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Homogeneous Metrics on Spheres

Martin Kerin and David Wraith

This article is a summary of the work carried out by the first
author towards a Master’s thesis under the direction of the second
author.

Our aim is to investigate certain aspects of the geometry of spheres,
especially the spheres S3 and S5. Usually, when one imagines a
sphere, one imagines a round sphere, and of course the geometry of
such objects is well understood. However, there are many different
geometries with which a sphere can be equipped.

A sphere is first and foremost a smooth manifold. It only becomes
a geometric object — in other words assumes some kind of shape
(such as being round) — when we equip it with a Riemannian metric.
Recall that a Riemannian metric is a smoothly varying choice of inner
product on each tangent space. Of course there are uncountably
many Riemannian metrics we can equip any sphere with, and each
will provide the sphere with a certain geometry. However, we will
focus on certain very special kinds of Riemannian metrics, namely
those which are homogeneous.

A round sphere is clearly highly symmetric. More than just having
lots of symmetry, it in fact looks the same at every point! Spaces
with this property are known as homogeneous spaces. More formally,
if M is a smooth manifold, we say that M is a homogeneous space
if there is a (Lie) group G of self-diffeomorphisms of M which acts
transitively. In other words, given any two points x and y in M ,
there is an element g ∈ G such that gx = y.

Any homogeneous space M can be regarded as a space of cosets
in the following way. Choose a point x ∈ M . Let H be the subgroup
of G which fixes the point x (that is, hx = x for all h ∈ H). H
is called the isotropy subgroup of G at the point x. (The isotropy
at any other point in M is conjugate in G to H.) It is not difficult
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to establish that the space of cosets G/H can be equipped with a
smooth structure so that G/H is diffeomorphic to M . For any choice
of x ∈ M , an explicit diffeomorphism is given by gH 7→ gx.

Spheres can be expressed as homogeneous spaces in many different
ways. Here is a complete list:

SO(n + 1)
SO(n)

∼= Sn;

U(n + 1)
U(n)

∼= SU(n + 1)
SU(n)

∼= S2n+1;

Sp(n + 1)Sp(1)
Sp(n)Sp(1)

∼= Sp(n + 1)U(1)
Sp(n)U(1)

∼= Sp(n + 1)
Sp(n)

∼= S4n+1;

G2

SU(3)
∼= S6;

Spin7

G2

∼= S7;
Spin9

Spin7

∼= S15.

Here ∼= denotes diffeomorphism. See [1; p. 179] for details.
In our discussion of homogeneous spaces we have so far said noth-

ing about geometry. For any homogeneous space G/H there are
natural geometries to consider. These are the geometries which are
invariant under the transitive symmetry group G. We define a ho-
mogeneous metric on G/H to be a Riemannian metric 〈 , 〉 satisfying

〈 g∗v, g∗w 〉gx = 〈 v, w 〉x
where v, w are tangent vectors at x ∈ G/H, and g∗ denotes the
derivative of the diffeomorphism g ∈ G. A homogeneous space
equipped with such a metric is called a Riemannian homogeneous
space.

We will show that different descriptions of the sphere as a homo-
geneous space give rise to different families of homogeneous metrics,
and hence to different natural geometries. In order to better under-
stand the geometries that arise we will compute the curvatures of
our metrics. Recall that the round metric has constant (sectional)
curvature, and is the unique metric up to scaling with this property.
Of course, before we can calculate curvatures, we must first identify
and describe these homogeneous metrics.

We will explain how to construct any homogeneous metric in two
different ways. We will need both. As a preliminary, though, we
must describe the isotropy and adjoint representations.
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Consider a homogeneous space G/H. This space has a distin-
guished point, namely the identity coset eH. Clearly H is the
isotropy subgroup at this point. As each element h ∈ H fixes eH, its
derivative h∗ must therefore be a linear automorphism of the tangent
space TeH G/H. Thus we get a representation

ρ : H −→ Aut(TeH G/H)

called the isotropy representation.
Next we turn our attention to the (Lie) group G. There is a group

homomorphism I : H → Diff(G) given by I(h)(g) = hgh−1. (Here,
Diff(G) is the group of self-diffeomorphisms of G.) If we differentiate
I at the identity e ∈ G, we obtain the adjoint representation

AdH : H −→ Aut(TeG).

To return to homogeneous metrics on G/H, suppose we choose
an inner product on the tangent space TeH G/H. Using the (left)
action of G on G/H, we can attempt to propagate this inner product
around G/H to produce a Riemannian metric. Specifically, at the
coset gH we introduce the inner product

〈 v, w 〉gH := 〈 g−1
∗ v, g−1

∗ w 〉eH .

However, such a Riemannian metric is not necessarily well-defined.
In order to avoid this problem it is necessary and sufficient for the
original inner product at eH to be invariant under the isotropy rep-
resentation. Therefore for each such inner product we obtain a Rie-
mannian metric on our homogeneous space by propagation. More-
over, it is immediate that the resulting metric is homogeneous. It is
equally easy to see that any homogeneous metric can be constructed
in this way.

As an alternative approach to constructing homogeneous metrics,
we can begin by considering Riemannian metrics on the group G, and
ask when such a metric induces a well-defined homogeneous metric
on passing to the quotient G/H. We require the following set-up.
Denote the tangent space TeG by g, and the subspace of g tangent
to H by h. Let m be a complement to h in g - in other words
g = m ⊕ h. Using the (derivative of) the left action of G on itself,
we can propagate m to every point of G, giving us a distribution of
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tangent subspaces {mg}g∈G. Notice that for every g ∈ G we then
have a vector space isomorphism

mg
∼= TgH G/H

given by the derivative π∗ of the quotient map π : G → G/H.
Thus a smoothly varying choice of inner product on the distribu-
tion {mg}g∈G gives rise to a Riemannian metric on G/H. Again we
must address the question of when such a metric is well-defined, and
when it is homogeneous. Suppose that the space m is AdH -invariant.
All groups under consideration in this paper will be compact, and
under these conditions we can always find such an m. Furthermore,
we can always suppose that m is equipped with an AdH -invariant
inner product. Then propagating this inner product around the dis-
tribution {mg}g∈G gives rise to an inner product on G/H which is
both well-defined and homogeneous. In particular, the induced inner
product at TeH G/H is isotropy invariant. It is not difficult to show
that any homogeneous metric on G/H can be constructed in this
way.

Note that we can construct Riemannian metrics on G starting with
any inner product on g and propagating by the left action of G on
itself. Such metrics are called left invariant. Given an AdH -invariant
inner product on m as above, we extend to an inner product on the
whole of g by choosing an arbitrary inner product on h and declaring
m and h to be orthogonal. The resulting left invariant metric on G
not only induces a well-defined homogeneous metric on G/H, but
makes π : G → G/H into a Riemannian submersion. For definitions
and details about Riemannian submersions. see [1; ch. 9]. The fact
that we get a Riemannian submersion is significant for our purposes
because there are well-known formulas due to O’Neill [1; ch. 9, § D]
which help in the calculation of curvature for such objects. We will
return to the O’Neill formulas later on.

We now know how to construct homogeneous metrics, but for a
given description of a sphere as a homogeneous space, we want to be
able to find all such metrics. The key to being able to do this is as
follows.

Consider a group homomorphism

θ : G −→ Aut(V )

where V is a finite dimensional real vector space. (In other words,
θ is a representation of G on V .) Furthermore, suppose that this
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representation is irreducible. This means that V has no proper G-
invariant subspace. Then up to scaling by a positive constant, there
is a unique G-invariant inner product on V . (This assertion is not
difficult to prove, and is essentially a consequence of Schur’s Lemma.)

Let us explore the consequences of this result for homogeneous
spaces. If the isotropy representation at eH is irreducible, then it
follows that there is a unique isotropy-invariant inner product on
TeH G/H up to scaling, and hence a unique homogeneous metric on
G/H, again up to a global (positive!) scaling factor. Suppose now
that TeH G/H is not isotropy irreducible, but splits into a direct
sum of irreducible subspaces. Then on each of these subspaces we
must have a unique isotropy-invariant inner product up to scaling.
Of course the various scaling factors are completely independent of
each other. Having an invariant inner product on such a collection of
subspaces does not in itself determine an invariant inner product on
the whole space (for example we know nothing of the angles between
subspaces). However, if these sub-representations are inequivalent,
then it can be shown that for any invariant inner product on the
whole space, the invariant subspaces must all be mutually orthogo-
nal. This in fact will be sufficient to determine the complete set of
invariant metrics for the cases we study below.

We begin our study of the homogenous geometry of spheres by
looking at

SO(n + 1)
SO(n)

∼= Sn.

We will assume n ≥ 2. Think of Sn as {(x1, . . . , xn+1) |
∑n

i=1 x2
i = 1}

⊂ Rn+1. Expressing points in Sn as column vectors (with respect
to the standard basis), the transitive action of SO(n + 1) is then
given by multiplying column vectors from the left. (In future we will
refer to the action defined by left multiplication of column vectors
as the natural action.) Notice that the isotropy group of the point
(1, 0, . . . 0) ∈ Sn is precisely the collection of matrices of the form

(
1

SO(n)

)
⊂ SO(n + 1),

and this subgroup is clearly canonically isomorphic to SO(n). The
isotropy representation is the derivative of the natural action re-
stricted to the isotropy subgroup, and it is easy to see that this
representation is equivalent to the standard representation of SO(n)
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on Rn. Since SO(n) is the full group of rotations of Rn, it is clear that
there can be no invariant subspaces. In other words, our isotropy
representation must be irreducible. By the above it follows that there
is a unique invariant inner product on T(1,0...0)S

n up to scaling by a
positive constant, and hence there is a unique homogeneous metric

on
SO(n + 1)

SO(n)
∼= Sn up to scaling by a positive constant. It remains

to identify this one-parameter family of metrics. However, this is
not difficult as the round metric (of any radius) is clearly invariant
under the natural action of SO(n + 1) — that is, invariant under
all rotations. Therefore the round metrics of all possible radii are

precisely the homogeneous metrics for
SO(n + 1)

SO(n)
. For contrast with

later results, recall that the round metric on Sn of radius R has con-

stant sectional curvature of
1

R2
, constant Ricci curvature (for unit

vectors) of
n− 1
R2

and constant scalar curvature
n(n− 1)

R2
.

We now turn our attention to a case with a much larger family

of homogeneous metrics:
SU(2)
SU(1)

∼= S3. Note that SU(1) is the triv-

ial group, and hence the collection of homogeneous metrics on this
homogeneous space is precisely the set of left-invariant metrics on
SU(2) ∼= S3. This last diffeomorphism can be seen clearly from the
following definition of SU(2):

SU(2) =

{(
z w

−w z

)
: z, w ∈ C, |z|2 + |w|2 = 1

}
.

As described above, the left-invariant metrics on a Lie group are
in one-to-one correspondance with inner products at the identity.
Hence this is a very large family, and we will content ourselves with
studying some special cases.

First, though, we address the problem of computing the curvature
of left-invariant metrics on Lie groups. (The curvature formulas for
bi-invariant metrics on Lie groups is both well-known and simple,
see [2; p. 57].)

As a preliminary we introduce the Lie-bracket operation. If X and
Y are any smooth tangent vector fields on a manifold M , the Lie
bracket of X and Y ,

[X, Y ] := XY − Y X
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is another tangent vector field, and this gives the space of tangent
vector fields on M an algebra structure. More precisely, it makes it
into a Lie algebra. If our manifold happens to be a Lie group, and
X and Y are left-invariant vector fields, it can be shown that [X, Y ]
is also left-invariant. As any left-invariant vector field is determined
by its vector at the identity, we obtain a Lie algebra structure on
the tangent space to the identity. In the special case of a matrix
group, the tangent space at the identity can be identified with a
space of matrices, and the Lie bracket operation turns out to be
[A,B] = AB − BA, where A and B are matrices from the tangent
space and the expression AB−BA is given by matrix multiplication.

Next note that since we are considering left-invariant metrics, the
curvatures we obtain must also display left-invariance and therefore
it suffices to calculate these at the identity. For definitions of the
various kinds of curvature we will investigate, see [2; ch. 2]. Our
approach is to use the Koszul formula [2; p. 22] to compute the
Levi–Civita connection, and from there to compute the curvature
tensor directly. We obtain the following results. Let X1, . . . , Xn be
an orthonormal basis for the tangent space to the identity. We will
use the symbol ck

ij to denote the quantity 〈 [Xi, Xj ] , Xk 〉. The
sectional curvature of the plane spanned by Xi and Xj is then given
by

K(Xi, Xj) =− 3
4

∑

k

(ck
ij)

2 +
1
4

∑

k

(cj
ik)2 +

1
4

∑

k

(ci
jk)2 −

∑

k

ci
ikcj

jk

+
1
2

∑

k

ck
ij(c

j
ki − ci

kj) +
1
2

∑

k

ci
jkcj

ik.

The Ricci and scalar curvatures can then be obtained by taking
averages of sectional curvatures.

Returning now to left-invariant metrics on SU(2), note that the
tangent space at the identity (the Lie algebra su(2) of SU(2)) can
be identified with the (real) vector space of all two-by-two skew-
hermitian matrices with trace zero. A basis is given by

e1 =
(

i 0
0 −i

)
, e2 =

(
0 1

−1 0

)
, e3 =

(
0 i
i 0

)
.

This basis is orthonormal for the inner product

〈A,B〉 = −1
2
tr(AB).
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(That this expression defines an inner product follows from the fact
that it is a scaling of the Killing form of su(2), and SU(2) is a
compact semi-simple group.) Denote by g the left-invariant metric
on SU(2) determined by 〈 , 〉.

Consider the scaled left-invariant metric gµ, which on su(2) is
given by

gµ(ei, ej) =





µ1 if i = j = 1
µ2 if i = j = 2
µ3 if i = j = 3
0 otherwise.

Note that {ei} is not an orthonormal set for gµ! However, {εi} where

εi :=
1√
µi

ei is orthonormal for gµ. Using the above left-invariant

curvature calculations we find that

K(ε1, ε2) = −3
µ3

µ1µ2
+

µ2

µ1µ3
+

µ1

µ2µ3
+

2
µ1

+
2
µ2
− 2

µ3
;

K(ε1, ε3) = −3
µ2

µ1µ3
+

µ3

µ1µ2
+

µ1

µ2µ3
+

2
µ1

+
2
µ3
− 2

µ2
;

K(ε2, ε3) = −3
µ1

µ2µ3
+

µ3

µ1µ2
+

µ2

µ1µ3
+

2
µ2

+
2
µ3
− 2

µ1
.

Observe the symmetry in these formulas. Clearly, by choosing the
constants µi suitably, we can arrange for gµ to be very different from
a round metric.

To help analyse these formulas, let us consider the very special
case where µ1 = λ (a positive constant), and µ2 = µ3 = 1. Here we
have

K(ε1, ε2) = λ ;

K(ε1, ε3) = λ ;

K(ε2, ε3) = 4− 3λ.

The significance of this family of metrics is as follows. S3 admits a
Hopf fibration. That is, S3 is the total space of a fibre bundle with
fibre S1 and base S2. More precisely, consider the standard (unit
radius) S3 ⊂ C2. Multiplying the (coordinates of) points in this
sphere by eiθ creates a foliation of S3 into circles. Collapsing each
of these circles to a point yields a space diffeomorphic to S2. It is
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well-known that if we equip S3 with the round metric of radius 1,
we obtain a well-defined metric induced on S2, namely the round
metric with radius 1

2 . (See for example [2; p. 6].)
Allowing λ to vary in the above computations is equivalent to

rescaling the S1 fibres in the total space of the Hopf fibration. Clearly,
setting λ = 1 gives the round metric of radius 1. When S3 is
equipped with one of these metrics for some value of λ, it is known
as a Berger sphere. Indeed, our calculations agree with those for
Berger spheres in [2; p. 81]. In particular, note that as λ → 0, the
only meaningful curvature formula we are left with in the limit is
that for K(ε2, ε3). Clearly, as λ → 0, K(ε2, ε3) → 4, which agrees
with the sectional curavture of S2( 1

2 ).
Note further that we will have some zero curvatures when λ = 4

3 ,
and negative curvatures when λ > 4

3 . It may at first be surprising
that a homogeneous metric on a sphere can display negative curva-
tures, given that the classic example of a homogeneous metric (the
round metric) is also the classic example of a metric with positive
curvature.

For the record, elementary further calculations show that

Ric(ε1) = 2λ, Ric(ε2) = 4− 2λ, Ric(ε3) = 4− 2λ ;

and scal = 8− 2λ.
We now turn our attention to our final example:

SU(3)
SU(2)

∼= S5.

Think of S5 as the unit sphere in C3. The transitive action of SU(3)
on S5 is again the natural action. The isotropy group at the point
(1, 0, 0) ∈ C3 is the subgroup of SU(3) consisting of matrices taking
the form (

1
SU(2)

)
.

This subgroup is clearly canonically isomorphic to SU(2).
We can identify T(1,0,0)S

5 with {(Re z1, z2, z3)}. Clearly, the iso-
tropy representation fixes the line (Re z1, 0, 0). The subspace
{(0, z2, z3)} is also invariant and irreducible (as the natural action of
SU(2) on C2 is transitive on any distance sphere). Thus this tangent
space splits as a direct sum of two irreducible representations. Up
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to scaling, we have a unique invariant inner product on each sub-
space. Moreover, as these representations are clearly inequivalent,
the subspaces must be orthogonal with respect to any invariant inner
product on the whole tangent space. Thus there is a 2-parameter
family of isotropy-invariant inner products on T(1,0,0)S

5, and hence

a 2-parameter family of homogeneous metrics on
SU(3)
SU(2)

.

Recall now that any homogeneous metric on a homogeneous space
G/H can be regarded as being induced by a certain left-invariant
metric on G. With this in mind we will ‘lift’ the problem of identify-

ing the homogeneous metrics on
SU(3)
SU(2)

to a study of left-invariant

metrics on SU(3).
The tangent space of SU(3) at the identity (in other words the

Lie algebra su(3)) can be identified with the (real) vector space of
three-by-three skew-hermitian matrices with zero trace. A basis is
given by

v1 =




2i 0 0
0 −i 0
0 0 −i


 v2 =




0 1 0
−1 0 0

0 0 0


 v3 =




0 i 0
i 0 0
0 0 0




v4 =




0 0 1
0 0 0

−1 0 0


 v5 =




0 0 i
0 0 0
i 0 0


 v6 =




0 0 0
0 i 0
0 0 −i




v7 =




0 0 0
0 0 1
0 −1 0


 v8 =




0 0 0
0 0 i
0 i 0


 .

Notice that {v6, v7, v8} form a basis for the subspace of su(3) tan-

gent to SU(2) viewed as
(

1
SU(2)

)
⊂ SU(3). Henceforth this

subspace will be denoted su(2). It is easily checked that v1 is
AdSU(2)−invariant, as is the space spanned by {v2, v3, v4, v5}. Note
that AdSU(2)−invariance in su(3) corresponds to isotropy-invariance
in the homogeneous space under the quotient map

π∗ : SU(3) → SU(3)
SU(2)

,
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so π∗Span{v1} and π∗Span{v2, v3, v4, v5} are the isotropy irreducible
subspaces identified above.

On su(3) the expression 〈A,B〉 = −tr(AB) defines a positive def-
inite inner product. (This is clear as 〈 , 〉 is a scaling of the Killing
form for su(3), and SU(3) is compact and semi-simple.) The above
basis is orthogonal with respect to this inner product. Furthermore,
the restriction of 〈 , 〉 to Span{v1, . . . , v5} is AdSU(2)−invariant. (This
follows from the invariance of the Killing form under AdSU(3).) Thus
the left-invariant metric g on SU(3) determined by 〈 , 〉 induces a

well-defined homogeneous metric g on
SU(3)
SU(2)

. We also know that

any other homogeneous metric differs from g at the distinguished
coset by positive scaling factors on the two isotropy-irreducible sub-
spaces π∗Span{v1} and π∗Span{v2, v3, v4, v5}.

Putting all this together, we see that given any µ1, µ2 > 0, the
inner product 〈 , 〉µ1,µ2 on su(3) defined on the basis {vi} by

〈vi, vj〉µ1,µ2 =





µ1〈v1, v1〉 if i = j = 1

µ2〈vi, vj〉 if i, j ∈ {2, 3, 4, 5}

〈vi, vj〉 otherwise

determines a left-invariant metric gµ1,µ2 on SU(3). This metric in-

duces a well-defined homogeneous metric gµ1,µ2 on
SU(3)
SU(2)

. More-

over, every homogeneous metric on this space can be obtained in this
way for some µ1, µ2 > 0.

We now turn to computing the curvature of the gµ1,µ2
. As a first

step, we consider the curvature of the left-invariant metrics deter-
mined by the gµ1,µ2 on SU(3). In fact it suffices to consider the
curvature of the left-invariant metrics gλ on SU(3) determined by
the inner product

〈vi, vj〉λ =





λ
2 〈v1, v1〉 if i = j = 1

1
2 〈vi, vj〉 otherwise

where λ is a positive constant. It is easy to see that any homogoneous

metric on
SU(3)
SU(2)

differs from one induced by a gλ by a global scaling
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factor. Recall that performing a global rescale of a Riemannian
metric by a factor k results in a scaling of the sectional curvatures
by 1

k . Therefore the essential features of the sectional curvatures
displayed by the gµ1,µ2

will not be lost by making this simplification.
We define a new basis for su(3) as follows. Let w1 = 1√

3λ
v1, and set

wi = vi otherwise. This basis is orthonormal for gλ, so we can use our
left-invariant curvature formulas to compute the sectional curvatures
of the resulting metric on SU(3). In order to compute curvatures
for gλ, we invoke the fact that π : (SU(3), gλ) → (SU(3)

SU(2) , gλ) is a
Riemannian submersion. The O’Neill formulas for a Riemannian
submersion tells us that for i,j ∈ {1, . . . , 5}:

Kgλ
(π∗(wi), π∗(wj)) = Kgλ

(wi, wj) +
3
4
|φ[wi, wj ]|2

where φ denotes orthogonal projection onto

su(2) = Span{w6, w7, w8}.

We obtain the following results:

Kgλ
(π∗(w1), π∗(wj)) =

3
4
λ for j = 2, 3, 4, 5;

Kgλ
(π∗(wi), π∗(wj)) = 1 for i = 2, 3 j = 4, 5;

Kgλ
(π∗(wi), π∗(wj)) = 4− 9

4
λ for (i, j) = (2, 3) or (4, 5).

Let us analyse these expressions. First of all, notice that setting
λ = 1 gives a homogeneous metric of positive sectional curature
— but not the round metric. The radius 1 round metric this time
corresponds to λ = 4

3 . For λ = 16
9 we get some zero curvatures, and

for λ > 16
9 we have some negative curvatures. Of course, it is clear

that we can never get a homogeneous metric with everywhere zero or
negative sectional curvatures for this space. (Investigating the limit
as λ → 0 gives information about curvatures of CP 2.)

For the record, we also have Ric(π∗(w1)) = 3λ and Ric(π∗(wi)) =
6 − 3

2λ for i = 2, 3, 4, 5. The scalar curvature has the constant
value 24 − 3λ. This concludes our study of homogeneous metrics
on spheres.
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