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A Wandermonde-like Determinant

BOGDAN C. GRECU

Abstract. We present a determinant which arises from try-
ing to find the extreme points of the unit ball in the space of
n-homogeneous polynomials defined on the Euclidean plane.

The purpose of this note is to present a Wandermonde-like determi-
nant which arises from trying to find the extreme points of the unit
ball in the space of n-homogeneous polynomials on the Euclidean
plane. In order to explain this, let us start with some background
information on homogeneous polynomial (see [1] for more details).
However, this not needed by the reader merely interested in the de-
terminant announced in the title.

We say that P is an n-homogeneous polynomial on a (real or com-
plex) normed space X if there exists an n-linear form B on the prod-
uct Xn such that P (x) = B (x, . . . , x) for every x in X. We denote
by P (nX) the space of all continuous n-homogeneous polynomials
on X endowed with the natural norm ‖P‖ = sup{|P (x)| : ‖x‖ = 1}
and by Ls(nX) the space of continuous symmetric n-linear forms
on X with the supremum norm. According to the polarization for-
mula [1] for each P there exists a unique A in Ls(nX) such that
P (x) = A(x, x, . . . , x). In general we have

‖P‖ ≤ ‖A‖ ≤ nn

n!
‖P‖.

Furthermore if X is a Hilbert space then ‖P‖ = ‖A‖.
A unit vector x in a normed space X is an extreme point of BX

if x is not the midpoint of a nontrivial segment lying in BX . For
instance, in R2 with the Euclidean norm ‖(x1, x2)‖ =

√
x2

1 + x2
2, the

unit ball is the disk centred at 0 and of radius 1 and so all the points
on the unit circle are extreme.
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It is not true in general that the unit ball of a normed space has
extreme points (such an example is c0, the space of zero-convergent
sequences). However, in dual spaces, and in particular in finite di-
mensional spaces, extreme points of the unit ball do exist.

The Connection

Let H denote the Euclidian plane, i.e. the Hilbert space R2 with its
Euclidean norm, which does not depend of the choice of the system
of orthogonal coordinates. Let P be an n-homogeneous polynomial
of unit norm and A its associated symmetric n-linear form. Let us
choose a system of coordinates for H corresponding to the orthogonal
basis {e1, e2}.

Since A is symmetric we denote by A(xk, xk+1, . . . , xn) the fact
that x appears k times as an argument for the n-linear form A. For
0 ≤ k ≤ n, let

Ak = A(en−k
1 , ek

2).
Then |Ak| ≤ 1 and the expansion of the polynomial in the basis
{e1, e2} is

P (x1, x2) =
n∑

k=0

Ak

(
n

k

)
xn−k

1 xk
2 .

Thus the space of n-homogeneous polynomials on H is finite di-
mensional and so its unit ball has extreme points which we will call
extreme polynomials.

When n = 2, we have

P (x1, x2) = A0x
2
1 + 2A1x1x2 + A2x

2
2.

By a result of Sundaresan [4], the polynomial of unit norm P is

extreme if and only if the two eigenvalues of the matrix
(

A0 A1

A1 A2

)

have modulus one. That is to say that P attains its norm at at least
two distinct points, i.e. |P (x)| = ‖P‖ = 1 for at least 2 points x of
unit norm.

The result changes for higher degrees. For instance, in the case
n = 3 there exists a characterization, but there are extreme poly-
nomials that attain their norm at just one point (one example is
P (x) = x3

1 + 3/2x1x
2
2), whereas norm attainment at two distinct

points still assure the fact that the polynomial is extreme [2].
For n ≥ 4 characterizations are more difficult to obtain [3]. The

case n = 4 is still solvable, but for n > 4 only sufficient conditions are
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given, all of them in terms of how many points of norm attainment
the polynomial has. When n is odd, norm attainment at n+1 points
makes the polynomial extreme, whereas for even n the same is true
for n+2 points of norm attainment. This happens because, provided
a suitable coordinate system is chosen, the fact that |P (x)| = 1 at
so many points will exactly determine the two first coefficients of
the polynomial, A0 and A1 and will force the other n− 1 to satisfy
a system of n − 1 equations, when n is odd and n equations when
n is even. The polynomials P will be uniquely determined (and
thus extreme) because this system of equations will have unique
solution. In both cases, this is done by showing that for every positive
integer l, and yi 6= yj for i 6= j, the following matrix has a nonzero
determinant:

S =




(
n−1

2

)
yn−3
1

(
n−1

3

)
yn−4
1 · · · (n− 1)y1 1 0

(n− 1)yn−2
1

(
n−1

2

)
yn−3
1 · · · (

n−1
n−3

)
y2
1 (n− 1)y1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l

(
n−1

3

)
yn−4

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l

(
n−1

2

)
yn−3

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1




.

The Determinant

We will now evaluate the determinant of the above matrix.
Let us define a function r(y) as the determinant of a matrix whose

rows but the first two equal those of S and where instead of y1, on
the first two rows we have a variable y. Obviously r is a polynomial
of degree 2(n− 3) = 4(l− 1) in y. It is easily seen that y2, y3, . . . , yl

are zeros for r. We have

r′(y) =
����������

�
n−1

2

�
(n− 3)yn−4

�
n−1

3

�
(n− 4)yn−5 · · · (n− 1) 0 0

(n− 1)yn−2
�

n−1
2

�
yn−3 · · · �n−1

n−3

�
y2 (n− 1)y 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�
n−1

2

�
yn−3

l

�
n−1

3

�
yn−4

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l

�
n−1

2

�
yn−3

l · · · �n−1
n−3

�
y2

l (n− 1)yl 1

����������

+

����������

�
n−1

2

�
yn−3

�
n−1

3

�
yn−4 · · · (n− 1)y 1 0

(n− 1)(n− 2)yn−3
�

n−1
2

�
(n− 3)yn−4 · · · �n−1

n−3

�
2y (n− 1) 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�
n−1

2

�
yn−3

l

�
n−1

3

�
yn−4

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l

�
n−1

2

�
yn−3

l · · · �n−1
n−3

�
y2

l (n− 1)yl 1

����������

.
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It is obvious that y2, y3, . . . , yl are also zeros for r′. Let us go one
more step and evaluate r′′(y). It is a sum of three determinants

∣∣∣∣∣∣∣∣∣∣

(
n−1

2

)
(n− 3)(n− 4)yn−5 · · · 0 0 0
(n− 1)yn−2 · · · (

n−1
n−3

)
y2 (n− 1)y 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

+ 2

∣∣∣∣∣∣∣∣∣∣

(
n−1

2

)
(n− 3)yn−4 · · · (n− 1) 0 0

(n− 1)(n− 2)yn−3 · · · (
n−1
n−3

)
2y (n− 1) 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣

(
n−1

2

)
yn−3 · · · (n− 1)y 1 0

(n− 1)(n− 2)(n− 3)yn−4 · · · (
n−1
n−3

)
2 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

.

If we replace y by any of the yj , j ∈ {1, 2, . . . , l} we get the value
zero for the first and third determinant. Let us show that the same
happens to the second one.

In the initial matrix, on the column k−1 with k ∈ {2, 3, . . . n−1}
we had

(
n−1

k

)
yn−k−1 on the first row and

(
n−1
k−1

)
yn−k on the second

row so that in the second determinant above on the column k − 1
we have

(
n−1

k

)
(n− k − 1)yn−k−2 = (n− 1)

(
n−2

k

)
yn−k−2 on the first

row and
(
n−1
k−1

)
(n − k)yn−k−1 = (n − 1)

(
n−2
k+1

)
yn−k−1 on the second

row. On the column n − 2 we have 0 on the first row and n − 1 on
the second. The last column contains only 0’s. Let us divide both
of the first two rows by n − 1 and multiply the first row by y, then
add the second row to the first one. On the column k− 1 of the first
row we will have(

n− 2
k

)
yn−k−1 +

(
n− 2
k − 1

)
yn−k−1 =

(
n− 1

k

)
yn−k−1

for the first n− 3 rows while on the second last we obtain 0 + 1 = 1
and on the last 0. Therefore the first row becomes identical to its
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initial form in the expression of r and consequently the determinant
will vanish for y2, y3, . . . , yl so they are all zeros for r′′.

We prove now that y2, y3, . . . , yl are zeros for r′′′. Clearly r′′′(y) is
a sum of four determinants. The second row of the first determinant
preserves its initial form and so does the first row of the fourth
determinant. Therefore the first and the fourth determinants vanish
when y is replaced by any of y2, y3, . . . , yl. The sum of the other two
determinants is

D1 + D2 =

3

∣∣∣∣∣∣∣∣∣∣

(
n−1

2

)
(n− 3)(n− 2)yn−5 · · · 0 0 0

(n− 1)(n− 2)yn−3 · · · (
n−1
n−3

)
2y (n− 1) 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

+3

∣∣∣∣∣∣∣∣∣∣

(
n−1

2

)
(n− 3)yn−4 · · · (n− 1) 0 0

(n− 1)(n− 2)(n− 3)yn−4 · · · (
n−1
n−3

)
2 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

.

For D1, on the column k − 1, with k ∈ {2, 3, . . . , n − 3}, on the
first row we have
(

n− 1
k

)
(n−k−1)(n−k−2)yn−k−3 = (n−1)(n−2)

(
n− 3

k

)
yn−k−3

and on the second
(

n− 1
k − 1

)
(n− k)yn−k−1 = (n− 1)

(
n− 2
k − 1

)
yn−k−1.

Let us try to bring D2 to a nicer form. On the column k−1, with
k ∈ {2, 3, . . . , n − 2} we have (n − 1)

(
n−2

k

)
yn−k−2 on the first row

and on the second
(

n− 1
k − 1

)
(n− k)(n− k − 1)yn−k−2 = (n− 1)(n− 2)

(
n− 3
k − 1

)
yn−k−2.
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If we divide the first row by n−1 and the second one by (n−1)(n−2)
and subtract the second row from the first one, we get(

n− 2
k

)
yn−k−2 −

(
n− 3
k − 1

)
yn−k−2 =

(
n− 3

k

)
yn−k−2

on the first n− 4 columns and 0’s on the last three. Extracting y as
a factor from the first row and introducing it in the second one we
obtain

3(n− 1)2(n− 2)×

×

∣∣∣∣∣∣∣∣∣∣

(
n−3

2

)
yn−5

(
n−3

3

)
yn−6 · · · 0 0 0

(n− 3)yn−3
(
n−3

2

)
yn−4 · · · y 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l

(
n−1

3

)
yn−4

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l

(
n−1

2

)
yn−3

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

.

Thus
1

3(n− 1)2(n− 2)
(D1 + D2) =

∣∣∣∣∣∣∣∣∣∣

(
n−3

2

)
yn−5

(
n−3

3

)
yn−6 · · · 0 0 0

(n− 2)yn−3
(
n−2

2

)
yn−4 · · · (

n−2
n−3

)
y 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l

(
n−1

3

)
yn−4

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l

(
n−1

2

)
yn−3

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣

(
n−3

2

)
yn−5

(
n−3

3

)
yn−6 · · · 0 0 0

(n− 3)yn−3
(
n−3

2

)
yn−4 · · · y 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

2

)
yn−3

l

(
n−1

3

)
yn−4

l · · · (n− 1)yl 1 0
(n− 1)yn−2

l

(
n−1

2

)
yn−3

l · · · (
n−1
n−3

)
y2

l (n− 1)yl 1

∣∣∣∣∣∣∣∣∣∣

.

All the rows but the second one are the same so we can add up
the second rows of the two determinants. On the column k−1, with
k ∈ {2, 3, . . . , n− 2} we get(

n− 2
k − 1

)
yn−k−2 +

(
n− 3
k − 1

)
yn−k−2,

on the second last 1 and on the last one we obtain 0.
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Now let us multiply the first row by y2 and add it the second one.
On the column k − 1 with k ∈ {2, 3, . . . , n− 3} we obtain

(
n− 3

k

)
yn−k−2 +

(
n− 2
k − 1

)
yn−k−2 +

(
n− 3
k − 1

)
yn−k−2

=
(

n− 1
k

)
yn−k−2.

On the column n−3 we get (n−2)y+y = (n−1)y, on the second one
1 and on the last one 0. Thus the second row we have just obtained
is the first row in the initial expression of r. All this shows that
D1 + D2 = 0 when y is replaced by any of y2, y3, . . . , yl.

Therefore y2, y3, . . . , yl are all zeros of order four for r and thus
they are the only zeros that r has. Thus

detS =

((
n− 1

2

)2

−
(

n− 1
1

)(
n− 1

3

))
l∏

j=2

(y1 − yj)4 det S1

where S1 is the n − 3-square matrix formed by the last n − 3 rows
and the last n− 3 columns. The determinant of S1 can be evaluated
in a similar way. Lowering the dimenssion of the matrix in steps we
obtain

detS =
n−2∏

k=2

((
n− 1

k

)2

−
(

n− 1
k − 1

)(
n− 1
k − 2

)) ∏

1≤i<j≤l

(yi − yj)4.
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