When Uniformly-continuous Implies Bounded

ANTHONY G. O'FARRELL¹

1. INTRODUCTION

Let (X, ρ) and (Y, σ) be metric spaces. A function $f : X \to Y$ is (by definition) bounded if the image of f has finite σ -diameter. It is well-known that if X is compact then each continuous $f : X \to Y$ is bounded. Special circumstances may conspire to force all continuous $f : X \to Y$ to be bounded, without Y being compact. For instance, if Y is bounded, then that is enough. It is also enough that X be connected and that each connected component of Y be bounded. But if we ask that all continuous functions $f : X \to Y$, for arbitrary Y, be bounded, then this requires that X be compact.

What about uniformly-continuous maps? Which X have the property that each uniformly-continuous map from X into any other metric space must be bounded?

We begin with an observation.

Lemma 1.1. Let (X, ρ) be a metric space. Then the following are equivalent:

(1) Each uniformly-continuous map from X into another metric space is bounded.

(2) Each uniformly-continuous map from X into \mathbb{R} (with the usual metric) is bounded.

Proof. Obviously (1) implies (2). The other direction follows from the facts that: (a) $f: X \to Y$ is bounded if and only if each (or any one) of the compositions

$$\sigma(b, \bullet) \circ f : x \mapsto \sigma(b, f(x)) \qquad (b \in Y)$$

is bounded, and (b) the composition $\sigma(b, \bullet)$ is uniformly-continuous if f is uniformly-continuous.

 $^1 \mathrm{Supported}$ by EU Research Training Network Contract no. HPRN-CT-2000-00116.

This allows us to concentrate on the case $Y = \mathbb{R}$, with the usual metric.

1.1. **Example.** Each uniformly-continuous function $f : (a, b) \to \mathbb{R}$, mapping a bounded open interval to \mathbb{R} , is bounded. Indeed, given such an f, choose $\delta > 0$ with the property that the modulus of continuity $\omega_f(\delta) < 1$, i.e.,

$$|x - y| < \delta \implies |f(x) - f(y)| < 1$$

Take $n \in \mathbb{N}$ greater than $(b-a)/\delta$, h = (b-a)/n, and $a_i = a + ih$ $(0 \le i \le n)$. Then

$$|f(x)| \le 1 + \max\{|f(a_i)| : 1 \le i \le n - 1\}.$$

A very similar argument shows that if X is totally-bounded, then each uniformly-continuous function from X is bounded. However, this is not the whole story.

1.2. **Example.** Let X be the unit ball of ℓ^{∞} , i.e., the space of all bounded sequences $\{a_n\}$ of complex numbers, with the metric induced by the supremum norm:

$$\rho(\{a_n\},\{b_n\}) = \sup_n |a_n - b_n|.$$

Suppose $f: X \to \mathbb{R}$ is uniformly-continuous, and choose $\delta > 0$ such that $\omega_f(\delta) < 1$. Let $m \in \mathbb{N}$ be the ceiling of $1/\delta$. Then for each $a = \{a_n\} \in X$, taking $h = \sup_n |a_n|/m$ and $b_i = iha$, we have

$$|f(a)| \le |f(0)| + \sum_{i=1}^{m} |f(b_i) - f(b_{i-1})| \le |f(0)| + m.$$

Thus f is bounded. However, X is not totally-bounded.

2. Epsilon-step Territories

For $\varepsilon > 0$ and $a, b \in X$, we say that a is ε -step-equivalent to b if there exist points $a_0 = a, a_1, \ldots, a_n = b$, belonging to X, with $\rho(a_{i-1}, a_i) \leq \varepsilon$ for each i. This defines an equivalence relation on X (for each fixed $\varepsilon > 0$). We call the equivalence classes ε -step territories, and denote the territory of a point a by $T_{\varepsilon}(a)$, or just T(a), if the value of ε is clear from the context.

For $\varepsilon > 0$ and $a, b \in X$, we denote by $s_{\varepsilon}(a, b)$ (or just s(a, b)) the infimum of those $n \in \mathbb{N}$ (if any) for which there exist $a_0 = a$, $a_1, \ldots, a_n = b$ belonging to X, with $\rho(a_{i-1}, a_i) \leq \varepsilon$. Obviously, $s(a, b) < +\infty$ if and only if T(a) = T(b). We say that a territory T(a) is ε -step-bounded if

$$\sup_{x \in T(a)} s(a, x) < +\infty,$$

and we call this supremum the ε -step extent of T(a).

We define a new 'distance' function on $X \times X$, the ε -step distance, by setting $d_{\varepsilon}(a, b)$ equal to

$$\inf\Big\{\sum_{i=1}^n \rho(a_{i-1}, a_i)\Big\},\,$$

where the infimum is taken over all $a_0, a_1, \ldots, a_n \in X, a_0 = a, a_n = b$ such that $\rho(a_{i-1}, a_i) \leq \varepsilon$, and $a, b \in X$. This has all the properties of a metric, except that its value may be $+\infty$. (One may obtain a proper metric by forming $\arctan od_{\varepsilon}$.) The distance d_{ε} is a proper metric when restricted to any particular ε -step territory T(a). In general, $d_{\varepsilon}(a, b)$ is at least as large as the original $\rho(a, b)$, but $d_{\varepsilon}(a, b)$ coincides with $\rho(a, b)$ whenever $\rho(a, b) \leq \varepsilon$, and hence d_{ε} induces the same topology as ρ on T, and moreover a function $f: X \to \mathbb{R}$ is ρ -uniformly-continuous if and only if it is d_{ε} -uniformly-continuous. Indeed its ρ -modulus of continuity coincides with its d_{ε} -modulus of continuity when the argument is less than or equal to ε .

One readily checks that a territory T is ε -step-bounded if and only if its d_{ε} -diameter is finite. Moreover, its ε -step extent lies between

$$\frac{d_{\varepsilon} - \operatorname{diam}(T)}{\varepsilon}$$
 and $2 + \frac{2d_{\varepsilon} - \operatorname{diam}(T)}{\varepsilon}$.

We now state the main result.

Theorem 2.1. Let (X, ρ) be a metric space. Then the following are equivalent:

(1) Each uniformly-continuous function $f: X \to \mathbb{R}$ is bounded.

(2) For each $\varepsilon > 0$, X has only a finite number of ε -step territories, and each territory is ε -step-bounded.

Proof. (1) \Rightarrow (2): Suppose (1). Fix $\varepsilon > 0$.

Suppose that X has infinitely-many ε -step-territories. Let T_n (for n = 1, 2, 3, ...) be distinct territories. Then the function f, defined by

$$f(x) = \begin{cases} n & , x \in T_n, \\ 0 & , x \in X \sim \bigcup_{n=1}^{\infty} T_n, \end{cases}$$

is uniformly-continuous and unbounded, which is impossible. Thus X has only a finite number of ε -step territories.

Now suppose that one of the ε -step territories, say T(a), is not ε -step-bounded. Define

$$g(x) = \begin{cases} d_{\varepsilon}(a, x) &, x \in T(a), \\ 0 &, x \in X \sim T(a). \end{cases}$$

Then g is uniformly-continuous on X, and unbounded, contradicting the assumption. Thus each ε -step territory is ε -step-bounded, and (2) holds.

 $(2) \Rightarrow (1)$: Suppose (2), and fix $f: X \to \mathbb{R}$, uniformly-continuous. Pick $\delta > 0$ such that $\omega_f(\delta) < 1$. With $\varepsilon = \delta$, choose $a_1, \ldots, a_n \in X$ such that $X = \bigcup_{j=1}^n T(a_j)$. Then take N to be the maximum of the ε -step extents of the $T(a_j)$, for $1 \leq j \leq n$. Let $M = \max_j |f(a_j)|$. For each $x \in X$, there exists j with $x \in T(a_j)$, and then there

For each $x \in X$, there exists j with $x \in T(a_j)$, and then there are $x_0 = a_j, x_1, \ldots, x_m = x$ belonging to X, with $m \leq N$ and $\rho(x_{i-1}, x_i) \leq \varepsilon$. Thus

$$|f(x)| \le m + |f(a_i)| \le N + M.$$

Thus f is bounded. This proves (1).

Anthony G. O'Farrell, Mathematics Department, NUI, Maynooth, Co. Kildare, Ireland aof@maths.may.ie

Received on 26 May 2004.