(T - \lambda I)^p) - \lambda I = (T - \lambda I) \mid R(T - \lambda I)^p$ is a semi-Fredholm operator. Then, by the Kato decomposition, there exists $\delta > 0$ for which

$$\{\mu \in \mathbb{C} : 0 < |\mu - \lambda| < \delta\}$$

$$\subseteq \text{s-reg}(T \mid R(T - \lambda I)^p) \cap \rho_{SF}(T \mid R(T - \lambda I)^p).$$

Since T has the SVEP, so does $T \mid R(T - \lambda I)^p$. Therefore

s-reg
$$(T \mid R(T - \lambda I)^p) = \rho_a(T \mid R(T - \lambda I)^p)$$

and

$$\{\mu \in \mathbb{C} : 0 < |\mu - \lambda| < \delta\}$$
$$\subseteq \rho_a(T \mid R(T - \lambda I)^p) \cap \rho_{SF}(T \mid R(T - \lambda)^p),$$

hence $\lambda \in \operatorname{iso}(\sigma_a(T) \cap \rho_{SBF}(T))$. By [2, Theorem 2.8], it follows that $\lambda \in \Pi_a(T)$ and $\sigma_a(T) \setminus \sigma_{SBF_+}(T) \subset \Pi^a(T)$. Since the other inclusion is clear we get $\sigma_a(T) \setminus \sigma_{SBF_+}(T) = \Pi_a(T)$ and thus generalized a-Browder's theorem holds for T. Finally, if $f \in H(\sigma(T))$, by [6, Theorem 3.3.6] f(T) or $f(T^*)$ satisfies the SVEP and the above argument implies that generalized a-Browder's theorem holds for f(T).

From Theorem 1.5 we obtain the following useful consequence.

Corollary 1.6. Let T be a bounded linear operator on X. If T or T^* has the SVEP then generalized a-Weyl's theorem holds for T if and only if $E^a(T) = \Pi^a(T)$.

Proof. We only have to use the fact that an operator T satisfying generalized a-Browder's theorem, satisfies generalized a-Weyl's theorem if and only if $\Pi^a(T) = E^a(T)$.

In [7] the class of the operators $T \in \mathcal{L}(X)$ for which $K(T) = \{0\}$ was studied and it was shown that for such operators, the spectrum is connected and the single-valued extension property is satisfied.

Proposition 1.7. Let $T \in \mathcal{L}(X)$. If there exists a complex number λ for which $K(T - \lambda I) = \{0\}$ then f(T) satisfies generalized a-Browder's theorem for every $f \in \mathcal{H}(\sigma(T))$. Moreover, if in addition, $N(T - \lambda I) = \{0\}$, then generalized a-Weyl's theorem holds for f(T) for any $f \in \mathcal{H}(\sigma(T))$.

Proof. Let f be a non-constant complex-valued analytic function on an open neighborhood of $\sigma(T)$. Since T has the SVEP so does f(T) and by Theorem 1.5 generalized a-Browder's theorem holds for f(T). Now assume that $N(T - \lambda I) = \{0\}$ and $\beta \in \sigma(f(T))$ then $f(z) - \beta I = P(z)g(z)$ where g is complex-valued analytic function on a neighborhood of $\sigma(T)$ without any zeros in $\sigma(T)$ while P is a complex polynomial of the form $P(z) = \prod_{i=1}^{n} (z - \lambda_i)^{p_i}$ with distinct roots $\lambda_1, \ldots, \lambda_n \in \sigma(T)$. Since g(T) is invertible, we have

$$N(f(T) - \beta I) = N(P(T)) = \bigoplus_{i=1}^{n} N(T - \lambda_i I)^{p_i}$$

On the other hand, [7, Proposition 2.1] ensures that $\sigma_p(T) \subseteq \{\lambda\}$ and since $T - \lambda I$ is injective, we deduce that $\sigma_p(T) = \emptyset$. Consequently $N(f(T) - \beta I) = \{0\}$ which proves that $\sigma_p(f(T)) = \emptyset$. Thus $E^a(f(T)) = \Pi^a(f(T)) = \emptyset$ and generalized a-Weyl's theorem holds for f(T).

Proposition 1.8. Let T be a bounded linear operator on X satisfying the SVEP. If $T - \lambda I$ has finite descent at every $\lambda \in E^a(T)$, then T obeys generalized a-Weyl's theorem.

Proof. Let $\lambda \in E^a(T)$, then $p = d(T - \lambda I) < \infty$ and since T has the SVEP it follows (see [13, Proposition 3]) that $a(T - \lambda I) = d(T - \lambda I) = p$ and by [5, Satz 101.2], λ is a pole of the resolvent of T or order p, consequently λ is an isolated point in $\sigma_a(T)$. Then $X = K(T - \lambda I) \oplus H_0(T - \lambda I)$, with $K(T - \lambda I) = R(T - \lambda I)^p$ is closed, therefore $\lambda \in \Pi^a(T)$.

Now let us consider the class $\mathcal{P}(X)$ defined as those operators $T \in \mathcal{L}(X)$ for which for every complex number λ there exists a positive integer p_{λ} such that $H_0(T - \lambda I) = N(T - \lambda I)^{p_{\lambda}}$. This class has been introduced and studied in [10, 11], it was shown that it contains every M-hyponormal, log-hyponormal, p-hyponormal and totally paranormal operator. It was also established that the SVEP is shared by all the operators lying in $\mathcal{P}(X)$ and generalized Weyl's theorem holds for f(T) whenever $T \in \mathcal{P}(X)$ and $f \in \mathcal{H}(\sigma(T))$.

Proposition 1.9. Let $T \in \mathcal{P}(X)$ be such that $\sigma(T) = \sigma_a(T)$ then generalized a-Weyl's theorem holds for f(T) for every $f \in \mathcal{H}(\sigma(T))$.

Proof. By the spectral mapping theorem for the spectrum and the approximate point spectrum, and the fact that $f(T) \in \mathcal{P}(X)$, it suffices to establish generalized a-Weyl's theorem for T. Since $\sigma(T) = \sigma_a(T)$ it follows that

$$E^{a}(T) = \sigma_{p}(T) \cap \operatorname{iso}(\sigma_{a}(T)) = \sigma_{p}(T) \cap \operatorname{iso}(\sigma(T)) = E(T).$$

Let $\lambda \in E^a(T) = E(T)$, then $X = H_0(T - \lambda I) \oplus K(T - \lambda I)$ and $K(T - \lambda I)$ is closed. Since $T \in \mathcal{P}(X)$, let p_{λ} be a positive integer

for which $H_0(T - \lambda I) = N(T - \lambda I)^{p_{\lambda}}$, therefore

$$R(T - \lambda I)^{p_{\lambda}} = (T - \lambda I)^{p_{\lambda}} (H_0(T - \lambda I) \oplus K(T - \lambda I))$$
$$= (T - \lambda I)^{p_{\lambda}} (K(T - \lambda I))$$
$$= K(T - \lambda I),$$

thus $R(T - \lambda I)^{p_{\lambda}} = R(T - \lambda I)^{p_{\lambda}+1}$ which by Proposition 1.8 shows that the operator T obeys generalized a-Weyl's theorem.

2. Generalized A-Weyl's Theorem and Perturbation

In general, we cannot expect that generalized a-Browder's theorem necessarily holds under finite rank perturbations. However, it does hold under commutative ones, as the following result shows.

Theorem 2.1. [2, Theorem 3.2] If $T \in \mathcal{L}(X)$ is an operator satisfying generalized a-Browder's theorem and F is a finite rank operator such that TF = FT then T + F satisfies generalized a-Browder's theorem.

Lemma 2.2. Let $T \in \mathcal{L}(X)$ be an injective operator. If F is a finite rank operator on X such that FT = TF, then $R(F) \subseteq R(T)$.

Proof. Since F is a finite rank operator on X there exist two systems: a system of linearly independent vectors e_i for i = 1, ..., n and a system of non-zero bounded linear functionals f_i for i = 1, ..., n on X such that

$$F(x) = \sum_{i=1}^{n} f_i(x)e_i \qquad (x \in X).$$

Moreover, we have

$$\sum_{i=1}^{n} f_i(x) T e_i = TF(x) = FT(x) = \sum_{i=1}^{n} f_i(Tx) e_i \qquad (x \in X).$$

On the other hand, since T is injective, it is clear that the vectors Te_i $(1 \le i \le n)$ are linearly independent. Hence $F(x) \in Vect(\{e_1, \dots, e_n\}) = Vect(\{Te_1, \dots, Te_n\})$ for all $x \in X$. Thus $R(F) \subseteq R(T)$, as desired.

Lemma 2.3. Let $T \in \mathcal{L}(X)$. If F is a finite rank operator on X such that FT = TF then $\lambda \in \operatorname{acc}(\sigma_a(T))$ if and only if $\lambda \in \operatorname{acc}(\sigma_a(T+F))$.

Proof. Let $\lambda \notin \operatorname{acc}(\sigma_a(T))$ be given, there exists $\delta > 0$ such that if $0 < |\mu - \lambda| < \delta$ then $\alpha(T - \mu I) = 0$ and $R(T - \mu I)$ is closed. This gives us a bounded linear operator $S: R(T - \mu I) \longrightarrow X$ such that $S(T - \mu I) = I$ and $(T - \mu I)S = I \mid R(T - \mu I)$. To see that $\lambda \notin \operatorname{acc}(\sigma_a(T+F))$, suppose that $\mu \in \sigma_a(T+F)$, and choose unit vectors $x_n \in X$ such that $(T+F-\mu I)x_n \to 0$ as $n \to \infty$. Let $(x_{n(k)})_{k}$. be a subsequence such that $Fx_{n(k)} \to x \in R(F)$ as $k \to \infty$, and since this level of generality is not needed here, we may assume that $Fx_n \to x$ as $n \to \infty$. Therefore $S(T + F - \mu I)x_n = x_n + SFx_n \to 0$ as $n \to \infty$, and since $\lim SFx_n = Sx$ exists, it follows that $\lim x_n =$ -Sx and consequently $x \neq 0$. Next observe that $x = \lim Fx_n =$ $-FSx \in R(F)$, then since Lemma 2.2 asserts that $R(F) \subseteq R(T)$, we obtain $(T - \mu I)x = -(T - \mu I)FSx = -F(T - \mu I)Sx = -Fx$, hence $(T + F - \mu I)x = 0$. Thus $\mu \in \sigma_p(T + F)$. Finally, because eigenvectors corresponding to distinct eigenvalues of an operator are linearly independent, and since all the eigenvectors of T + F belong to the finite dimensional subspace R(F), it follows that $\sigma_a(T+F)$ may contain only finitely many points μ such that $0 < |\mu - \lambda| < \delta$, and consequently $\lambda \notin \operatorname{acc}(\sigma_a(T+F))$. The opposite inclusion is similarly obtained.

An operator $T \in \mathcal{L}(X)$ is said to be approximate-isoloid if any isolated point of $\sigma_a(T)$ is an eigenvalue of T.

Theorem 2.4. Let T be an approximate-isoloid operator on X that satisfies generalized a-Weyl's theorem. If F is an operator of finite rank on X such that FT = TF then T + F satisfies generalized a-Weyl's theorem.

Proof. Since by Theorem 2.1 generalized a-Browder's theorem holds for T + F it suffices, from Corollary 1.5, to prove that $E^a(T + F) = \Pi^a(T + F)$. Let $\lambda \in E^a(T + F)$ be given, then $\lambda \in \operatorname{iso}(\sigma_a(T + F))$ and $\lambda \in \sigma_p(T + F)$, hence $\lambda \notin \operatorname{acc}(\sigma_a(T + F))$ and by Lemma 2.3 $\lambda \notin \operatorname{acc}(\sigma_a(T))$. We distinguish two cases. Firstly if $\lambda \notin \sigma_a(T)$, $T - \lambda I$ is injective with a closed range and $T - \lambda I$ is an upper semi-Fredholm operator on X such that $\operatorname{ind}(T - \lambda I) \leq 0$, and since F is a finite rank operator on X, it follows that $T + F - \lambda I$ is an upper semi-Fredholm operator and $\operatorname{ind}(T + F - \lambda I) = \operatorname{ind}(T - \lambda I) \leq 0$. Then $\lambda \notin \sigma_{SF_+^-}(T + F)$ and $\lambda \in \Pi^a(T + F)$. On the other hand if $\lambda \in \sigma_a(T)$, then $\lambda \in \operatorname{iso}(\sigma_a(T))$ and since T is approximate-isoloid $\lambda \in \sigma_p(T)$. Thus $\lambda \in \operatorname{iso}(\sigma_a(T)) \cap \sigma_p(T) = E^a(T)$. From the fact that T obeys generalized a-Weyl's theorem, it follows that $\lambda \notin \sigma_{SBF^-_+}(T) = \sigma_{SBF^-_+}(T+F)$ and since $\lambda \in \operatorname{iso}(\sigma_a(T+F))$, it follows that $\lambda \in \Pi^a(T+F)$. Finally $E^a(T+F) \subset \Pi^a(T+F)$, and since the reverse inclusion is verified, T+F obeys generalized a-Weyl's theorem.

References

- M. Berkani, On a class of quasi-Fredholm operators, Int. Eq. Oper. Th. 34 (1999), 244–249.
- [2] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376.
- [3] S. R. Caradus, W. E. Pfaffenberger, B. Yood, Calkin algebras and algebras of operators on Banach spaces, Marcel Dekker, New York, 1974.
- [4] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317–337.
- [5] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, Stuttgart, 1986.
- [6] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, LMS Monographs 20, Clarendon Press, Oxford, 2000.
- [7] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621–631.
- [8] M. Mbekhta and A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59 (1994), 525–543.
- [9] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129–147.
- [10] M. Oudghiri, Sur le théorème de Weyl, Thèse en cotutelle (Université Abdelmalek Essaadi, Tétouan, et Université des Sciences et Technologies, Lille), (2004).
- [11] M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math. 163 (2004), 85–101.
- [12] M. Oudghiri, Weyl's theorem and perturbations, preprint.
- [13] C. Schmoeger, On isolated points of the spectrum of bounded linear operators, Proc. Amer. Math. Soc. 117 (1993), 715–719.
- [14] A. Taylor and D. Lay, Introduction to functional analysis, 2nd ed., John Wiley & Sons, 1980.

M. Lahrouz, M. Zohry, Université Abdelmalek Essaadi, Faculté des Sciences, Departement de Mathématique, BP 2121 Tétouan, Moroc

zohry@fst.ac.ma

Received on 22 February 2005.