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Note on the Lucas–Lehmer Test

JOHN H. JAROMA

Abstract. A proof of the Lucas–Lehmer test can be diffi-
cult to find, for most textbooks that state the result do not
prove it. Over the past two decades, there have been some
efforts to produce elementary versions of this famous result.
However, the two that we acknowledge in this note did so
by using either algebraic numbers or group theory. It also
appears that in the process of trying to develop an elemen-
tary proof of this theorem, the original version provided by
D. H. Lehmer’s in 1930 has been overlooked. Furthermore, it
is quite succinct and elementary, although by its style, it ap-
pears to have been written for an audience that has expertise
in the theory of the extended Lucas sequences. Therefore, it
is the primary objective of this paper to provide a brief intro-
duction into the theory that underlies the said sequences, as
well as to present an annotated version of Lehmer’s original
proof of the Lucas–Lehmer test. In conclusion, we show how
the test may be utilized in order to identify certain compos-
ite terms of the Lucas numbers, Ln = 1, 3, 4, 7, 11, 18, 29, . . .,
with index equal to 2n. A generalization to the companion
Lehmer sequences is offered, as well.

1. Introduction

In 1878, E. Lucas proposed two tests in [6] for the primality of the
Mersenne number, N = 2n − 1. However, neither was accompanied
by a complete proof. In 1930, and as part of his Ph.D. thesis, D. H.
Lehmer stated and proved a necessary and sufficient condition for N
to be prime [4]. This result has become known as the Lucas–Lehmer
test. It is usually stated as follows.
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Theorem 1. The number N = 2n − 1 is prime if and only if N
divides the (n− 1)st term of the sequence

4, 14, 194, 37634, . . . , Sk, . . .,

where Sk = S 2
k−1 − 2.

Demonstrations of Theorem 1 tend to be scarce, for most books
that state the result do not prove it. In an interesting note that
appeared in 1988, M. Rosen offered a demonstration of it using al-
gebraic numbers [8]. In 1993, J. W. Bruce simplified part of Rosen’s
approach with group theory [1]. However, both arguments were given
with the expressed intent of offering an elementary proof of Lehmer’s
result. Furthermore, [5] incorrectly cites [8] as the source containing
Lehmer’s original proof.

It is unfortunate that the first proof of Theorem 1 has not been
widely disseminated, for it is succinct, elegant, and quite elementary.
To be sure, some may encounter difficulty when initially trying to
assimilate Lehmer’s argument. The expository style presented in [4]
tends to take for granted a knowledge of the theory of the extended
Lucas sequences developed earlier in the paper, as well as omits
supportive steps in the proof that may have been thought obvious
to the initiated reader.

Therefore, it is our main objective to first introduce the requi-
site theory regarding the extended Lucas sequences, or Lehmer se-
quences, as they are known today and then utilize the results in
order to produce a descriptive version of Lehmer’s original proof of
the Lucas–Lehmer test.

Our secondary objective is to show how the Lucas–Lehmer test
may be interpreted in order to obtain an explicit condition for the
compositeness of certain Lucas numbers, Ln =1, 3, 4, 7, 11, 18, 29, . . . ,
of index equal to a power of two. Unlike its counterpart, the Fi-
bonacci numbers Fn = 1, 1, 2, 3, 5, 8, . . . , where primes may occur
only if the index of the underlying term is prime, a Lucas number is
prime only if either its index is prime or equal to a power of two. The
results shall then be extended to the companion Lehmer sequences.

We begin by defining the rank of apparition of a prime p to be the
index of the first term in the underlying sequence that contains p as
a divisor. Lehmer’s argument relies materially on results introduced
in [4] on the rank of apparition of a prime.
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In the next section, we introduce the Lucas and Lehmer sequences.
This will be followed by a description of some of the salient divisi-
bility properties associated with the said recursive functions that we
shall later utilize in our proof.

2. The Lucas Sequences

Let P and Q be nonzero relatively prime integers. Then, the Lucas
sequences, {Un(P, Q)}, are defined by

Un+2 = PUn+1 −QUn, U0 = 0, U1 = 1, n ∈ {0, 1, . . .}. (1)

Similarly, the companion Lucas sequences, {Vn(P, Q)}, are given
by

Vn+2 = PVn+1 −QVn, V0 = 2, V1 = P, n ∈ {0, 1, . . .}. (2)

Since (1) and (2) are linear, they are both solvable by identifying
the roots of the characteristic equation,

X2 − PX + Q = 0. (3)

Let D = P 2 − 4Q be the discriminant of (3). The roots of (3)
may be described as

α =
P +

√
D

2
, β =

P −√D

2
. (4)

Using (4), we are now able to explicitly describe the Lucas se-
quences as

Un(P, Q) =
αn − βn

α− β
, n ∈ {0, 1, . . .}. (5)

In addition, the companion Lucas sequences are similarly given
by

Vn(P, Q) = αn + βn, n ∈ {0, 1, . . .}. (6)
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3. The Lehmer Sequences

In [4], Lehmer extended the theory of the Lucas sequences to sim-
ilarly defined sequences where P is replaced by

√
R and R is any

integer relatively prime to Q. In the original theory of Lucas, the
discriminant, D = P 2 − 4Q, cannot be of the form 4n + 2 or 4n + 3.
This, in fact, motivated Lehmer’s extension of the Lucas sequences.

The Lehmer sequences, {Un(
√

R,Q)}, are recursively defined as

Un+2 =
√

RUn+1 −QUn, U0 = 0, U1 = 1, n ∈ {0, 1, . . .}. (7)

Also, the companion Lehmer sequences, {Vn(
√

R, Q)}, are simi-
larly given by

Vn+2 =
√

RVn+1 −QVn, V0 = 2, V1 =
√

R, n ∈ {0, 1, . . .}. (8)

The characteristic equation of (7) and (8) is

X2 −
√

RX + Q = 0. (9)

Furthermore, the discriminant of (9) is

∆ = R− 4Q. (10)

Using (10), the roots of (9) are expressed as

θ =
√

R +
√

∆
2

, φ =
√

R−√∆
2

. (11)

Thus, in light of (11), we have the following closed-end formula
for the Lehmer sequences.

Un(
√

R, Q) =
θn − φn

θ − φ
, n ∈ {0, 1, . . .}. (12)

Similarly, the companion Lehmer sequences are also explicitly
given by

Vn(
√

R, Q) = θn + φn, n ∈ {0, 1, . . .}. (13)
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4. Divisibility Properties of the Lehmer Sequences

Let p denote an arbitrary odd prime and assume that p - RQ. The
following lemmata are found in [4]. Each describes some characteris-
tic property of the family of Lehmer sequences that will be needed in
the proof of Theorem 1. We remark that the Lucas sequences are a
subset of the Lehmer sequences. Thus, any theory presented in this
section for the Lehmer and companion Lehmer sequences, necessarily
applies also to the Lucas and companion Lucas sequences.

First, Lemma 1 tells us that no odd prime can be a factor of both
a term of a Lehmer sequence, Un(

√
R)}, and the corresponding term

of the associated companion Lehmer sequence, Vn(
√

R, Q)}.
Lemma 1. The greatest common factor of Un(

√
R,Q) and of

Vn(
√

R,Q) is 1 or 2.

We now introduce the following Legendre symbols:

σ =
(

R
p

)
, τ =

(
Q
p

)
, ε =

(
∆
p

)
.

The following lemma states that p necessarily divides either
Up−1(

√
R,Q) or Up+1(

√
R, Q).

Lemma 2. Up−σε(
√

R, Q) ≡ 0 (mod p).

Let ω(p) = rank of apparition of p in {Un(
√

R,Q)}. Lemma 3
asserts that the only terms in a Lehmer sequence that contain p as
a factor are those with index divisible by ω.

Lemma 3. Let ω denote the rank of apparition of p in the sequence,
{Un(

√
R,Q)}. Then, p | Un(

√
R, Q) if and only if n = kω.

The previous lemma may be illustrated, for example, by consider-
ing the prime p = 23 and the sequence {Un(

√
R, Q)} = {Un(1,−1)}.

This Lehmer sequence produces the Fibonacci numbers. In it, the
rank of apparition of p is 24 for U24(1,−1) = 46368 = 25 ·32 ·7 ·23 is
the first term that contains 23 as divisor. Furthermore, we say that
23 is a primitive factor of U24(1,−1). Moreover, by Lemma 3, it
follows that 23 divides infinitely many terms of {Un(1,−1)}; specifi-
cally, all of those terms with index equal to 24k, where k is any pos-
itive integer. Examples (with primitive factors underlined) include
U48(1,−1) = 4807526976 = 26 · 32 · 7 · 23 · 47 · 1103, U72(1,−1) =
498454011879264 = 25 ·33 ·7·17·19·23·107·103681, and U96(1,−1) =
51680708854858323072 = 27 · 32 · 7 · 23 · 47 · 769 · 1103 · 2207 · 3167.
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The next lemma extends a result of R. D. Carmichael found in [2].
In particular, given the rank of apparition of p in {Un(

√
R, Q)},

the parity of the index tells us whether or not p has a rank of ap-
parition in the companion sequence, {Vn(

√
R, Q)}. In particular,

if ω(p) is even, then p divides infinitely many identifiable terms of
{Vn(

√
R,Q)}. Otherwise, no term of {Vn(

√
R, Q)} may contain p as

a factor.

Lemma 4. Suppose that ω is odd. Then Vn(
√

R, Q) is not divisible
by p for any value of n. If n is even, say 2k, then V(2n+1)k(

√
R, Q) is

divisible by p for every n but no other terms of the sequence contain
p as a factor.

Recall that Lemma 2 gave us a sufficient condition for p to di-
vide either Up−1(

√
R,Q) or Up+1(

√
R, Q). We may thus infer that

the rank of apparition of any p such that p - RQ not only exists
in {Un(

√
R, Q)} but also, it cannot be greater than p ± 1. Unfor-

tunately, Lemma 2 does not tell us if p divides any earlier term
of the sequence. Nevertheless, the idea of Lemma 2 is extended in
Lemma 5. It gives a necessary and sufficient condition for p to divide
the earlier term, U(p−σε)/2(

√
R, Q). The proof may be derived from

work provided in [4] with a sketch of the idea presented in [7].

Lemma 5. U p−σε
2

(
√

R, Q) ≡ 0 (mod p) if and only if σ = τ .

Finally, Lemma 6 is also found in [4]. It states an explicit con-
dition in terms of rank of apparition for a number N to be prime.
Moreover, it is a key tool used in Lehmer’s original proof of Theo-
rem 1.

Lemma 6. If N ±1 is the rank of apparition of N then N is prime.

5. Fundamental Identities

The following two identities will be needed.

U2n(
√

R, Q) = Un(
√

R, Q) · Vn(
√

R, Q), n ≥ 0, (14)

V2n(
√

R, Q) = Vn
2(
√

R,Q)− 2Qn, n ≥ 0. (15)
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6. Annotated Version of Lehmer’s Proof

We are now ready to offer a descriptive version of Lehmer’s original
and elementary proof of Theorem 1.
Proof of Theorem 1. (=⇒) Assume that N = 2n − 1 is prime.
Consider the companion Lehmer sequence, {Vn(

√
2,−1)}.

Hence, ∆ = R− 4Q = 6.
Without loss of generality, we may assume that n ≥ 3.1 Thus,

N ≡ −1 (mod 8) and σ = (R/N) = (2/N) = 1. Furthermore,
as N ≡ −1 (mod 4), it follows by Gauss’s Reciprocity Law that
(3/N) = (−N/3). Also, since

ε =
(

∆
N

)
=

(
6
N

)
=

(
2
N

)(
3
N

)
=

(
3
N

)
=

(−N

3

)
= −

(
N

3

)
,

it follows that

ε = −
(

N

3

)
≡ − (2n − 1)

3−1
2 ≡ −

[
2

(
22

)n−1
2 − 1

]
≡ −1 (mod 3).

In addition,

τ =
(

Q

N

)
=

(−1
N

)
= −1.

By Lemma 2, N | U2n(
√

2,−1). However, by Lemma 5, N -
U2n−1(

√
2,−1). Furthermore, by Lemma 3, ω(N) = 2n. Thus, be-

cause of Lemma 4, N | V2n−1(
√

2,−1).
Finally, from (15),

V2k+1(
√

2,−1) = V 2
2k(
√

2,−1)− 2(−1)2k, k ≥ 0.

So, V2(
√

2,−1) = 4, and for k ≥ 1,

V2k+1(
√

2,−1) = V 2
2k(
√

2,−1)− 2.

Hence, Sk = V2k(
√

2,−1).
Therefore, N | V2n−1(

√
2,−1); that is, N | Sn−1, the (n − 1)st

term of the sequence given in Theorem 1.

1If n = 2 then N = 3 is prime. However, 3 - 4. Thus, 3 does not divide the
(n−1)st term of the sequence given in Theorem 1. Therefore, the Lucas–Lehmer
test is not valid for n < 3. This restriction on n had not been explicitly noted
by Lehmer in [4].
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(⇐=) Now, let us assume that N | Sn−1, where Sk = S2
k−1 − 2

and S0 = 4. Then,

N | V2n−1(
√

2,−1). (16)

Because of (16) and (14), it follows that N | U2n(
√

2,−1). How-
ever, by Lemma 1, N - V2n(

√
2,−1). Thus, because of Lemma 3, we

have ω(N) = 2r, for some positive integer r ≤ n. However, in light
of (16) and Lemma 1, N - U2n−1(

√
2,−1). Applying Lemma 3 once

more, we see that ω(N) = 2n = N + 1. Therefore, N = 2n − 1 is
prime, by Lemma 6. ¤

We point out that in view of (13), an alternative statement of the
Lucas–Lehmer test is formulated as:

Theorem 2. (Lucas–Lehmer) The number N = 2n − 1 is prime if

and only if N divides
(√

2+
√

6
2

)2n−1

+
(√

2−√6
2

)2n−1

.

7. A Test for the Compositeness of L2n

The terms of the companion Lucas sequences given in (6) may be
prime if n is either prime or a power of two. A similar conclusion
holds for the companion Lehmer sequences given in (13). This result
is known, but a proof can be difficult to find. Thus, we provide one
here.

Lemma 7. Let {Vn(
√

R,Q)} be a companion Lehmer sequence. If
Vn(

√
R,Q) is prime, then either n is prime or n = 2k, for k ≥ 1.

Proof. Let Vn, n > 2, be a term of a companion Lehmer sequence in
which n is neither prime nor a power of two. Then, n = mq, where
m ≥ 2 and p is an odd prime. Now, Vm contains at least one prime
factor, say π. Thus, by Lemma 4, π | Vmp. Furthermore, this means
that π is a nonprimitive prime factor of Vn. Therefore, Vn must be
composite. ¤

An open question is whether or not the Lucas numbers, {Ln} =
{Vn(1,−1)}, (the companion sequence to the Fibonacci numbers)
contain infinitely many primes. Recently, H. Dubner and W. Keller
announced that L14449 is prime and provided a list of known, as well
as probable Lucas primes with indices n ≤ 50, 000 [3]. Although no
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such prime was given with index 2k > 16, we do not know if L16 is
the largest such Lucas prime.

We now wish to point out that the Lucas–Lehmer test may be
restated in order to provide a necessary and sufficient condition for
certain L2k to be composite. In particular, recall that in the proof of
Theorem 1, if N | Sn−1 then N | V2n−1(

√
R,Q). In such instances,

not only is N prime but as long as N < V2n−1 , then V2n−1 is neces-
sarily composite. Thus, in order that we may establish for certain
Mersenne primes, N , that N | L2n−1 , it remains for us to find a
set of conditions under which the counterpart Fibonacci sequence,
{Un(1,−1)}, may replace {Un(

√
2,−1)} in the proof of Theorem 1.

To this end, since
√

R = 1 and Q = −1, it follows that R = 1
and ∆ = 5. Hence, if n ≡ 3 (mod 4), then ε = (∆/N) = −1.
Furthermore, σ = (R/N) = (1/N) = 1 and as long as n ≥ 2, then
τ = (Q/N) = (−1/N) = −1. Finally, if n > 3 then N < L2n−1 .
Thus, since N can be prime only if n is prime, we have the following
theorem and corollary.

Theorem 3. Let N = 2p− 1, where p is any prime satisfying p ≡ 3

(mod 4). Then, N |
[(

1+
√

5
2

)2p−1

+
(

1−√5
2

)2p−1]
if and only if N

is prime.

Corollary 1. Let N = 2p−1, where p ≡ 3 (mod 4) is prime. Then,
L2p−1 is composite.

8. A Test for the Compositeness of V2n(
√

R, Q)

As just observed, the use of the sequence, {Un(
√

2,−1)}, in Lehmer’s
proof is not required provided that we can find an alternative se-
quence, {Un(

√
R,Q)}, where ε = −1 and σ · τ = −1. In [4], Lehmer

demonstrates that either the sequence {Un(98,−1)} or the sequence
{Un(14,−1)} may be used with every 2n − 1 as long as n is odd.
Thus, given such a sequence, as well as a κ > 0 for which n > κ
implies that N < |Vn(

√
R,Q)|, we state the following theorem and

corollary.

Theorem 4. Let {Un(
√

R, Q)} be a Lehmer sequence satisfying both
ε = −1 and σ · τ = −1. Then N = 2n − 1 is prime if and only if

N |
[(√

R+
√

∆
2

)2n−1

+
(√

R−√∆
2

)2n−1]
.
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Corollary 2. Let {Vn(
√

R, Q)} be a companion Lehmer sequence
satisfying ε = −1 and σ · τ = −1. Also let N = 2n − 1 be prime
and κ > 0 be any positive integer such that n > κ implies that
N = 2n − 1 < |V2n−1(R, Q)|. Then, V2n−1(

√
R, Q) is composite.
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