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Rational Maps and Images of Rational Points of
Curves over Finite Fields

ROBERT M. GURALNICK

Abstract. We give a survey and some new results about
covers of curves related to images of rational points. In par-
ticular, we discuss exceptional covers and exceptional poly-
nomials and pairs of covers which have the same image on
rational points. Our approach uses group theoretic transla-
tions of these problems. A variant of this problem is to study
extensions of a number field with the same degree one primes.

Dedicated to the memory of
my good friend, colleague and collaborator Dennis Estes.

1. Introduction

This paper is based to a large extent on a talk given at the May 2001
All Ireland Algebra Days Conference in Belfast. We wish to thank
the organizers of the conference and in particular Martin Mathieu for
their support, encouragement and hospitality. We would also like to
thank Mike Fried for many interesting conversations on these topics.

Let k be a field of characteristic p ≥ 0. For convenience, we
assume that k is perfect and often a finite field. Let X, Y be smooth
projective curves and f : X → Y a separable branched covering of
degree n defined over k. We make the blanket assumption that all
such covers are geometric – i.e. the degree remains the same after
passing to k̄, the algebraic closure of k. This is always the case if f
is a polynomial or a rational function or if there is a totally ramified
rational point.
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Let X(k) and Y (k) denote the set of k-rational points on X and Y .
Let Vk(f) := f(X(k)) ⊆ Y (k). In this article, we will consider vari-
ous properties of f related to Vk(f). We will attack these problems
by translating many of these questions to group theoretic properties
of certain Galois groups. We try to classify the groups with such
properties and then determine when such groups can act on curves
with the desired properties. Fried [12], [13] has used this approach
to good effect.

For the rest of the introduction, assume that k is finite. One con-
cept that has been of interest in this field for well over a hundred
years has been the study of permutation polynomials – polynomi-
als which are bijective on rational points. If k is sufficiently large
(compared to the degree of the polynomial), then permutation poly-
nomials in fact are bijective on rational points for infinitely many
extensions and are called exceptional polynomials. See [26] for some
specific types of bounds.

Much progress has been made recently about exceptional polyno-
mials. See §3 for a survey about the classification of indecomposable
exceptional polynomials – in particular, we know all the indecom-
posable exceptional polynomials except those of degree pa, a > 2.
In fact, much work had been done in trying to prove the Carlitz
conjecture about exceptional polynomials over finite fields of odd
characteristic – i.e. that there are no such polynomials of even de-
gree. This is an easy consequence of the classification mentioned
above.

A generalization of this is the concept of a Davenport pair of
polynomials – see [5]. These are two polynomials f, g over k so
that Vf (k′) = Vg(k′) for infinitely many extensions k′/k. If we take
g = x, then (f, x) a Davenport pair is equivalent f being exceptional.
If Vf (k′) = Vg(k′) for all k′, then the pair (f, g) is called a strong
Davenport pair. See [5] for some recent results on Davenport pairs
and strong Davenport pairs of polynomials. There is an obvious
analog for pairs of maps fi : Xi → Y, i = 1, 2.

A special case of what we shall prove is:

Theorem 1.1. Let k be a finite field of cardinality q. For i = 1, 2,
let fi : Xi → Y be rational maps of curves Xi, Y all defined over k
and assume that there is a point y ∈ Y (k) that is totally ramified in
each cover.
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(1) If (f1, f2) is a Davenport pair with fi of degree ni, then
gcd(n1, q − 1) = gcd(n2, q − 1); and

(2) If (f1, f2) is a strong Davenport pair, then n′1 = n′2, where
n′i is the largest prime to p integer dividing ni.

If the fi are polynomials, this is proved in [5]. If f1 is an excep-
tional cover from X1 to Y over k, then we can take f2 to be the
identity map on Y . This yields the Carlitz-Wan conjecture (see [15],
[20], [7]):

Corollary 1.2. Let k be a finite field of cardinality q. Let f : X → Y
be rational map of curves defined over k and assume that there is a
point y ∈ Y (k) that is totally ramified. If f is exceptional of degree
n, then gcd(n, q − 1) = 1.

This is a much weaker result than the classification of exceptional
polynomials. See [20] and [7] for proofs of the corollary. Lenstra was
the first to observe that if one is interested in only the degrees of
exceptional polynomials, then there is an easy proof of the corollary.
The classification of exceptional polynomials depends upon the clas-
sification of finite simple groups. The theorem and corollary above
do not depend on any deep facts.

If f is not bijective, then using Chebotarev density and some
classical and recent results about derangements (i.e. fixed point
free permutations) in finite permutation groups, one can show that
f usually cannot be very close to being bijective on rational points.
We will recall some results in [27] regarding this situation and discuss
briefly some ongoing work.

Here is a brief summary of what is in the paper. In the next sec-
tion, we give a summary of various arithmetic properties of covers
of curves and their group theoretic analogs. We then discuss excep-
tional polynomials and describe the current state of the classification
of them. After a few group theoretic preliminaries, we prove various
results about Davenport pairs of covers in which at least one has a
totally ramified rational point. In particular, we consider the case
when there is a common totally ramified point and both covers are
indecomposable.

We also interpret an old result [17] which yields (with no assump-
tion on ramification):

Theorem 1.3. Let fi : Xi → Y be defined over a finite field k. As-
sume that fi has degree n and the geometric monodromy group is Sn.
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If (f1, f2) is a strong Davenport pair, then f1 and f2 are equivalent
over k (and in particular X1 and X2 are isomorphic over k).

In the final section, we mention some results about Vk(f) when
f is not an exceptional map. By Chebotarev density, this is closely
related to questions about derangements (fixed point free permuta-
tions).

We remark that many of these questions can be considered in
a more general setting – including varieties rather than curves and
number fields. See [17], [16] and [33] for examples.

2. A Dictionary

In this section, we introduce the basic set up to translate arithmetic
and geometric properties of the cover to group theoretic properties.

We first recall some group theoretic notation. Let A be a group
and Ω a transitive G-set. We say A is primitive on Ω if it preserves
no nontrivial partition of Ω. This is equivalent to saying that the
stabilizer Aω of a point ω ∈ Ω is a maximal subgroup of A.

Another notion that we will use if that of exceptionality. Suppose
that G is normal in A and also acts transitively on Ω. We say that
(A, G, Ω) is exceptional if A and G have no common orbits on Ω×Ω
other than the diagonal. If ω ∈ Ω, this is equivalent to saying that
Aω and Gω have no suborbit in common other than the common
fixed point ω. If A/G is cyclic, this is easily seen to be equivalent to
the fact that if aG generates A/G, then every element in the coset
aG has a (unique) fixed point. See [15] or [27].

Let k be a perfect field of characteristic p ≥ 0. Let k̄ denote
the algebraic closure of k. If X is a curve defined over k, let X(k)
denote the set of k-rational points of X. Let f : X → Y be a
separable cover of degree n defined over k with f geometric. This
is equivalent to consider the extension of function fields k(X)/k(Y ),
a separable extension of degree n. The geometric hypothesis just
means that k is algebraically closed in k(X).

We need to introduce some groups into this picture. We can
consider the Galois closure of this extension – it corresponds to
some curve Z defined over some finite Galois extension k′/k. Since
we will be considering pairs of covers, we will consider such a Z
but only assume that k′(Z)/k(Y ) is a finite Galois extension and
k′(Z) contains k(X) but may be larger than the Galois closure.
Let A = Gal(k′(Z)/k(Y )), G = Gal(k′(Z)/k′(Y ), and H := Hf =
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Gal(k′(Z)/k(X). A is called the arithmetic monodromy group and
G the geometric monodromy group. Note the following:
|A : H| = n and Ω := Ωf is the A-set A/H;
G is transitive on Ω or equivalently, A = GH (this is the geometric

cover hypothesis);
A/G = Gal(k′/k) and in particular G is a normal subgroup of A.
The next few results gives the correspondence between some arith-

metic/geometric properties and group theoretic properties.
We say f is arithmetically indecomposable if f cannot be written

as a composition of covers over k. We say f is geometrically inde-
composable if f cannot be written as a composition of covers over
the algebraic closure of k (or equivalently k′). One obviously has:

Lemma 2.1. (1) f is arithmetically indecomposable if and only
if A is primitive on Ω.

(2) f is geometrically indecomposable if and only if G is primi-
tive on Ω.

Let y ∈ Y (k). Let z ∈ Z be any point over y. The stabilizer
Dy in G of y is called the decomposition group of z. We will abuse
notation and call this the decomposition group of y – this is well
defined up to conjugacy in A. Note that A = GD since y ∈ Y (k)
and so Dy has fixed field k in its action on the residue field of z.
Let Iy be the subgroup of Dy which does act trivially on the residue
field. So Iy ≤ G ∩Dy. We note the following well known facts (see
[35], [36] and [18]):

Lemma 2.2. (1) Dy is the local Galois group – i.e. it is the
Galois group after completing at z;

(2) Iy is cyclic modulo its normal Sylow p-subgroup and if k is
procyclic, then Dy/Iy is cyclic;

(3) y ∈ Y (k) is totally ramified in the cover f : X → Y if and
only if Iy is transitive on Ω; and

(4) the number of elements in X(k) over y ∈ Y (k) is the number
of common (Dy, Iy) orbits on Ω.

Suppose that y ∈ Y (k) is not a branch point. This is equivalent to
saying that Iy = 1. Thus, Dy

∼= Gal(k′′/k), where k′′ is the residue
field at z (a point over y). In particular, if k is procyclic (eg., k is
finite), then Dy is cyclic. As noted above, A = GDy and so Dy is
generated by some element in the coset aG where aG is a generator
for A/G. If (A, G, Ω) is exceptional, then clearly Dy has a unique
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fixed point for any y ∈ Y (k) that is not a branch point. Thus, there
is a unique point in X(k) mapping to y. If y ∈ Y (k) is a branch
point, then still Dy = 〈b〉Iy where b ∈ aG. Thus, Dyω = Iyω where
ω is the fixed point of b. Thus, Dy and Iy have the common orbit
Iyω. It is straightforward to see that this is the unique common
orbit. This analysis applies equally well to any extension field `/k
linearly disjoint from k′/k (since (A,G, Ω) remains unchanged). So
we have shown:

Lemma 2.3. If k is procyclic and (A,G, Ω) is exceptional, then f is
a bijection from X(`) → Y (`) for every finite extension field ` with
gcd(|` : k|, |A/G|) = 1.

The converse is not true for general fields – for example, X(k)
and Y (k) can be both be empty (take k = R). However, if k is finite
and is sufficiently large, then every cyclic subgroup D of A with
A = GD occurs as a decomposition group (this is a weak version
of the Chebotarev density theorem). Alternatively, one can use the
fact that given an absolutely irreducible variety V over a finite field
k, then for every sufficiently large extension field ` over k, V (`) is
nonempty to prove the well known (see [12], [15], [6]):

Lemma 2.4. Assume that k is finite. (A,G, Ω) is exceptional if and
only if f is a bijection from X(`) → Y (`) for every finite extension
field ` with gcd(|` : k|, |A/G|) = 1.

3. Exceptional Covers

In this section, we give a survey of the classification results for ex-
ceptional covers and polynomials with a totally ramified point. Keep
the notation from the previous section.

We say that f is an exceptional cover if the one dimensional va-
riety

{(x1, x2)|xi ∈ X, f(x1) = f(x2)}
has no absolutely irreducible components defined over k other than
the diagonal. If k is finite, this is equivalent to f being bijective
for infinitely many extensions of k or indeed being bijective for k
sufficiently large. See [6], [15], [12], [13].

Lemma 3.1. f : X → Y is exceptional over k if and only if A and
G have no common orbits on Ω× Ω other than the diagonal, i.e. if
and only if (A,G, Ω) is exceptional.
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In [24], all triples (A, G, Ω) satisfying the following conditions were
determined:

(1) A is primitive and faithful on Ω with |Ω| = n;
(2) (A,G, Ω) is exceptional;
(3) G contains a transitive subgroup I with I/P cyclic for P a

Sylow p-subgroup of I; and
(4) n is not a power of p.

If in addition, we assume that A/G is cyclic, this result was ob-
tained in [15]. In [21], a fairly comprehensive result about the triples
(A, G, Ω) satisfying (1), (2) and (4) was obtained (again with the
assumption that A/G is cyclic). We expect a similar result to hold
if we drop the assumption that A/G is cyclic (there are a few more
families of examples without that assumption and the method of
proof will be quite different). By a result of Guralnick and Steven-
son [25], these group theoretic possibilities will occur for some cover
f : X → Y (over some finite field of characteristic p if A/G is cyclic).

If p ≥ 5, the only such examples occur for n prime with A/N
cyclic of order dividing n− 1 with N normal of order n.

If p = 2 or 3, there are some additional families of degree n =
pa(pa − 1)/2 for 1 < a with a odd.

In [22] and [28], all the possibilities for polynomials in these lat-
ter two cases were determined and in particular were shown to be
variants of known families (see [31], [8], [30]) except for one new
family in characteristic 2. It was also determined over which fields
the polynomials can be defined.

We state this result as follows:

Theorem 3.2. Let f be an exceptional indecomposable polynomial
of degree n over k with n 6= pa. Then one of the following occurs:

(1) n is prime and the geometric monodromy group of f is cyclic
or dihedral, f is a cyclic polynomial or a Dickson polynomial;

(2) p = 2 or 3, n = pa(pa − 1)/2 for 1 < a with a odd, the geo-
metric monodromy group is PSL(2, pa). Moreover, f is geo-
metrically equivalent to a CM-polynomial, an LZ-polynomial
or a GRZ-polynomial.

Applying this result gives a complete classification of indecom-
posable exceptional polynomials of degree not a power of the char-
acteristic. If p ≥ 5, the only such polynomials are of prime degree n
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and essentially xn with k not containing an nth root of 1 or Dickson
polynomials of degree n with an nth root of 1 not quadratic over k.

This leaves the case n = pa. An easy source of examples comes
from the cases where the Galois closure of the cover has genus zero.

The only family of examples known where this is not the case
are some polynomials constructed in [20] – this was done for odd
characteristic but there is an analogous family in characteristic 2.

We conjecture that aside from possibly a short list of exceptions
that we now know all exceptional polynomials.

4. Davenport Pairs

Let Xi, i = 1, 2 and Y be smooth projective curves defined over a
finite field k = Fq. Let fi : X → Y be separable covers of degree ni

also defined over k. We assume that the fi are geometric covers –
i.e. they still have degree ni over the algebraic closure of k.

Following [5], we define

Definition 4.1. We say that the pair (f1, f2) is a Davenport pair if
f1(X(qe)) = f2(X(qe)) for infinitely many e. We say that (f1, f2) is
a strong Davenport pair if f1(X(qe)) = f2(X(qe)) for all e.

We let Z be any curve containing the Galois closure of the com-
positum of k(Xi), i = 1, 2 over k(Y ). We keep the notation of the
earlier sections. Let k(Zi) denote the Galois closure of k(Xi)/k(Y )
and let k′i be the algebraic closure of k in k(Zi). Let m = |A : G|
and note that A/G is cyclic. If G ≤ B ≤ A, let B0 be the subset
of B consisting of elements b such that bG generates B/G. If J is
a subgroup of A, let c(J) =

⋃
g∈A Jg – so c(J) is just the union of

the conjugacy classes of A that intersect J . Equivalently, c(J) is the
collection of elements in A that have a fixed point on A/J .

Let Hi be the subgroup of A corresponding to k(Xi). Let Ωi be
the A-set consisting of the left cosets of Hi in A. As we have noted,
the fact that the covers are geometric is equivalent to the fact that
G is transitive on Ωi.

Note that if the fi are a Davenport pair, there are infinitely many e
such that f1(X(qe)) = f2(X(qe)) with (e,m) = s fixed. By replacing
k by its unique extension of degree s, we can then assume that s = 1.
It follows that over all these extensions, the arithmetic monodromy
group is unchanged (the passage to the degree s extension replaces
A by its unique subgroup B ≥ G of index s).



Images of Rational Points 79

Let y ∈ Y (qe) (where we now assume that (e,m) = 1) be a
rational point. Let D be its decomposition group and I its inertia
group (i.e. the decomposition group and inertia group of some point
of z over y). Since y is rational, it follows that A = GD, D/I is
cyclic and I ≤ G.

We can now characterize Davenport pairs by various conditions.
We consider a slightly weaker condition. See also [15] and [16].

Theorem 4.2. Let fi : Xi → Y , i = 1, 2 be separable covers of
degree ni defined over Fq. The following are equivalent:

(1) f1(X(qe)) ⊆ f2(X(qe) for infinitely many e;
(2) |f1(X(qe) \ f2(X(qe)| < c for some constant c for infinitely

many e (indeed, c can be replaced by cqe/2−ε for any ε > 0);
(3) B0∩c(H2) ⊆ B0∩c(H1) for some subgroup B with G ≤ B ≤

A;
(4) There is a positive integer s such that f1(X(qe)) ⊆ f2(X(qe))

for all e with (e,m) = s.

Proof. Clearly, the last condition implies the first and the first im-
plies the second. Assume the second condition. Choose s so that
there are infinitely many e satisfying the condition with (e,m) = s.
Let G ≤ B ≤ A with |A : B| = s. If (e,m) = s, then B is the Ga-
lois group of the Galois closure of the compositum Fqe(Xi), i = 1, 2
over Fqe(Y ). We claim that B0 ∩ c(H2) ⊆ B0 ∩ c(H1). If not, there
exists a cyclic subgroup D of B with B = DG such that D has no
fixed points on A/H2 but does on A/H1. By Chebotarev density
(see [16]), this implies that for e sufficiently large with (e,m) = s,
there are O(qe) rational points on Y with decomposition group D
and inertia group 1. By Lemma 2.2, this implies that for such points
y ∈ Y , y ∈ f1(X1(qe)) but are not in f2(X2(qe)).

Finally, assume that B0 ∩ c(H1) ⊆ B0 ∩ c(H2) for some subgroup
B with G ≤ B ≤ A. Let s = |A : B| and consider the fields Fqe with
(e, m) = s. Then B is the full monodromy group over such fields.
Passing to this extension field allows us to assume that A = B. Let
y ∈ Y (qe) with decomposition group D and inertia group I. By
Lemma 2.2, it suffices to show that (D, I) has a common orbit on
A/H2 if it does on A/H1. Then A = DG (because y is an Fqe point).
Assume that D and I have a common orbit on A/H1 containing ω1.
Let dI generate D/I. Thus, dG generates A/G (as I ≤ D ∩ G). It
follows that dω1 = gω1 for some g ∈ I, whence dg−1 fixes ω1. By
hypothesis, this implies that dg−1 fixes some ω2 ∈ A/H2. Thus,
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Dω2 = Iω2 and so D and I have a common orbit on A/H2 as
required. ¤

We immediately obtain the following two corollaries:

Corollary 4.3. The following are equivalent:
(1) f1 and f2 are a Davenport pair;
(2) B0 ∩ c(H1) = B0 ∩ c(H2) for some subgroup B with the

property G ≤ B ≤ A;
(3) The images of fi on X ′

i(q
e) agree for infinitely many e (or

for a sufficiently large e).
(4) The images of fi on Xi(qe) agree for infinitely many e (or

for a sufficiently large e).

Since strong Davenport pairs are just Davenport pairs for over
every extension, we have the following result characterizing strong
Davenport pairs.

Corollary 4.4. The following are equivalent:
(1) f1 and f2 are a strong Davenport pair;
(2) B0 ∩ c(H1) = B0 ∩ c(H2) for every subgroup B with the

property G ≤ B ≤ A;
(3) The images of fi on X ′

i(q
e) agree for all e.

(4) The images of fi on Xi(qe) agree for all e.

5. Kronecker Equivalent Permutation Actions

We first state a well known easy result – see [21].

Lemma 5.1. Let G be a normal subgroup of a finite group A with
A/G cyclic. Let A act on a finite set Ω. The number of common
A,G orbits on Ω is the average number of fixed points of an element
in the coset aG where aG generates A/G.

Let A be a finite group with a normal subgroup G such that A/G
is cyclic. Suppose that Ωi, i = 1, 2 are A-sets with G transitive on
each Ωi.

Let Hi be a point stabilizer on Ωi. Let Ji = c(Hi) (so Ji is just
the union of the conjugates of Hi – since A = GHi, Ji is the union
of the G-conjugates of Hi).

Let A0 be a fixed coset of G in A. By passing to the subgroup
generated by this coset, we may and do assume that A0 generates
A/G.
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We say that Ω1 and Ω2 are Kronecker equivalent if A0 ∩ J1 =
A0∩J2 and write Ω1 =K Ω2. A particularly interesting case is when
A = G – then the condition is just that H1 and H2 intersect precisely
the same conjugacy classes of G. Note that Ω1 is exceptional is
precisely equivalent to A0 ⊆ J1.

We say that Ω1 ≤K Ω2 if A0 ∩ J1 ⊂ A0 ∩ J2.
If Γ is an A-set and W is a normal subgroup of A, we let Γ/A

denote the set of W -orbits on Γ.

Lemma 5.2. If Ω1 ≤K Ω2 and N is a normal subgroup of A con-
tained in G, then Ω1/N ≤K Ω2/N (for the pair A/N, GN/N).

Proof. This follows from the trivial fact that if Γ is any A-set and
x ∈ A, then x has a fixed point on Γ/N if and only if xn has a fixed
point on Γ for some n ∈ N . Thus, x has a fixed point on Ω1/N
implies that xn has a fixed point on Ω1 for some n ∈ N , whence also
on Ω2 and so x has a fixed point on Ω2/N . ¤

In particular, we apply this to the case that N is the subgroup of
G acting trivially on Ωi. So we may often reduce to the case that
G acts faithfully on one of the sets. The reason we assumed that
N ≤ G in the previous result was that there is no guarantee that
xN ⊆ A0 unless N ≤ G. However, we can still say something (note
the Kronecker condition is not used in this next result):

Lemma 5.3. Assume that A is faithful on Ω1 ∪ Ω2, A/G is cyclic
and that G acts faithfully on both Ωj with j = 1 and 2. Assume
moreover that A is primitive on Ω1. Let Ji be the kernel of the
action of A on Ωi.

(1) Either J2 = 1 or |Ω1| = |Ω2| is a prime n and A = G × J2

with G and J2 each of order n.
(2) If A is primitive and faithful on Ω2, then A is faithful on

Ω1.

Proof. Since G is faithful, Ji ∩ G = 1 and Ji is cyclic. Note that
[A, Ji] ≤ G ∩ Ji = 1 (since G ≤ [A,A]). Thus, Ji is central in A.

Since A is primitive on Ω1, either J2 acts trivially on Ω1 (and
so J2 = 1) or J2 is transitive on Ω1. In the latter case, the action
of A on Ω1 is primitive and has a normal cyclic subgroup whence
Ω1 has prime order r and the image of A on Ω1 is contained in the
normalizer of a Sylow r-subgroup of the corresponding symmetric
group.
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Since A centralizes J2, it follows that the image of A acting on
Ω1 is cyclic of order r. Since G is transitive on both sets, both Ω1

and Ω2 have cardinality r. As G centralizes J1, and they both act
faithfully on Ω2, J1 is also an r-group, whence A is. Since A acts
faithfully on Ω1 ∪ Ω2, A = G× J2 with G ∼= J2 cyclic of order r.

Now assume that J2 = 1. If A is primitive on Ω2 and J1 6= 1,
then applying the first part of the result shows that A = G×J1 with
each G cyclic of prime order. It follows that A is not faithful on Ω1,
a contradiction. So J2 = 1 implies that J1 = 1 as required. ¤
Lemma 5.4. Suppose that D ≤ A with A = GD and I ≤ G ∩ D
with I normal in D. Assume that D/I is cyclic. If I is transitive
on Ω2 and Ω′1 is a common D, I-orbit of Ω1, then Ω′1 ≤K Ω2 for
D, I. In particular, if I is transitive on each Ωi and the Ωi are Kro-
necker equivalent for (A,G), then Ω1,Ω2 are Kronecker equivalent
for (D, I).

Proof. Let x ∈ D ∩ A0. If x has a fixed point on Ω′1, then x has a
fixed point on Ω2. ¤

6. Arithmetically Equivalent Covers

In this section, we consider a stronger condition that Kronecker
equivalence. Let fi : Xi → Y be covers over a field k of degree ni.
Let L be the Galois closure of the compositum of k(X1)k(X2)/k(Y ).
Let A be the arithmetic Galois group of L/k(Y ) and G the geomet-
ric Galois group. Let Hi be the Galois group of L/l(Xi). Thus,
|A : Hi| = ni. If k′ is a finite extension of k and y ∈ Y (k′), let
Ni(y, k′) = |{x ∈ Xi(k′)|fi(x) = yi}|. Strong Davenport pairs are
characterized by N1(y) = 0 if and only if N2(y) = 0. We consider
the condition that in fact these numbers are equal.

Proposition 6.1. Assume that k is procyclic. Consider the follow-
ing conditions:

(i) N1(y, k′) = N2(y, k′) for all y ∈ Y (k′) for all extensions
k′/k;

(ii) N1(y, k′) = N2(y, k′) for all unramified (in both extensions)
y ∈ Y (k′) for all extensions k′/k;

(iii) The permutation characters 1A
Hi

are equal.
Then the third condition implies the first which implies the second.
If k is algebraic over a finite field, then all three conditions are equiv-
alent.
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Proof. Clearly the first condition implies the second for any k.
Assume the third condition. By Lemma 2.2, Ni(y, k′) is the num-

ber of common Dy, Iy orbits on A/Hi. By Lemma 5.1, this is the
average number of fixed points of an element in the coset aIy where
Dy/Iy is generated by aIy. Our hypothesis implies that every ele-
ment in A has the same number of fixed points on A/H1 and A/H2,
whence the first condition holds.

Assume the second condition with k algebraic over a finite field.
By Lemma 2.2, this implies that every decomposition group over an
unramified point has the same number of fixed points on A/H1 and
A/H2. By Chebotarev density, every cyclic subgroup of A is the
decomposition group of some unramified point over some extension
k′/k. Thus, the third condition holds. The proof is complete. ¤

We say two such covers are a very strong Davenport pair. This
condition has been studied extensively. It comes up in considering
number fields with the same zeta functions and for similar reasons in
constructing isospectral manifolds that are not isometric. See [17].
The following corollary is immediate from the previous proposition
(from the fact that the permutation characters coincide).

Corollary 6.2. Suppose that fi : Xi → Y are a very strong Daven-
port pair over the finite field k. Let ni be the degree of fi.

(1) n1 = n2;
(2) the arithmetic and geometric monodromy groups of the fi

coincide;
(3) the set of y ∈ Y that are totally ramified under f1 is the

same as the set of y ∈ Y that are totally ramified under f2;
(4) X1 and X2 have the same genus; and
(5) If f1 is a polynomial, then f2 is equivalent to a polynomial.

Proof. These results all follow from the fact that 1A
H1

= 1A
H2

. This
implies that the degrees of the permutation characters are the same
(n1 = n2). It also implies that any normal subgroup of A contained
in H1 is also contained in H2 (and vice versa), whence the second
condition. Since totally ramified points are those with a single point
over them, this clearly follows from the definition.

For the genus condition, we note (see [19]) that the genus of Xi

is 1/2 dimV Hi , where V is the Tate module (or the module of r-
torsion points on the Jacobian of Z – Z the curve corresponding to



84 Robert M. Guralnick

the Galois closure – for any sufficiently large prime r). By Frobenius
reciprocity, this is the same for H1 and H2.

Now suppose that f1 is a polynomial. Thus, X1 = Y = P1 and
f−1
1 (∞) = {∞}. So also X2 = P1 and ∞ ∈ Y is totally rami-

fied. Composing with an automorphism of X2, we may assume that
f2(∞) = ∞ and then f2 is also a polynomial. ¤

We now consider an example. In some sense, this is the generic
example. Let G = GL(d, q) = GL(V ). Let Pj denote that stabilizer
of a subspace of dimension j. It is well known that Pj and Pd−j

induce the same permutation character (because the transpose map
preserves conjugacy classes and takes Pj to a conjugate of Pd−j). In
fact, this holds more generally for any parabolic subgroup and its
opposite (not necessarily maximal parabolics).

We can modify this slightly by considering the action on vectors
and linear functionals. Indeed more generally, we can take H1 to be
any subgroup of G and H2 its image under the transpose map (or
the inverse-transpose automorphism of G). Then H1 and H2 induce
the same permutation character.

A particularly interesting case is to take H1 to be the stabilizer of a
nonzero vector v ∈ V . Then H2 is the stabilizer of a nonzero element
v∗ ∈ V ∗, where V ∗ is the dual space of V . Since H1 and H2 induce
the same permutation character in GL(V ), if G acts on a curve Z, the
covers Z/H1 → Z/G and Z/H2 → Z/G are a very strong Davenport
pair. In particular, if the first cover is a polynomial cover, the second
cover is as well. Examples of such polynomials have been constructed
by Abhyankar, Elkies and Bluher. See also Fried [14].

Let us also observe that the same remarks hold for any subgroup
A of GL(V ) that is transitive on nonzero vectors (and so also on the
nonzero elements of the dual space) – for any element of A has the
same number of fixed points in both permutation representations. In
particular, this applies to SL(V ) and the group of semilinear trans-
fomations (embed this group in the group of linear transformations
of bigger dimension over the prime field).

7. Generalization of Carlitz-Wan

Suppose that fi : Xi → Y are a Davenport pair over Fq. We have
seen that the set of e such that the images of rational points over Fqe

depends only on the arithmetic monodromy group over Fqe . Thus,
there will be a collection s1, . . . , sd so that the images on rational
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points are the same over Fqe whenever gcd(e, |A : G|) = sj for some j.
After passing to an extension of degree sj , we see that the values on
rational points will be identical for all extensions of degree relatively
prime to |B : G|, where B/G is the subgroup of index sj in A/G.

If n is a positive integer and π is a set of primes, then we may write
n = nπn′ where n′ is divisible by no primes in π. This defines nπ.

Theorem 7.1. Assume that fi : Xi → Y are covers of curves of
degree ni defined over k = Fq and y0 ∈ Y (q) is totally ramified for
f2. Assume moreover that y0 ∈ f1(X(qe)) ⊆ f2(X(qe)) for all e with
gcd(e, s) = t. Let π be the set of primes dividing qt − 1. Let n′1 be
the local degree of some rational point of X1 over y0. Then (n′1)π is
a multiple of (n2)π.

Proof. We may replace q by qt, so assume that t = 1. We pick nota-
tion as above and let k′(Z) be the Galois closure of k(X1)k(X2)/k(Y )
with Galois group A. Let Hi be the subgroup of A fixing Fq(Xi) and
Ωi = A/Hi. Then G is transitive on each Ωi. We have seen that
our hypothesis on the images of the fi are rational points is precisely
that Ω1 ≤K Ω2.

Let D be the decomposition group and I the inertia group of some
point in the Galois closure over y0. Since y0 is in the image of f1,
there exists some common D, I orbit Ω′1 ⊆ Ω1. Since I ≤ D∩G and
A = GD, it follows that Ω′1 ≤K Ω2 for (D, I).

So n′1 = |Ω′1| and we may assume that (A,G) = (D, I). In partic-
ular, we have a Galois extension with a totally ramified point.

Since D is the Galois group of the corresponding extension of
local fields, we can complete the fields and consider extensions of
local fields. We change notation and consider Ω′1 = Ω1.

Let P the Sylow p-subgroup of I. Then P is characteristic in I
which is normal in D and so P is normal in D. By Lemma 5.2,
it follows that Ω1/P ≤K Ω2/P for (D/P, (D ∩ G)/P ). The covers
(corresponding to the subgroups (Hi ∩ D)P ) still have the desired
property and we have only modified the degrees by a factor of a
power of p. So we may assume that I is cyclic of order prime to p.
Indeed, precisely the same argument shows that we may assume that
any prime dividing the order of I also divides q − 1.

Since we are in the situation where Fq contains all rth roots of
unity for any r|ni, it follows that the geometric extensions of degree
ni are in fact Galois (there is a unique such extension – this is easily
seen by reducing to the case a prime degree extension). Thus, we
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have now reduced to the case D = I and H1 ≤ H2, whence n2 divides
n1 as desired (of course, we have modified these from the original ni

but only by factors relatively prime to q − 1). ¤

Note that the hypothesis in the previous theorem (and in the
corollaries) can be weakened – for example, we only need the condi-
tion for infinitely many e rather than all e (or any sufficiently large
e suffices).

We now state some corollaries of the previous result. The first
one was obtained in the case that the fi are polynomials in [5]. The
proof is similar. Moreover, both proofs are minor variations of the
proofs given for the Carlitz-Wan conjecture – see [7] and [20].

Corollary 7.2. Assume that fi : Xi → Y are covers of curves of
degree ni defined over k = Fq and y0 ∈ Y (q) is totally ramified in
each cover. Let A be the Galois group of the Galois closure of the
compositum of k(X1)k(X2)/k(Y ). Let G be the geometric Galois
group and set s = |A : G|. Assume moreover that f1(X(qe)) =
f2(X(qe)) for infinitely many e with gcd(e, s) = t. Let π be the
set of primes dividing qt − 1. Then (n1)π = (n2)π. In particular,
gcd(n1, q

t − 1) = gcd(n2, q
t − 1).

In particular, if f1 : X1 → Y is exceptional over Fq with a totally
ramified rational point, then gcd(f1, f2) is a Davenport pair with
f2 the identity on X2 = Y . Thus, gcd(n1, q − 1) = 1. This is the
Carlitz-Wan conjecture (under the additional condition that f1 is a
polynomial). This is essentially in [15]. See also [7] and [20].

Corollary 7.3. If f : X → Y is an exceptional cover of degree
n over Fq and there exists a totally ramified rational point, then
gcd(n, q − 1) = 1.

In particular, the previous result applies to exceptional polynomi-
als. Of course, this result for exceptional polynomials is quite minor
compared to the classification of all exceptional polynomials whose
degree is not a power of the characteristic.

If (f1, f2) are a strong Davenport pair, then the previous results
apply to every extension of the base field, whence gcd(n1, q

s − 1) =
gcd(n2, q

s − 1) for all s ≥ 1. This yields (see also [5]):

Corollary 7.4. If fi : Xi → Y , i = 1, 2 are a strong Davenport pair
over Fq of degree ni, then n′1 = n′2 where m′ is the p′-part of m.
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8. Davenport pairs with f1 indecomposable

In this section, we generalize some results in [5] about Davenport
pairs of polynomials of degree prime to the characteristic. We con-
sider the case where one of the covers is indecomposable with a to-
tally ramified rational point. We first consider the case where both
are indecomposable with a totally ramified rational point.

Theorem 8.1. Let k be a finite field of characteristic p. Suppose
that fi : Xi → Y are inequivalent indecomposable covers over the
finite field k of degree ni and Vf2(k

′) = Vf1(k
′) for infinitely many

extensions k′/k. Assume also that there exists y ∈ Y (k) that is
totally ramified for each fi. Let Ai and Gi denote the arithmetic and
geometric monodromy groups of fi. Let A denote the monodromy
group of the composite extension.

(a) n = n1 = n2 is a prime, Ai = Gi
∼= Z/n and A = G× Z/n;

or
(b) A = A1 = A2 and G = G1 = G2.

Moreover if (b) holds, then
(c) n1 = 5, n2 = 10 and G1 = G2 = A5; or
(d) n1 = 25, n2 = 100 and G1 = G2 = A5 o S2; or
(e) n = pa and fi is of affine type; or
(f) n1 = n2 and (f1, f2) is a strong Davenport pair.

Proof. Assume that f1 is not exceptional (and so neither is f2). Let
Ω1 and Ω2 denote the A-sets of degree ni corresponding to the ex-
tensions. As we have seen Ω1 = Ω1/K1 is Kronecker equivalent to
Ω2/K1. Since A acts primitively on Ω2, it follows that K1 is either
trivial on Ω2 or transitive. In the latter case, this would imply that
the action on Ω1 is exceptional, a contradiction. So K1 is trivial on
each Ωi and so is trivial (as A is the Galois closure of the compositum
field). Similarly, K2 = 1.

Suppose that A does not act faithfully on Ω1. Then we apply
Lemma 5.3 and conclude that A = G × J with G and J cyclic of
order prime order n as allowed in the conclusion.

So A is faithful and primitive on each Ωi. It follows that the
Galois closure of each cover are the same. So A1 = A2 = A and
G1 = G2 = G.

We now apply the main results of [23] which give a classification
of all such groups. If A has a normal nontrivial p-subgroup N , then
n = pa = |N | in any primitive action and the theorem holds. In
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all other cases, A has a unique minimal normal subgroup N that is
the direct product of t ≥ 1 copies of a nonabelian simple group L.
If t > 2, it follows from [23] that n = pa and the permutation
characters agree. If t ≤ 2, again the possibilities are given in [23] and
a straightforward inspection yields that n1 = n2 and the permutation
characters on the Ωi agree. ¤

In the affine case above, we do not know if there are really exam-
ples with polynomials which are Davenport pairs but which are not
strong Davenport pairs. There are examples (see below) if we do not
insist that Xi has genus zero.

Except for the affine examples, one can give a list of all the
possible (group theoretic) examples in the previous theorem. The
main family is when the socle of A is PSL(d, q) with d ≥ 3 and
n1 = n2 = (qd − 1)/(q − 1). The two actions are on 1-spaces and
hyperplanes. Abhyankar (see [1], [2], [3], [4]) has shown that these
do correspond to polynomials (at least if p|q and in certain small
examples) and so give rise to a nontrivial pair of strong Davenport
polynomials (see [5], [14]). We expect these group theoretic examples
to lead to very few examples of polynomials in other characteristics.

L Lω n p
L5(2) P2 155 31
U4(3) L3(4) 162 3
L2(11) A5 11 **
L2(19) A5 57 19
L2(23) S4 253 23
L2(29) A5 209 29
L2(59) A5 1711 59
M23 M21.2, 24A6 253 23

There are a few sporadic examples that can be read off from the
results in [23]. The above is a complete list of the group theory pos-
sibilities (excluding the ones mentioned above) satisfying the condi-
tions of the previous theorem under the added condition that the
socle of A is a nonabelian simple group. There also infinitely many
examples when the socle of A is not simple – all but finitely many
such examples have degree a power of p. In all but the second exam-
ple, A = G = L. In the second example, it follows that |A : L| = 2
or 4. For the families given above, there is only one possibility for
the characteristic except for the case G = L2(11). Indeed, in that
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case, we know that there examples in any characteristic greater than
11 and very likely in smaller characteristics as well.

If we consider the case where only say f1 is indecomposable, then
one must work a bit harder but there is a similar result. We will ad-
dress this in future work. We can prove a result with no assumption
on the existence of a totally ramified point.

Theorem 8.2. Let k be a finite field of characteristic p. Suppose
that fi : Xi → Y are covers over the finite field k of degree ni and
form a Davenport pair. Assume that f1 is indecomposable and is not
exceptional. Then f2 = g ◦ h where g : Y ′ → Y is indecomposable,
(f1, g) is a Davenport pair and setting A0 to be the Galois group of
the Galois closure of k(Y ′)k(X1)/k(Y ), either

(a) g has prime degree r = n1, a prime and A0
∼= Z/r×Z/r; or

(b) A0 is the Galois closure of k(X1)/k(Y ) and of k(Y ′)/k(Y )
(i.e. f1 and g have the same arithmetic and geometric mon-
odromy groups).

Proof. We use the standard notation. In particular, A is the Ga-
lois closure of k(X1)k(X2)/k(Y ). Let Ki be the kernel of G on Ωi.
Then Ω1 and Ω2/K1 are still Kronecker equivalent, whence we may
assume that K1 = 1, i.e. G acts faithfully on Ω2. If K2 6= 1, then K2

acts nontrivially on Ω1 and so Ω1/K2 is trivial and in particular ex-
ceptional. By Lemma 5.2, Ω1/K2 and Ω2 are Kronecker equivalent.
Since Ω2 is not exceptional by hypothesis, K2 = 1 as well.

We can now apply Lemma 5.3 to conclude that (a) or (b) holds.
¤

9. Generic Covers

In this section, we consider strong Davenport pairs (f1, f2) from Xi

to Y over k where f1 is generic of degree n – i.e. the geometric
monodromy group of f1 is Sn (and therefore also the arithmetic
monodromy group). The following theorem follows fairly easily from
a group theoretic result in [17].

Theorem 9.1. Let k be a finite field. Let fi : Xi → Y be covers
defined over k. Assume that f1 has degree n and the geometric mon-
odromy group of f1 is Sn. If (f1, f2) is a strong Davenport pair, then
f1 and f2 are equivalent over k. In particular, f1 has degree n and
is indecomposable with monodromy group Sn.
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Proof. We can replace k by an extension and assume that A = G.
The condition is now that H1 and H2 intersect precisely the same
conjugacy classes of G. Now apply [17] to conclude that H1 and H2

are conjugate. ¤

If we only assume that we have a Davenport pair, one cannot hope
to prove such a theorem. We can always compose with exceptional
covers to obtain Davenport pairs. However, we can prove:

Theorem 9.2. Let k be a finite field. Let fi : Xi → Y be covers
defined over k. Assume that f1 has degree n > 2 and the geometric
monodromy group of f1 is Sn. If (f1, f2) is a Davenport pair, then
we can write f2 = g ◦ h (over k) with f1 and g equivalent over k.
In particular, g has degree n and is indecomposable with monodromy
group Sn.

Proof. Let A be the Galois group of the Galois closure of k(X1)k(X2)
over k(Y ). Let G denote the geometric Galois group. Let Hi denote
the subgroups corresponding to k(Xi). Let Ωi denote the corre-
sponding A-sets.

So [A : H1] = n and A/K ∼= Sn where K is the largest normal
subgroup of A contained in H1. Let J = K ∩ G. Since Ω1 and
Ω2/J are still Kronecker equivalent, there is no harm in assuming
that J = 1 (this amounts to writing f2 as a composition of covers
with the outside term forming a Davenport pair with f1). Thus, G
is faithful on Ω1 and so G = Sn. By Lemma 5.3, as n > 2, A is
faithful on each Ωi, whence A = G = Sn.

It follows that Ω1 and Ω2 are Kronecker equivalent for G. By [17]
Ω1 and Ω2 are isomorphic G-sets. The result follows. ¤

The previous result is not true for n = 2 – consider the polyno-
mials X2 and bX2 with b a nonsquare. If n = 1, there is no content
to the theorem. A modification of the proof if we replace Sn by An

yields a similar result (but we need to assume that n is not 3 or 5).
We ask:

Question 9.3. If (f, g) are a Davenport pair with f generic of degree
n > 2, is g = g1 ◦ g2 where g1 is equivalent to f and g2 exceptional?

10. Some Examples

Recall we saw that strong Davenport pairs with a common totally
ramified rational point have degrees that are the same up to a power
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of the characteristic. We give some examples to show that one cannot
weaken the hypotheses much.

We first recall that one can construct infinitely many pairs of
(very) strong Davenport pairs – see §6.

Our next examples shows that there exist a pair (f, g) with f a
polynomial and g a rational function that form a strong Davenport
pair and violate the theorem on degrees.

Let k be a finite field of cardinality q = pa with p = 5 or q2 ≡
1 mod 5. Then G = A5 embeds in PSL(2, k).

Let Z = P1
k′ . Then G acts on Z. Let H1 = A4 and H2 = S3. Con-

sider the covers fi : Xi := Z/Hi → Z/A5. Then f1 is a polynomial
cover of degree 5 and f2 is a rational function of degree 10.

It is straightforward to check the following (using the group the-
oretic interpretation given above):

Proposition 10.1. Let k be a finite field of cardinality q = pa with
p = 5 or q ≡ −1 mod 5. There exists a polynomial f1 of degree 5
and a rational function f2 of degree 10 over k such that:

(1) f1 and f2 are a strong Davenport pair and are each indecom-
posable; and

(2) (p− 1, 5) = 1 and (p− 1, 10) = 2;

We show that even for polynomials, it is not the case that strong
Davenport pairs must consist of polynomials of the same degree (but
this is true if the degree is prime to p – see [5] or §4).

Let G be a Borel subgroup of PGL(2, k). Let Hi be any two
nontrivial subgroups of G of order a power of p. Then G acts on
Z = P1

k. The covers fi : Xi := Z/Hi → Z/G are polynomials and
are a strong Davenport pair (because H1 and H2 intersect precisely
the same conjugacy classes in G) and need not have the same degree
(as long as q 6= p). Thus,

Proposition 10.2. There exist a pair of polynomials of distinct
degrees which are a strong Davenport pair.

The next example shows that there are indecomposable Daven-
port pairs which are neither exceptional covers or strong Davenport
pairs. Moreover, each cover has a totally ramified point. We are not
sure if this can happen for polynomial covers.

We give an example in characteristic p ≥ 5. Let A = V Sp (semidi-
rect) where V is the heart of the n-dimensional permutation module
for Sp over Fp. Let H1 = Sn and set n = |V | = pp−2. By [25], there
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exists a cover f1 : X1 → Y of degree n over some extension k of Fp of
degree with arithmetic monodromy group A, geometric monodromy
G = V An with a totally ramified rational point. Let Z denote the
curve corresponding to the Galois closure. So X1 = Z/H1. Then
H1(Sp, V ) 6= 0. So we can choose H2 ≤ A with A = V H2 and
H2 not conjugate to H1. Let f2 be the corresponding cover from
X1 = Z/H2 → Y . If g ∈ A \G, then g has a fixed point on A/H1 if
and only if it does so on A/H2 (because any such g will have order
prime to p). It follows that f1 and f2 are Davenport pairs and indeed
will have the same image on rational points over any odd degree ex-
tension of k. On the other hand, over any even degree extension, the
arithmetic monodromy group will be G. There are elements of order
p in G which have fixed points on G/H1 but not on G/H2 (and vice
versa). Thus, f1 and f2 have incomparable images on rational points
over any even degree extension. Since An acts irreducibly on V , f1

and f2 are geometrically indecomposable.

Proposition 10.3. There exist a Davenport pair of indecomposable
covers each with a totally ramified rational point which are not a
strong Davenport pair.

11. Derangements and Cardinality of the Image

We fix some notation for the remainder of this section. Let f : X →
Y be a branched degree n covering of curves over the finite field k
of cardinality q. Let A and G denote the arithmetic and geometric
monodromy groups and Ω the corresponding G-set of cardinality n.
Set e = |A : G| and for each divisor m of e, let Am be the (unique)
subgroup of A containing G with |A : Am| = m. Let Z denote the
curve corresponding to the Galois closure and let k′ be the field of
constants of Z (so |k′ : k| = e).

We saw in §2 that y ∈ Vf (k) if and only if D, I have a common
orbit on Ω, where D, I are the decomposition and inertia groups of
some point in the Galois closure over y. In particular, if we ignore
branch points, then I = 1 and D is a cyclic group. Since we are only
considering y ∈ Y (k), it follows that A = GD. Thus, D is generated
by some element a ∈ A with A/G = 〈aG〉 and we see that there is a
rational point over y in X if and only if a has a fixed point on Ω.

The Chebotarev density theorem (see [16], [27], [26]) basically
says that for k sufficiently large, the possible decomposition groups
are uniformly distributed over the coset aG.
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This analysis applies equally well to any finite extension field K of
k – the only difference being that the arithmetic monodromy group
over K is Am where m = gcd(e, |K : k|).

Set ρ(m) to be the proportion of the elements in the coset aG
which have no fixed points on Ω (elements with no fixed points are
called derangements).

An immediate corollary to the Chebotarev density result is the
following:

Theorem 11.1. |Vf (K)| = (1− ρ(m))|K|+ O(|K|1/2), where m =
gcd(|K : k|, e).

The constants in the error term depend on f, X, Y although one
can be more precise. See [26] for more on this. One main result of
[27] is:

Theorem 11.2. Assume that f is not bijective on rational points.
Then |Vf (K)| ≤ (1− 1/n))|K|+ O(|K|1/2).

This is proved as a consequence of the elementary group theoretic
result that either every element in the coset aG has a unique fixed
point or ρ(m) ≥ 1/n. There are examples (even for polynomials)
where this bound cannot be improved – see [9]. However, with extra
hypotheses, these bounds can be greatly improved. One such result
was obtained in [27]:

Theorem 11.3. Assume that f has a totally ramified point and
has degree prime to the characteristic of k. If f is not bijective on
rational points, then |Vf (K)| ≤ (5/6)|K|+ O(|K|1/2).

We hope to extend this result to indecomposable polynomials
when n is not a power of p. Even for indecomposable polynomi-
als of degree a power of p, one can improve the result – it is easy to
classify the possibilities where the (1 − 1/n) occurs. We expect to
classify the cases where the main term is greater than (1 − n−1/2)
and also to show that aside from covers of degree a power of p, for
any indecomposable cover, the main term is at most 1 − 1/ log(n).
This is ongoing joint with work with Fulman.

The Chebotarev density theorem also holds for finite separable
maps between higher dimensional normal varieties and the previous
results can be stated in a similar manner – see [27] for some such
statements.



94 Robert M. Guralnick

References

1. S. Abhyankar, Nice equations for nice groups, Israel J. Math. 88 (1994),
1–23.

2. S. Abhyankar, Symplectic groups and permutation polynomials, Part I,
preprint.

3. S. Abhyankar, Shreeram S., Orthogonal groups and permutation polynomi-
als, preprint.

4. S. Abhyankar and N. Inglis, Galois groups of some vectorial polynomials,
Trans. Amer. Math. Soc. 353 (2001), 2941–2869.

5. W. Aiken, M. Fried, and L. Holt, Davenport pairs over finite fields, Pacific
J. Math., to appear.

6. S. D. Cohen, Permutation Polynomials in Shum, Kar-Ping et al, ed., Alge-
bras and combinatorics, Papers from the international congress, ICAC’97,
Hong Kong, August 1997, Singapore, Springer, 133–146 (1999).

7. S. D. Cohen and M. D. Fried, Lenstra’s proof of the Carlitz-Wan conjecture
on exceptional polynomials: an elementary version, Finite Fields Appl. 1
(1995), 372–375.

8. S. D. Cohen and R. W. Matthews, A class of exceptional polynomials, Trans.
Amer. Math. Soc. 345 (1994), 897–909.

9. T. W. Cusick and P. Müller, Wan’s bound for value sets of polynomials.
Finite fields and applications (Glasgow, 1995), 69–72, London Math. Soc.
Lecture Note Ser., 233, Cambridge Univ. Press, Cambridge, 1996.

10. N. Elkies, Linearized algebra and finite groups of Lie type I. Linear and
symplectic groups, Applications of curves over finite fields (Seattle, WA,
1997), 77–107, Contemp. Math. 245 (1999).

11. W. Feit, On symmetric balanced incomplete block designs with doubly tran-
sitive automorphism groups. J. Combinatorial Th. Ser. A 14 (1973), 221–247.

12. M. D. Fried, Galois groups and complex multiplication, Trans. Amer. Math.
Soc. 235 (1978), 141-162.

13. M. D. Fried, On a theorem of MacCluer, Acta Arith. XXV (1974), 122-127.
14. M. D. Fried, Variables separated polynomials, the genus 0 problem and mod-

uli spaces, Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997),
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