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Weyl type Theorems and the
Approximate Point Spectrum

M. LAHROUZ AND M. ZOHRY

Abstract. It is shown that, if an operator T on a complex
Banach space or its adjoint T ∗ has the single-valued extension
property, then the generalized a-Browder’s theorem holds for
f(T ) for every complex-valued analytic function f on a neigh-
borhood of the spectrum of T . We also study the generalized
a-Weyl’s theorem in connection with the single-valued exten-
sion property. Finally, we examine the stability of the gen-
eralized a-Weyl’s theorem under commutative perturbations
by finite rank operators.

1. Introduction

Throughout this paper X will denote an infinite-dimensional com-
plex Banach space and L(X) the unital (with unit the identity oper-
ator, I, on X) Banach algebra of all bounded linear operators acting
on X. For an operator T ∈ L(X), let T ∗ denote its adjoint, N(T )
its kernel, R(T ) its range, σ(T ) its spectrum, σa(T ) its approximate
point spectrum, σsu(T ) its surjective spectrum and σp(T ) its point
spectrum. For a subset K of C we write iso(K) for its isolated points
and acc(K) for its accumulation points.

From [14] we recall that for T ∈ L(X), the ascent a(T ) and the
descent d(T ) are given by

a(T ) = inf{n ≥ 0 : N(Tn) = N(Tn+1)}
and

d(T ) = inf{n ≥ 0 : R(Tn) = R(Tn+1)},
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respectively; the infimum over the empty set is taken to be ∞. If
the ascent and the descent of T ∈ L(X) are both finite then a(T ) =
d(T ) = p, X = N(T p)⊕R(T p) and R(T p) is closed.

For T ∈ L(X) we will denote by α(T ) the nullity of T and by
β(T ) the defect of T . If the range R(T ) of T is closed and α(T ) < ∞
(resp., β(T ) < ∞) then T is called an upper semi-Fredholm (resp.,
a lower semi-Fredholm) operator. If T ∈ L(X) is either upper or
lower semi-Fredholm, then T is called a semi-Fredholm operator,
and the index of T is defined by ind(T ) = α(T ) − β(T ). If both
α(T ) and β(T ) are finite then T is called a Fredholm operator. For
a T -invariant closed linear subspace Y of X, let T | Y denote the
operator given by the restriction of T to Y .

For a bounded linear operator T and for each integer n, define
Tn to be the restriction of T to R(Tn) viewed as a map from R(Tn)
into itself. If for some integer n the range space R(Tn) is closed and
Tn = T | R(Tn) is an upper (resp., lower) semi-Fredholm operator
then T is called an upper (resp., lower) semi-B-Fredholm operator.
Moreover if Tn is a Fredholm operator, then T is called a B-Fredholm
operator. In this situation, from [1, Proposition 2.1], Tm is a Fred-
holm operator and ind(Tm) = ind(Tn) for each m ≥ n which permits
to define the index of a B-Fredholm operator T as the index of the
Fredholm operator Tn where n is any integer such that R(Tn) is
closed and Tn is a Fredholm operator. Let BF (X) be the class of all
B-Fredholm operators and ρBF (T ) = {λ ∈ C : T − λI ∈ BF (X)}
be the B-Fredholm resolvent of T and let σBF (T ) = C \ ρBF (T ) the
B-Fredholm spectrum of T . The class BF (X) has been studied by
M. Berkani (see [1, Theorem 2.7]), where it was shown that T ∈ L(X)
is a B-Fredholm operator if and only if T = T0 ⊕ T1 where T0 is a
Fredholm operator and T1 is a nilpotent one. He also proved that
σBF (T ) is a closed subset of C and showed that the spectral map-
ping theorem holds for σBF (T ), that is, f(σBF (T )) = σBF (f(T ))
for any complex-valued analytic function on a neighborhood of the
spectrum σ(T ).

An operator T ∈ L(X) is called a Weyl operator if it is Fredholm
of index 0, a Browder operator if it is Fredholm of finite ascent and
descent and a B-Weyl operator if it is B-Fredholm of index 0. The
Weyl spectrum, the Browder spectrum and the B-Weyl spectrum of
T are defined by

σw(T ) = {λ ∈ C : T − λI is not Weyl},
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σb(T ) = {λ ∈ C : T − λI is not Browder},
σBW (T ) = {λ ∈ C : T − λI is not B-Weyl},

respectively. We will denote by E(T ) (resp. Ea(T )) the set of all
eigenvalues of T which are isolated in σ(T ) (resp., σa(T )) and by
E0(T ) (resp. Ea

0 (T )) the set of all eigenvalues of T of finite multi-
plicity which are isolated in σ(T ) (resp., σa(T )).

Let SF (X) be the class of all semi-Fredholm operators on X,
SF+(X) the class of all upper semi-Fredholm operators on X and
SF−+(X) the class of all T ∈ SF+(X) such that ind(T ) ≤ 0. For
T ∈ L(X), let

σSF (T ) = {λ ∈ C : T − λI /∈ SF (X)},
σSF−+

(T ) = {λ ∈ C : T − λI /∈ SF−+(X)},
ρSF (T ) = C \ σSF (T ) and ρSF−+

(T ) = C \ σSF−+
(T ).

Similarly, let SBF (X) be the class of all semi-B-Fredholm oper-
ators on X, SBF+(X) the class of all upper semi-B-Fredholm oper-
ators on X and SBF−+(X) the class of all T ∈ SBF+(X) such that
ind(T ) ≤ 0. For T ∈ L(X), the sets σSBF (T ), ρSBF (T ), σSBF−+

(T )
and ρSBF−+

(T ) are defined in an obvious way.
An operator T ∈ L(X) is called semi-regular if R(T ) is closed and

N(T ) ⊆ R(Tn) for every n ∈ N. The semi-regular resolvent set is
defined by s-reg(T ) = {λ ∈ C : T − λI is semi- regular}, we note
that s-reg(T ) = s-reg(T ∗) is an open subset of C. As a consequence
of [8, Théorème 2.7], we obtain the following result.

Proposition 1.1. Let T ∈ L(X).
(i) If T has the SVEP then s-reg(T ) = ρa(T ) = C \ σa(T ).
(ii) If T ∗ has the SVEP then s-reg(T ) = ρsu(T ) = C \ σsu(T ).

We recall that an operator T ∈ L(X) has the single-valued exten-
sion property, abbreviated SVEP, if, for every open set U ⊂ C, the
only analytic solution f : U −→ X of the equation (T −λI)f(λ) = 0
for all λ ∈ U is the zero function on U . We will denote by H(σ(T ))
the set of all complex-valued functions which are analytic on an open
set containing σ(T ).

The remainder of the following deals with Riesz points and left
poles. A complex number λ is said to be Riesz point of T ∈ L(X) if
λ ∈ iso(σ(T )) and the corresponding spectral projection is of finite-
dimensional range. The set of all Riesz points of T will be denoted by
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Π0(T ). It is known that if T ∈ L(X) and λ ∈ σ(T ), then λ ∈ Π0(T )
if and only if T−λI is Fredholm of finite ascent and descent (see [3]).
Consequently σb(T ) = σ(T )\Π0(T ). We will denote by Π(T ) the set
of all poles of the resolvent of T . A complex number λ ∈ σa(T ) is
said to be a left pole of T if a(T−λI) < ∞ and R((T − λI)a(T−λI)+1)
is closed, and that it is a left pole of T of finite rank if it is a left
pole of T and α(T − λI) < ∞. We will denote by Πa(T ) the set of
all left poles of T , and by Πa

0(T ) the set of all left poles of T of finite
rank. If λ ∈ Πa(T ), then it is easily seen that T − λI is an operator
of topological uniform descent, therefore from [4], it follows that λ
is isolated in σa(T ) [2, Theorem 2.5]. Let T ∈ L(X) and λ ∈ C be
isolated in σa(T ); then λ ∈ Πa(T ) if and only if λ /∈ σSBF−+

(T ), and
λ ∈ Πa

0(T ) if and only if λ /∈ σSF−+
(T ).

For T ∈ L(X) we will say that:
(i) T satisfies Weyl’s theorem if σw(T ) = σ(T ) \ E0(T );
(ii) T satisfies generalized Weyl’s theorem if

σBW (T ) = σ(T ) \ E(T );

(iii) T satisfies a-Weyl’s theorem if

σSF−+
(T ) = σa(T ) \ Ea

0 (T );

(iv) T satisfies generalized a-Weyl’s theorem if

σSBF−+
(T ) = σa(T ) \ Ea(T );

(v) T satisfies Browder’s theorem if

σw(T ) = σ(T ) \Π0(T );

(vi) T satisfies generalized Browder’s theorem if

σBW (T ) = σ(T ) \Π(T );

(vii) T satisfies a-Browder’s theorem if

σSF−+
(T ) = σa(T ) \Πa

0(T );

(viii) T satisfies generalized a-Browder’s theorem if

σSBF−+
(T ) = σa(T ) \Πa(T ).

Before proving our main result we deal with some preliminary
results.
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Proposition 1.2. Let T ∈ L(X).
(i) If T has the SVEP then ind(T − λI) ≤ 0 for every λ ∈

ρSBF (T ).
(ii) If T ∗ has the SVEP then ind(T − λI) ≥ 0 for every λ ∈

ρSBF (T ).

Proof. (i) Let λ ∈ ρSBF (T ), then there exists an integer p such that
(T | R(T − λI)p) − λI = (T − λI) | R(T − λI)p is semi-Fredholm.
From the Kato decomposition, there exists δ > 0 such that

{λ ∈ C : 0 < |µ− λ| < δ} ⊆ s-reg(T | R(T − λI)p).

Since T has the SVEP, Proposition 1.1 implies that

s-reg(T | R(T − λI)p) = ρa(T | R(T − λI)p).

Therefore, N((T | R(T − λI)p) − µI) = 0 and so ind(T − µI) =
ind((T | R(T − λI)p − µI) ≤ 0, holding for 0 < |µ − λ| < δ. Thus,
by the continuity of the index we obtain ind(T − λ) ≤ 0.
(ii) Follows by similar reasoning, and may also be derived from the
first assertion and the fact that ind(T ∗) = −ind(T ). ¤

Corollary 1.3. Let T be a bounded linear operator on X. If T ∗ has
the SVEP, then σSF−+

(T ) = σw(T ).

Proof. We have only to show that σw(T ) ⊆ σSF−+
(T ), since the other

inclusion is always verified. Let λ be given in ρSF−+
(T ), then T−λI is

semi-Fredholm and ind(T −λI) ≤ 0. Since T ∗ has the SVEP, Propo-
sition 1.2 implies that ind(T − λI) ≥ 0, and hence ind(T − λI) = 0,
which proves that T −λI is Fredholm of index 0 and λ ∈ ρw(T ). ¤

The following results relate the generalized a-Weyl’s theorem and
the generalized a-Browder’s theorem to the single-valued extension
property. As motivation for the proofs, we use some ideas in [10, 12].

Proposition 1.4. Let T be a bounded linear operator on X.
(i) If T ∗ has the SVEP, then T satisfies generalized a-Weyl’s

theorem if and only if it satisfies generalized Weyl’s theorem.
(ii) If T has the SVEP, then T ∗ satisfies generalized a-Weyl’s

theorem if and only if it satisfies generalized Weyl’s theorem.

Proof. (i) Since T ∗ has the SVEP, [6, Proposition 1.3.2] implies that
σ(T ) = σa(T ) and consequently Ea(T ) = E(T ). Suppose that T
satisfies generalized Weyl’s theorem, then σBW (T ) = σ(T ) \E(T ) =
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σa(T ) \ Ea(T ). Let λ /∈ σSBF−+
(T ) be given, then T − λI is semi-

B-Fredholm and ind(T − λI) ≤ 0. Therefore, by Proposition 1.2, it
follows that ind(T −λI) = 0 and consequently T −λI is B-Fredholm
of index 0. Hence λ /∈ σBW (T ) and σBW (T ) ⊂ σSBF−+

(T ). Since
the opposite inclusion is clear, we conclude that indeed σSBF−+

(T ) =
σBW (T ) = σa(T ) \ Ea(T ) which proves the equivalence between
generalized Weyl’s theorem and generalized a-Weyl’s theorem for T .

(ii) Similar to the proof of the first assertion. ¤

Our main result reads now as follows.

Theorem 1.5. Let T be a bounded linear operator on X. If T or its
adjoint T ∗ satisfies the SVEP, then generalized a-Browder’s theorem
holds for f(T ) for every f ∈ H(σ(T )).

Proof. Let us establish that generalized a-Browder’s theorem holds
for T . If T ∗ has the SVEP, then by [12, Theorem 2.4], it follows
that a-Browder’s theorem holds for T , and consequently Browder’s
theorem holds for T . Thus σSF−+

(T ) = σa(T ) \ Πa
0(T ) and σb(T ) =

σ(T ) \ Π0(T ). Moreover, since σa(T ) = σ(T ), Πa
0(T ) = Π0(T ), it

follows that σSF−+
(T ) = σ(T ) \ Π0(T ). Because σSF−+

(T ) = σw(T ),
see Corollary 1.3, it follows that σSF−+

(T ) = σ(T )\Π0(T ) = σw(T ) =
σb(T ). Let λ ∈ Πa(T ) be given; then λ is isolated in σa(T ) and by
[2, Theorem 2.8], it follows that λ /∈ σSBF−+

(T ) which shows that
Πa(T ) ⊆ σa(T ) \ σSBF−+

(T ). Conversely if λ ∈ σa(T ) \ σSBF−+
(T ),

then T−λI is semi-B-Fredholm and ind(T−λI) ≤ 0. Then, since T ∗

has the SVEP, Proposition 1.2 gives ind(T −λI) = 0. Therefore T −
λI is Fredholm and λ /∈ σw(T ) = σb(T ) which shows that λ ∈ Π0(T ).
Consequently λ is isolated in σa(T ) and hence λ ∈ Πa(T ). Thus
σa(T ) \ σSBF−+

(T ) ⊂ Πa(T ) and generalized a-Browder’s theorem
holds for T . Now if T has the SVEP, let λ ∈ σa(T ) \ σSBF−+

(T );

λ ∈ ρSBF−+
(T ), then there exists an integer p such that R(T − λI)p

is closed and (T | R(T − λI)p) − λI = (T − λI) | R(T − λI)p is a
semi-Fredholm operator. Then, by the Kato decomposition, there
exists δ > 0 for which

{µ ∈ C : 0 < |µ− λ| < δ}
⊆ s-reg(T | R(T − λI)p) ∩ ρSF (T | R(T − λI)p).
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Since T has the SVEP, so does T | R(T − λI)p. Therefore

s-reg(T | R(T − λI)p) = ρa(T | R(T − λI)p)

and

{µ ∈ C : 0 < |µ− λ| < δ}
⊆ ρa(T | R(T − λI)p) ∩ ρSF (T | R(T − λ)p),

hence λ ∈ iso(σa(T )∩ρSBF (T )). By [2, Theorem 2.8], it follows that
λ ∈ Πa(T ) and σa(T )\σSBF−+

(T ) ⊂ Πa(T ). Since the other inclusion
is clear we get σa(T ) \ σSBF−+

(T ) = Πa(T ) and thus generalized a-
Browder’s theorem holds for T . Finally, if f ∈ H(σ(T )), by [6,
Theorem 3.3.6] f(T ) or f(T ∗) satisfies the SVEP and the above
argument implies that generalized a-Browder’s theorem holds for
f(T ). ¤

From Theorem 1.5 we obtain the following useful consequence.

Corollary 1.6. Let T be a bounded linear operator on X. If T or
T ∗ has the SVEP then generalized a-Weyl’s theorem holds for T if
and only if Ea(T ) = Πa(T ).

Proof. We only have to use the fact that an operator T satisfying
generalized a-Browder’s theorem, satisfies generalized a-Weyl’s the-
orem if and only if Πa(T ) = Ea(T ). ¤

In [7] the class of the operators T ∈ L(X) for which K(T ) = {0}
was studied and it was shown that for such operators, the spectrum
is connected and the single-valued extension property is satisfied.

Proposition 1.7. Let T ∈ L(X). If there exists a complex number
λ for which K(T − λI) = {0} then f(T ) satisfies generalized a-
Browder’s theorem for every f ∈ H(σ(T )). Moreover, if in addition,
N(T − λI) = {0}, then generalized a-Weyl’s theorem holds for f(T )
for any f ∈ H(σ(T )).

Proof. Let f be a non-constant complex-valued analytic function
on an open neighborhood of σ(T ). Since T has the SVEP so does
f(T ) and by Theorem 1.5 generalized a-Browder’s theorem holds for
f(T ). Now assume that N(T − λI) = {0} and β ∈ σ(f(T )) then
f(z) − βI = P (z)g(z) where g is complex-valued analytic function
on a neighborhood of σ(T ) without any zeros in σ(T ) while P is a
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complex polynomial of the form P (z) =
∏n

i=1(z − λi)
pi with distinct

roots λ1, . . . , λn ∈ σ(T ). Since g(T ) is invertible, we have

N(f(T )− βI) = N(P (T )) = ⊕n
i=1N(T − λiI)pi .

On the other hand, [7, Proposition 2.1] ensures that σp(T ) ⊆ {λ}
and since T − λI is injective, we deduce that σp(T ) = ∅. Conse-
quently N(f(T )− βI) = {0} which proves that σp(f(T )) = ∅. Thus
Ea(f(T )) = Πa(f(T )) = ∅ and generalized a-Weyl’s theorem holds
for f(T ). ¤

Proposition 1.8. Let T be a bounded linear operator on X satisfy-
ing the SVEP. If T −λI has finite descent at every λ ∈ Ea(T ), then
T obeys generalized a-Weyl’s theorem.

Proof. Let λ ∈ Ea(T ), then p = d(T − λI) < ∞ and since T has the
SVEP it follows (see [13, Proposition 3]) that a(T − λI) = d(T −
λI) = p and by [5, Satz 101.2], λ is a pole of the resolvent of T or
order p, consequently λ is an isolated point in σa(T ). Then X =
K(T − λI) ⊕H0(T − λI), with K(T − λI) = R(T − λI)p is closed,
therefore λ ∈ Πa(T ). ¤

Now let us consider the class P(X) defined as those operators
T ∈ L(X) for which for every complex number λ there exists a
positive integer pλ such that H0(T −λI) = N(T − λI)pλ . This class
has been introduced and studied in [10, 11], it was shown that it
contains every M-hyponormal, log-hyponormal, p-hyponormal and
totally paranormal operator. It was also established that the SVEP
is shared by all the operators lying in P(X) and generalized Weyl’s
theorem holds for f(T ) whenever T ∈ P(X) and f ∈ H(σ(T )).

Proposition 1.9. Let T ∈ P(X) be such that σ(T ) = σa(T ) then
generalized a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. By the spectral mapping theorem for the spectrum and the
approximate point spectrum, and the fact that f(T ) ∈ P(X), it suf-
fices to establish generalized a-Weyl’s theorem for T . Since σ(T ) =
σa(T ) it follows that

Ea(T ) = σp(T ) ∩ iso(σa(T )) = σp(T ) ∩ iso(σ(T )) = E(T ).

Let λ ∈ Ea(T ) = E(T ), then X = H0(T − λI) ⊕ K(T − λI) and
K(T − λI) is closed. Since T ∈ P(X), let pλ be a positive integer
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for which H0(T − λI) = N(T − λI)pλ , therefore

R(T − λI)pλ = (T − λI)pλ(H0(T − λI)⊕K(T − λI))

= (T − λI)pλ(K(T − λI))

= K(T − λI),

thus R(T − λI)pλ = R(T − λI)pλ+1 which by Proposition 1.8 shows
that the operator T obeys generalized a-Weyl’s theorem. ¤

2. Generalized a-Weyl’s Theorem and Perturbation

In general, we cannot expect that generalized a-Browder’s theorem
necessarily holds under finite rank perturbations. However, it does
hold under commutative ones, as the following result shows.

Theorem 2.1. [2, Theorem 3.2] If T ∈ L(X) is an operator satisfy-
ing generalized a-Browder’s theorem and F is a finite rank operator
such that TF = FT then T + F satisfies generalized a-Browder’s
theorem.

Lemma 2.2. Let T ∈ L(X) be an injective operator. If F is a finite
rank operator on X such that FT = TF , then R(F ) ⊆ R(T ).

Proof. Since F is a finite rank operator on X there exist two systems:
a system of linearly independent vectors ei for i = 1, . . . , n and a
system of non-zero bounded linear functionals fi for i = 1, . . . , n on
X such that

F (x) =
n∑

i=1

fi(x)ei (x ∈ X).

Moreover, we have
n∑

i=1

fi(x)Tei = TF (x) = FT (x) =
n∑

i=1

fi(Tx)ei (x ∈ X).

On the other hand, since T is injective, it is clear that the vec-
tors Tei (1 ≤ i ≤ n) are linearly independent. Hence F (x) ∈
Vect({e1, · · · , en}) = Vect({Te1, · · · , T en}) for all x ∈ X. Thus
R(F ) ⊆ R(T ), as desired. ¤

Lemma 2.3. Let T ∈ L(X). If F is a finite rank operator on X such
that FT = TF then λ ∈ acc(σa(T )) if and only if λ ∈ acc(σa(T+F )).
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Proof. Let λ /∈ acc(σa(T )) be given, there exists δ > 0 such that
if 0 < |µ − λ| < δ then α(T − µI) = 0 and R(T − µI) is closed.
This gives us a bounded linear operator S : R(T − µI) −→ X such
that S(T − µI) = I and (T − µI)S = I | R(T − µI). To see that
λ /∈ acc(σa(T + F )), suppose that µ ∈ σa(T + F ), and choose unit
vectors xn ∈ X such that (T+F−µI)xn → 0 as n →∞. Let (xn(k))k
be a subsequence such that Fxn(k) → x ∈ R(F ) as k → ∞, and
since this level of generality is not needed here, we may assume that
Fxn → x as n →∞. Therefore S(T + F −µI)xn = xn + SFxn → 0
as n →∞, and since lim SFxn = Sx exists, it follows that lim xn =
−Sx and consequently x 6= 0. Next observe that x = limFxn =
−FSx ∈ R(F ), then since Lemma 2.2 asserts that R(F ) ⊆ R(T ),
we obtain (T − µI)x = −(T − µI)FSx = −F (T − µI)Sx = −Fx,
hence (T + F − µI)x = 0. Thus µ ∈ σp(T + F ). Finally, because
eigenvectors corresponding to distinct eigenvalues of an operator are
linearly independent, and since all the eigenvectors of T + F belong
to the finite dimensional subspace R(F ), it follows that σa(T + F )
may contain only finitely many points µ such that 0 < |µ − λ| < δ,
and consequently λ /∈ acc(σa(T + F )). The opposite inclusion is
similarly obtained. ¤

An operator T ∈ L(X) is said to be approximate-isoloid if any
isolated point of σa(T ) is an eigenvalue of T .

Theorem 2.4. Let T be an approximate-isoloid operator on X that
satisfies generalized a-Weyl’s theorem. If F is an operator of finite
rank on X such that FT = TF then T + F satisfies generalized
a-Weyl’s theorem.

Proof. Since by Theorem 2.1 generalized a-Browder’s theorem holds
for T + F it suffices, from Corollary 1.5, to prove that Ea(T + F ) =
Πa(T + F ). Let λ ∈ Ea(T + F ) be given, then λ ∈ iso(σa(T + F ))
and λ ∈ σp(T + F ), hence λ /∈ acc(σa(T + F ) and by Lemma 2.3
λ /∈ acc(σa(T ). We distinguish two cases. Firstly if λ /∈ σa(T ),
T − λI is injective with a closed range and T − λI is an upper semi-
Fredholm operator on X such that ind(T − λI) ≤ 0, and since F is
a finite rank operator on X, it follows that T + F − λI is an upper
semi-Fredholm operator and ind(T + F − λI) = ind(T − λI) ≤ 0.
Then λ /∈ σSF−+

(T + F ) and λ ∈ Πa(T + F ). On the other hand if
λ ∈ σa(T ), then λ ∈ iso(σa(T )) and since T is approximate-isoloid
λ ∈ σp(T ). Thus λ ∈ iso(σa(T )) ∩ σp(T ) = Ea(T ). From the



Weyl type Theorems 51

fact that T obeys generalized a-Weyl’s theorem, it follows that λ /∈
σSBF−+

(T ) = σSBF−+
(T + F ) and since λ ∈ iso(σa(T + F )), it follows

that λ ∈ Πa(T + F ). Finally Ea(T + F ) ⊂ Πa(T + F ), and since
the reverse inclusion is verified, T + F obeys generalized a-Weyl’s
theorem. ¤
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[8] M. Mbekhta and A. Ouahab, Opérateur s-régulier dans un espace de Ba-
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