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Natural Operators Lifting 1-Forms to
Bundles of Weil Contact Elements

MIROSLAV KUREŠ AND WÃLODZIMIERZ M. MIKULSKI

Abstract. All natural operators lifting 1-forms from m-
dimensional manifolds to the bundle functor KA of Weil con-
tact elements are classified for the case of dwindlable Weil al-
gebras. New results concerning subalgebras of fixed elements
and the relation to dwindlable Weil algebras are stated. For
some monomial Weil algebras, the Weil contact elements are
interpreted geometrically.

Introduction

The modern development of differential geometry clarified that dif-
ferential geometric objects form fiber bundles over manifolds. These
bundles are studied in the form of so called natural bundles. A nat-
ural bundle over m-dimensional manifolds is a covariant functor F
from the category of m-dimensional manifolds and local diffeomor-
phisms satisfying the following conditions:

B I. (Prolongation) For every m-dimensional manifold M , FM
is a fibered manifold over M . Then πM : FM → M is
the induced projection and for a point x ∈ M we denote
FxM = π−1

M (x) the fiber over x.
B II. (Locality) For every inclusion i : U → M of an open sub-

manifold U is FU = π−1
M (U) and Fi : FU → FM is the

inclusion of π−1
M (U) into FM .
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B III. (Regularity) For every smoothly parameterized family
ϕt : M → N of local diffeomorphisms is Fϕt : FM → FN
a smoothly parameterized family of fibered local isomor-
phisms.

Nevertheless, it was proved that prolongation and locality conditions
imply the regularity condition, [6]. There are general important
questions regarding the classification of geometric constructions of
given type. The lifting of geometric objects (as vector fields, forms,
connections, etc.) to fiber bundles is one of the most important
examples of such constructions. Let F , G be natural bundles over
m-dimensional manifolds, m+n = dim FRm and let H be a natural
bundle over (m + n)-dimensional manifolds. We denote C∞GM and
C∞HFM the spaces of local sections of GM → M and HFM →
FM , respectively. Elements of these spaces are called geometric G-
and H-objects. A lifting to F of geometric G-objects from M to
geometric H-objects on FM is a family Λ = {ΛM} : G Ã HF of
mappings

ΛM : C∞GM → C∞HFM

satisfying the following conditions:
L I. (Prolongation) If s ∈ C∞GM is defined on an open subset

U ⊂ M then ΛM (s) ∈ C∞HFM is defined on FU ⊂ FM .
L II. (Naturality) For every diffeomorphism ϕ : M → N , if

objects s1 ∈ C∞GM , s2 ∈ C∞GN are ϕ-related, then
ΛM (s1) ∈ C∞HFM , ΛN (s2) ∈ C∞HFN are Fϕ-related
(i.e. s2 ◦ ϕ = Gϕ ◦ s1 ⇒ ΛN (s2) ◦ Fϕ = HFϕ ◦ ΛM (s1)).

We say that a lifting Λ = {ΛM} to F satisfies the regularity
condition if

L III. (Regularity) If st ∈ C∞GM is a smooth family of local
fields of geometric objects on M, then ΛM (st) ∈ C∞HFM
is also a smooth family of local fields of geometric objects
on FM .

The prolongation and naturality conditions imply immediately
L IV. (Locality) If s1, s2 ∈ C∞GM are objects such that s1|U =

s2|U for some open subset U ⊂ M , then ΛM (s1)|FU =
ΛM (s2)|FU .

The regular lifting represents a so called natural operator. (We used
the term of natural operator only in this sense here.) The theory of
natural bundles and operators including methods for finding natu-
ral operators is very well presented in the monographical work [6].
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Liftings are accentuated e.g. in [3], where an example of a lifting not
satisfying the regularity (L III) is also given. In this paper, we study
the problem of the lifting of a 1-form on a manifold M into a 1-
form on the bundle KAM of Weil contact elements on M . In other
words, we solve the problem how a 1-form on M induces canoni-
cally a 1-form on KAM . Results of this problem are formulated in
Section 3. We refer that the problem of the lifting of vector fields
to bundles of Weil contact elements was solved quite recently in [9].
The properties of the bundle KAM depend substantially on the Weil
algebra A. The lifting of vector fields and 1-forms initiates a round
of questions in commutative algebra. Accordingly, we derive some
necessary algebraic results in Section 1, which can be viewed inde-
pendently. Section 2 is devoted to the geometrical interpretation of
contact elements. We present their conceivable characterization for
the case of some monomial algebras. All manifolds and maps in the
paper are assumed to be of class C∞.

1. Weil Algebras

1.1. The expression of a Weil algebra and their elements.
The Weil algebra A is a local commutative R-algebra with identity,
the nilpotent ideal n of which has a finite dimension as a vector
space and A/n = R. We call the order of A the minimum ord(A)
of the integers r satisfying nr+1 = 0. (Some authors use the con-
cept of Loevy length L(A) in this description; but L(A) is nothing
else than ord(A) + 1.) Further, the integer w(A) = dim(n/n2) is
called the width of A. One can assume that the Weil algebra is a
finite dimensional factor R-algebra of the algebra R[t1, . . . , tk] of real
polynomials in indeterminates t1, . . . , tk, where k = w(A). It means,
the Weil algebra A has the form

R[t1, . . . , tk]/i (1)

where mr+1 ⊂ i ⊂ m2 for some r, m = 〈t1, . . . , tk〉 being the maximal
ideal of R[t1, . . . , tk]. Then ord(A) = r. Moreover, i is called the
adequate ideal for A in R[t1, . . . , tk] and it has a finite set of generators
as the algebra R[t1, . . . , tk] is noetherian.

For a Weil algebra A, we introduce two new characteristic integers
now. For a Weil algebra A in the form (1), we denote by G the set
of generators in i. As we say that the length of a polynomial P is
the minimal number of monomials the sum of which P is, we define
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µ(i,G) as the length of the longest generator of i belonging to G and
ν(i,G) as the number of generators of i belonging to G having the
length µ(i,G). Further, we define µ(A) as the minimum of µ(i,G)
with respect to all expressions of A in the form (1) and all possible
sets of generators of i. So, we can assume that the expression of A
satisfies (1) and

µ(i,G) = µ(A) (2)

and we define ν(A) as the minimum of ν(i,G) with respect to all
expressions of A in the form (1) and (2) and all possible sets of gen-
erators of i. Thus, we can assume that the expression of A satisfies
(1), (2) as well as

ν(i,G) = ν(A) (3)

and we shall call it the elementary polynomial expression of A. The
case µ(A) = 1 is usually named that A is monomial. (Weil alge-
bras of higher order nonholonomic, semiholonomic and holonomic
functors of velocities playing a leading role in analytical mechanics
are presented in [8]. All of them are monomial.) We shall need the
following assertions:

Lemma 1. If w(A) = 1, then µ(A) = 1 and ν(A) = 1.

Proof. The lemma is trivial. ¤

Lemma 2. If ord(A) ≤ 2 and w(A) = 2, then µ(A) = 1.

Proof. See [5], Lemma 3.8. ¤

Lemma 3. Let R[t1, . . . , tk]/i be an elementary polynomial expres-
sion of a Weil algebra A with the relevant set of generators G and
with µ(A) = 2. Let Q1, Q2 be monomials in t1, . . . , tk, 1 ≤ deg(Q1) <
deg(Q2) ≤ ord(A) and let l ∈ N, l > ord(A)− deg(Q2). If

Q2 = αtj1 . . . tjlQ1

for some α ∈ R and some j1, . . . , jl from {1, . . . , k} is satisfied, then
Q1 + Q2 /∈ G.

Proof. One can easily deduce that Q2 ∈ i. ¤

Let A = R[t1, . . . , tk]/i be a monomial Weil algebra, i.e. µ(A) = 1.
It is well-known, that Dr

k can be viewed as the algebra of truncated
polynomials. There is a canonical epimorphism pA : Dr

k → A: if a
monomial Q, deg(Q) ≤ r, belongs to generators of i, then it suffices
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add the new truncating condition Q = 0 to the polynomial expres-
sion of elements. (The general construction of algebra epimorphisms
Dr

k → A is described in [1].) Then one can express elements of mono-
mial A as polynomials in t1, . . . , tk in the canonical way and A can
be viewed as an algebra of “unevenly truncated” polynomials. We
shall denote these polynomials by

P [A](t1, . . . , tk). (4)

The following lemma represents an easily obtained result regarding
the induced automorphism.

Lemma 4. Let A = R[t1, . . . , tk]/i be a monomial Weil algebra,
mr+1 ⊂ i ⊂ mr, and let the linear part of F ∈ AutDr

k be the identity.
Then F induces F̄ ∈ Aut A through the canonical epimorphism pA.

Proof. Evidently, F preserves i. ¤

1.2. The subalgebra of fixed elements. In [9], the bijection be-
tween all natural operators lifting vector fields from m-dimensional
manifolds to bundles of Weil contact elements and the subalgebra
of fixed elements SA = {a ∈ A; φ(a) = a for all φ ∈ Aut A} of
a Weil algebra A is determined. Although in the absolute most of
geometrically motivated illustrations is SA = R · 1, there are Weil
algebras the subalgebra of fixed elements of which is nontrivial, i.e.
SA % R ·1. Two types of sufficient conditions for the triviality of SA
are described in [9], Proposition 1 and Proposition 2. The example
of A with nontrivial SA is e.g. A = R[s, t]/〈st2 + s4, s2t + t5〉+ m6.
In view of the considerable importance of this problem we state the
following new results.

Proposition 1. If ord(A) ≤ 3 and w(A) = 2, then SA = R · 1.
Proof. First, it is clear that for µ(A) = 1 there is an expression of
A = R[t1, . . . , tk]/i, where i is a homogeneous ideal and that is why
SA = R·1 as to [9], Proposition 1. Lemma 2 says that for ord(A) ≤ 2
and w(A) = 2 is µ(A) = 1 and we have actually proved the assertion
for ord(A) ≤ 2. We suppose ord(A) = 3 now. It follows from the
proof of Proposition 3.9 in [5], that either

s̄ = τs

t̄ = τt
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(τ 6= 0) belongs to Aut A (eventually, after an application of a change
of variables) or i can be generated by monomials and just one bino-
mial of the form Q1 + Q2, where Q1 = Q1(s, t), Q2 = Q2(s, t) are
monomials of degrees 2 and 3, respectively. The equation

Q1(τ1, τ2) = Q2(τ1, τ2)

has a solution with τ1 > 1 and τ2 > 1 in all cases (see Lemma 3).
Then

s̄ = τ1s

t̄ = τ2t

belongs to Aut A and preconditions of Proposition 2 from [9] are
satisfied. Hence SA = R · 1. ¤

We see that the mentioned Weil algebra with the nontrivial subal-
gebra of fixed elements has the order 5 and the width 2. We have also
proved that there is no such an algebra for ord(A) ≤ 3 and w(A) = 2.
We enhance our results about Weil algebras with the nontrivial sub-
algebra of fixed elements now.

Proposition 2. Let A = R[t1, . . . , tk]/i be a Weil algebra with the
order r, the width k, mr+1 ⊂ i ⊂ m3 and with the nontrivial sub-
algebra of fixed elements. Then there is a Weil algebra B with the
nontrivial subalgebra of fixed elements, ord(B) = r, w(B) = k + 1.
The assumptions can be satisfied for r = 4 and k = 2.

Proof. Let the assumptions for A are satisfied. We take the Weil
algebra B := R[s, t1, . . . , tk]/i + 〈s2, st1, . . . , stk〉. Then ord(B) = r,
w(B) = k+1. Let a be an element of A such that 0 6= a ∈ SA∩n. We
apply a canonical inclusion i : A → B and view a also as an element
of B. Let φ ∈ Aut B be an arbitrary automorphism, a = φ(b), b ∈ B,
a 6= b. Automorphisms are determined by the specifying of elements
which map to s, t1, . . . , tk. So, φ have a form

b0 + α0s 7−→ s

b1 + α1s 7−→ t1

. . .

bk + αks 7−→ tk

where α0, . . . , αk ∈ R and b0, . . . , bk are elements of B which do not
depend on s. As (b0 + α0s)2 = (b0)2 maps to s2, then (b0)2 = 0 and
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therefore b0 is not linear in any tj , because i ⊂ m3. That is why

b1 7−→ t1

. . .

bk 7−→ tk

is the expression of an automorphism of Aut A (we view b1, . . . , bk as
elements of A, too). As we suppose a = φ(b) and a 6= b, then some
αjs (j ∈ {1, . . . , k}) must make that a and b are different. But it
means that a contains τtj , 0 6= τ ∈ R, because αjs vanishes in the
second order. Let

t1 7−→ t1

. . .

tj + ȧj 7−→ tj

. . .

tk 7−→ tk

represent an automorphism of AutA, in which 0 6= ȧj ∈ A van-
ishes after multiplication by an arbitrary nilpotent element. (Such
automorphisms always exist, because i ⊂ m2.) This automorphism
preserves a as a ∈ SA. It implies τ ȧj = 0, i.e. τ = 0. It is contra-
diction; then a = b. It remains to give an example of a Weil algebra
with the order r, the width k and with the nontrivial subalgebra of
fixed elements. Let A = R[s, t]/〈s2t+t4, s3+st2〉+m5. The elements
of A have a form

k1 + k2s + k3t + k4s
2 + k5st + k6t

2 + k7s
3 + k8s

2t + k9t
3

with the simultaneous vanishing of all monomials of the fifth or
higher order in common with s4, s3t, s2t2, st3, s2t + t4 and s3 + st2.
We shall describe automorphisms of A. The starting point for their
specification is a form

s̄ = As + Bt + Cs2 + Dst + Et2 + Fs3 + Gs2t + Ht3

t̄ = Is + Jt + Ks2 + Lst + Mt2 + Ns3 + Os2t + Pt3.

The matrix ( A B
I J ) must be regular and we settle the conditions s̄4 =

0, s̄3t̄ = 0, s̄2t̄2 = 0, s̄t̄3 = 0, s̄2t̄ + t̄4 = 0 and s̄3 + s̄t̄2 = 0 now.
The condition s̄4 = 0 gives B = 0. The conditions s̄3t̄ = 0, s̄2t̄2 = 0,
s̄t̄3 = 0 give no new nontrivial relation. The condition s̄2t̄ + t̄4 = 0
gives I = 0, A2 = J3. The condition s̄3 + s̄t̄2 = 0 gives E = 0,
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A2 = J2. So, we obtain J = 1 and A = −1 or A = 1. Hence the
automorphisms have the following form

s̄ = εs + Cs2 + Dst + Fs3 + Gs2t + Ht3

t̄ = t + Ks2 + Lst + Mt2 + Ns3 + Os2t + Pt3,

where ε ∈ {−1, 1}. Finally, we solve the equation

k1 + k2s̄ + k3t̄ + k4s̄
2 + k5s̄t̄ + k6t̄

2 + k7s̄
3 + k8s̄

2t̄ + k9t̄
3 =

k1 + k2s + k3t + k4s
2 + k5st + k6t

2 + k7s
3 + k8s

2t + k9t
3

for ki, i = 1, . . . , 9, by use the described automorphisms. By com-
paring of coefficients standing at powers of s and t, we find that
k2 = k3 = k4 = k5 = k6 = k7 = k9 = 0 and k1, k8 are arbitrary real
coefficients. This means SA = {k1 +k8s

2t} % R · 1. The assumption
m5 ⊂ i ⊂ m3 is also satisfied. ¤

Remark 1. Our nomination of the Weil algebra with ord(A) = 4
and w(A) = 2 is on the base of [5], Theorem 3.11, where local al-
gebras with the unipotent identity component of the group of auto-
morphisms are classified.

Remark 2. In a similar way, we can prove (under assumptions of
Proposition 2) that there is a Weil algebra B with the nontrivial
subalgebra of fixed elements, ord(B) = r, w(B) = k + h. Indeed, it
suffices to take

B := R[s1, . . . , sh, t1, . . . , tk]/i + 〈s1s1, . . . , s1sh, . . . , shs1, . . . ,

shsh, s1t1, . . . , s1tk, . . . , sht1, . . . , shtk〉
and to modify the proof.

1.3. Dwindlable Weil algebras. Of course, R is contained in ev-
ery R-algebra. Thus, the canonical algebra homomorphism κA : A →
R, where A is a Weil algebra, can be viewed as the endomorphism
κA : A → A. We say that A is dwindlable if there is an infinite se-
quence {φn}∞n=1 of automorphisms φn ∈ Aut A such that φn → κA

for n →∞.
If for all τ ∈ R, τ 6= 0, the automorphism Hτ : R[t1, . . . , tk] →

R[t1, . . . , tk], Hτ : P (t1, . . . , tk) 7→ P (τt1, . . . , τ tk), induces the au-
tomorphism H̄τ : R[t1, . . . , tk]/i → R[t1, . . . , tk]/i, (it arrives for all
A = R[t1, . . . , tk]/i, where i is a homogeneous ideal) then A is dwind-
lable, as we come to κA for τ → 0 or, more precisely, we take the
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sequence {φn}∞n=1 and e.g. 1
n in place of τ . Admittedly, A is dwind-

lable in other cases, too. For example, A = R[s, t]/〈s2 + t3〉 + m4

does not dispose of the mentioned automorphism, but e.g. by the
automorphism

s̄ = τ3s

t̄ = τ2t

(τ 6= 0), for which we arrive at κA for τ → 0. Actually, we have:

Proposition 3. If ord(A) = 3, w(A) = 2, µ(A) = 2 and ν(A) = 1,
then A is dwindlable.

Proof. A = R[t1, . . . , tk]/i and there is the unique binomial among
the generators of i. We can assume that this binomial is nonhomo-
geneous. Then we can state the full list of such Weil algebras and
specify automorphisms which enable to obtain κA in the limit. We
have

(i) A = R[s, t]/〈s2 + αt3〉+ m4

(ii) A = R[s, t]/〈s2 + αt3, st〉+ m4

(iii) A = R[s, t]/〈s2 + αt3, st2〉+ m4

(iv) A = R[s, t]/〈s2 + αst2〉+ m4

(v) A = R[s, t]/〈s2 + αst2, t3〉+ m4

(vi) A = R[s, t]/〈st + αt3〉+ m4

(vii) A = R[s, t]/〈st + αt3, s2〉+ m4

(viii) A = R[s, t]/〈st + αt3, s3〉+ m4

and automorphisms

s̄ = τ3s

t̄ = τ2t

in the cases (i), (ii), (iii) and automorphisms

s̄ = τ2s

t̄ = τt

in the cases (iv), (v), (vi) and (vii) (τ 6= 0 all the time). ¤

Furthermore, we have the following assertion:

Proposition 4. If A is a dwindlable Weil algebra, then its subal-
gebra SA of fixed elements is trivial. Apart from that, there are
non-dwindlable Weil algebras with trivial SA.
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Proof. First, we assume that A is dwindlable and SA % R · 1. Then
there is an element a of A such that 0 6= a ∈ SA ∩ n. There is also
an infinite sequence {φn}∞n=1, φn ∈ Aut A, φn → κA for n → ∞.
It implies 0 6= a = φn(a) → κA(a) = 0 and it is the contradiction.
Now, we present an example of a non-dwindlable Weil algebra with
trivial SA. Let A = R[s, t]/〈st2 + s5, s2t + t5〉 + m6. The elements
of A have a form

k1 + k2s + k3t + k4s
2 + k5st + k6t

2 + k7s
3

+ k8s
2t + k9st

2 + k10t
3 + k11s

4 + k12t
4

with the simultaneous vanishing of all monomials of the sixth or
higher order in common with s2t2, st3, s3t, st2 + s5 and s2t + t5.
We shall describe automorphisms of A. The starting point for their
specification is a form

s̄ = As + Bt + Cs2 + Dst + Et2 + Fs3 + Gs2t

+Hst2 + It3 + Js4 + Kt4

t̄ = Ls + Mt + Ns2 + Ost + Pt2 + Qs3 + Rs2t

+Sst2 + Tt3 + Us4 + V t4.

The matrix ( A B
L M ) must be regular and we settle the conditions

s̄2t̄2 = 0, s̄t̄3 = 0, s̄3t̄ = 0, s̄t̄2 + s̄5 = 0 and s̄2t̄ + t̄5 = 0 now. The
condition s̄2t̄2 = 0 gives A = M = 0 (Variant I) or B = L = 0
(Variant II). The condition s̄t̄3 = 0 gives C = 0 in the Variant I and
E = 0 in the Variant II. The condition s̄3t̄ = 0 gives P = 0 in the
Variant I and N = 0 in the Variant II. The condition s̄t̄2 + s̄5 = 0
gives L2 = B4, F = 0 in the Variant I and M2 = A4, I = 0 in the
Variant II. The condition s̄2t̄ + t̄5 = 0 gives B2 = L4, T = 0 in the
Variant I and A2 = E2 + M4, Q = 0 in the Variant II. Finally, we
obtain A = C = F = M = P = T = 0, B and L equal 1 or −1 in
the Variant I or B = E = I = L = N = Q = 0, A and M equal 1 or
−1 in the Variant II. Hence the automorphisms have the following
form

s̄ = ε1t + Dst + Et2 + Gs2t + Hst2 + It3 + Js4 + Kt4

t̄ = ε2s + Ns2 + Ost + Qs3 + Rs2t + Sst2 + Us4 + V t4

or

s̄ = ε1s + Cs2 + Dst + Fs3 + Gs2t + Hst2 + Js4 + Kt4

t̄ = ε2t + Ost + Pt2 + Rs2t + Sst2 + Tt3 + Us4 + V t4,
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where ε1, ε2 ∈ {−1, 1}. Evidently, A is not dwindlable.
Finally, we solve the equation

k1 +k2s̄ +k3t̄ +k4s̄
2 +k5s̄t̄ +k6t̄

2 +k7s̄
3 +k8s̄

2t̄

+k9s̄t̄
2 +k10t̄

3 +k11s̄
4 +k12t̄

4 = k1 +k2s +k3t +k4s
2

+k5st +k6t
2 +k7s

3 +k8s
2t +k9st

2 +k10t
3 +k11s

4 +k12t
4

for ki, i = 1, . . . , 12, by use the described automorphisms. By com-
paring of coefficients standing at powers of s and t, we find that
k2 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = k11 = k12 = 0 and
k1 is an arbitrary real coefficient. Thus SA = R · 1. ¤

2. Contact Elements

2.1. Bundles of Weil contact elements. Weil algebras can be
also viewed as finite dimensional factor R-algebras of the algebra of
germs Ek = C∞0 (Rk,R). The fact that ideals in Ek can be generated
by some polynomials induces the corresponding ideal i in Ek for every
Weil ideal i in R[t1, . . . , tk]. Let A = Ek/i be a Weil algebra and M a
m-dimensional manifold. Two maps g, h : Rk → M , g(0) = h(0) = x
are said to be A-equivalent, if α ◦ g − α ◦ h ∈ i for every germ α
of a smooth function on M at x. Such an equivalence class will be
denoted by jAg and called an A-velocity on M . The point x = g(0)
is said to be the target of jAg. Denote by TAM the set of all A-
velocities on M . TAM is called the Weil bundle. Let reg TAM ⊂
TAM be the open subbundle of so called regular A-velocities on
M , i.e. if A = Ek/i, then jAg ∈ reg TAM ⊂ TAM if and only
if g : Rk → M is of rank k at 0. The contact element of type A
or Weil contact element on M determined by X ∈ reg TAM is the
equivalence class Aut AM (X) := {φ(X); φ ∈ AutA}. We denote by
KAM the set of all Weil contact element (of type A) on M . KAM
represents a peremptory generalization of classical contact element
bundles, it is called the bundle of Weil contact elements and it plays
the central role in our paper.

We obtain the classical contact element bundles introduced by
C. Ehresmann in [2] by the choice A = Dr

k = R[t1, . . . , tk]/mr+1

with the usual denotation Kr
kM instead KDr

kM . (For the geom-
etry of classical contact elements see e.g. [4].) Alternatively, the
space of all k-dimensional subspaces in a vector space V is called
the Grassmann manifold or the Grassmannian. If V = TxM , then
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such a Grassmannian is represented just by (K1
kM)x and that is

why K1
kM =

⋃
x∈M (K1

kM)x is called the bundle of k–dimensional
Grassmannians. Accordingly, Kr

kM is sometimes called the bundle
of k–dimensional Grassmannians of order r.

2.2. The characterization of Weil contact elements for mono-
mial Weil algebras. An m-dimensional manifold M is locally iden-
tified with Rm with usual coordinates xi, i = 1, . . . , m. By the
algebraically parameterized subset in Rm we mean a set N ⊂ Rm

possessed of a parameterization xi = P i, where P i are real polyno-
mials in at most m− 1 indeterminates (parameters). In general, N
disposes of infinitely many such parameterizations; we denote by N
the couple (N, P i), i.e. N with a fixed parameterization.

Let A be a monomial Weil algebra, m− 1 ≥ w(A) = k, with ele-
ments taken as polynomials (4). We define how elements of reg TARm

induce a submanifold of mentioned type. We can express elements
of A = R[t1, . . . , tk]/i as polynomials in the form

k0 + k1t1 + · · ·+ kqtq, (5)

where t1, . . . , tq are different elementary monomials of degree at
least 1 (i.e. th = tj1 . . . tjs /∈ i, 1 ≤ s ≤ r, j1, . . . , js ∈ {1, . . . , k}
for every h = 1, . . . , q) and k0, k1, . . . , kq ∈ R. Let g : Rk → R be a
smooth function. We find easily coefficients of the polynomial P [A]
corresponding with elements of A and satisfying equations

g(0) = P [A](0)

∂|th|g
∂th

(0) =
∂|th|P [A]

∂th
(0),

where h = 1, . . . , q, ∂th means ∂tj1 . . . ∂tjs , and by |th| is denoted
the degree of the monomial th. P [A] is uniquely determined and
represents only a slight generalization of the Taylor polynomial.
Now, if we view A as Ek/i, then A-velocity jAg is determined by
g : Rk → Rm, g = (g1(t1, . . . , tk), . . . , gm(t1, . . . , tk)) and we can re-
alize the described assigning of polynomial P i[A] to gi, i = 1, . . . , m.
The regularity means that we postulate with the rank k at 0 for
g : Rk → Rm and implies that the described algebraically parame-
terized subsets

xi = P i[A](t1, . . . , tk). (6)
are (locally) k-dimensional submanifolds in Rm. We shall denote
them by N [A] and call the osculating A-paraboloids. As above, N [A]
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represents a couple (N [A], P i[A]) and we shall denote by Sm[A] the
set of all N [A] and by Sm[A] the set of all N [A] for a given A. By
an algebraic subset in Rm one usually means the set of zeros of some
subset of R[t1, . . . , tk]. We say that N [A] ∈ Sk+1[A] is an adequately
algebraic submanifold if there is a polynomial Z = Z(x1, . . . , xk+1),
1 ≤ deg(Z) ≤ ord(A), for which Z(P 1[A], . . . , P k+1[A]) = 0. We
shall denote by S∗k+1[A] the subset of all adequately algebraic sub-
manifolds in Sk+1[A].

Proposition 5. Let A be a monomial Weil algebra. There is a
bijection between reg TARm and Sm[A].

Proof. It follows from the described construction of elements of
Sm[A] that α ◦ g − α ◦ (P 1[A], . . . , Pm[A])) ∈ i for every germ α of
a smooth function on Rm at g(0) = x. On the other hand, every
(P 1[A], . . . , Pm[A]) must belong to any A-velocity. ¤

Remark 3. Nevertheless, elements of reg TARm coalescing in KARm

give in general different elements of Sm[A], e.g. for A = D2
1 and

m = 2, N1[A] given by

x = t

y = t2

and N2[A] given by

x = t + t2

y = t2

are different curves in R2 obtained by the application of the auto-
morphism t 7→ t+t2 belonging to AutD2

1. So, we can present nothing
but a bijection between KARm and Sm[A]/ ≡A, where ≡A is the
equivalence relation on Sm[A] defined as follows: N1[A] ≡A N2[A]
if and only if there exists a local diffeomorphism ψ : Rm → Rm,
ψ(0) = 0, satisfying ψ∗i = i and germ0(P1[A] ◦ ψ − P2[A]) ∈ i.

2.3. Examples of osculating A-paraboloids.

Example A. A = D1
k. If k = 1, then elements of A have the form

k0 + k1t and induce submanifolds of Rm given by xi = αi + βit,
αi, βi ∈ R. Of course, these submanifolds are straight lines. The gen-
eralization for an arbitrary k is easy and we obtain k-planes (which
constitute the bundle of k–dimensional Grassmannians). Evidently,
S∗k+1[D1

k] = Sk+1[D1
k].
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Example B. A = D2
1. Elements of A have a form k0 + k1t + k2t

2

and for m = k + 1 = 2 they induce curves

x = α + βt + γt2

y = δ + ζt + ηt2,

α, β, γ, δ, ζ, η ∈ R, rank
(

β
ζ

)
= 1. However, in the suitable coordi-

nate system it is possible assume α = δ = 0, β = 1, ζ = 0. We
have

x = t + γt2

y = ηt2,

so it follows that

x2 − 2γ

η
xy +

γ2

η2
y2 − 1

η
y = 0

and by standard procedure we evaluate that it embodies the parabola
with the normal equation

(1 +
γ2

η2
)x2 − 1√

γ2 + η2
y = 0. (7)

Hence S∗2[D2
1] = S2[D2

1] was proved.
Example C. A = D⊗D. Elements of A have a form k0 +k1s+k2t+
k3st and for m = k + 1 = 3 they induce surfaces

x = α + βs + γt + δst

y = ζ + ηs + θt + ιst

z = κ + λs + µt + νst,

α, β, γ, δ, ζ, η, θ, ι, κ, λ, µ, ν ∈ R, rank
(

β γ
η θ
λ µ

)
= 2. However, in the

suitable coordinate system it is possible assume α = ζ = κ = 0,
β = θ = 1, γ = η = λ = µ = 0. We have

x = s + δst

y = t + ιst

z = νst

it follows that

xy − δ

ν
yz − ι

ν
xz +

δι

ν2
z2 − 1

ν
z = 0
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and by standard procedure we evaluate that it embodies the hyper-
bolic paraboloid with the normal equation

δι +
√

(δ2 + ν2)(ι2 + ν2)
ν2

x2 +
δι−

√
(δ2 + ν2)(ι2 + ν2)

ν2
y2

− 2ν2

√
δ2 + ι2 + ν2

z = 0. (8)

Hence S∗3[D⊗ D] = S3[D⊗ D] was proved.

3. Liftings of 1-Forms to KA

3.1. Groundwork. LetMfm denote the category of m-dimensional
manifolds (and local diffeomorphisms), M be an object in Mfm,
F be a natural bundle and Ω1M be the space of 1-forms on M .
Let ω ∈ Ω1M . If we denote by p : FM → M the natural bun-
dle projection and by p∗ω the pullback ω to F with respect to p,
then p∗ω represents a 1-form on FM called the vertical lift of ω to
FM . (The stars ∗ denote pullbacks in the rest of the paper.) From
now on we assume A = Ek/i, w(A) = k and regard x1, . . . , xm as
usual coordinates on Rm, ∂

∂x1 , . . . , ∂
∂xm the canonical vector fields

on Rm, dx1, . . . , dxm the canonical 1-forms on Rm and t1, . . . , tk the
usual coordinates on Rk. We denote by π : reg TARm → KARm the
canonical projection. Let σ = π(jA(t1, . . . , tk, 0, . . . , 0)) ∈ KA

0 Rm.
We consider a natural operator (regular lifting) A : T ∗ Ã T ∗KA and
define ΦA : Ω1Rm → R by

ΦA := 〈A(ω)(σ),KA
Rm(

∂

∂xm
)(σ)〉, (9)

where KA
M (X) is the complete lift of a vector field X to KAM , see [9].

Then we have:

Lemma 5. If ΦA = 0, then A = 0.

Proof. Since m ≥ w(A) + 1, the orbit of KA
Rm( ∂

∂xm )(σ) with respect
to diffeomorphisms Rm → Rm preserving germ0(

∂
∂xm ) forms a dense

subset in (TKARm)0. By the naturality of A, A = 0 follows from
ΦA = 0. We use also the regularity of A and the fact that any non-
vanishing vector field is locally ∂

∂xm in some local coordinates. ¤
This lemma means that A is uniquely determined by ΦA and that

is why it is sufficient to study ΦA subsequently. Using the naturality
of A, we obtain:
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Lemma 6. If φ : Rm → Rm is a diffeomorphism preserving
KA
Rm( ∂

∂xm )(σ), then ΦA(ω) = ΦA(φ∗ω) for any ω ∈ Ω1Rm.

Proof. The lemma is trivial. ¤

Furthermore:

Lemma 7. Let ω ∈ Ω1Rm have the form

ω = (f1 ◦ (x1, . . . , xk, xm))dx1 + · · ·+ (fk ◦ (x1, . . . , xk, xm))dxk

+ (g ◦ (x1, . . . , xk, xm))dxm, (10)

where f1, . . . , fk, g : Rk+1 → R are smooth maps. If ΦA(ω) = 0 for
any such ω, then ΦA = 0.

Proof. Let us assume ω ∈ Ω1Rm be arbitrary. The diffeomorphisms
φτ : Rm → Rm,

φτ : (x1, . . . , xm) 7→ (x1, . . . , xk, τxk+1, . . . , τxm−1, xm),

τ 6= 0, preserve KA
Rm( ∂

∂xm )(σ), as they preserve ∂
∂xm and σ. We

have ΦA(ω) = ΦA(φ∗τω) by Lemma 6 and for τ → 0 we obtain
ΦA(ω) = ΦA(φ∗0ω) = 0, because φ∗0ω is of the form (10). ¤

Lemma 8. Let ω̃ ∈ Ω1Rm have a form

ω̃ = q∗ω0 + xmq∗ω1 + (H ◦ q)dxm, (11)

where ω0, ω1 ∈ Ω1Rk are arbitrary, H : Rk → R and q : Rm = Rk ×
Rm−k → Rk is the projection. If ΦA(ω̃) = 0 for any such a ω̃, then
ΦA = 0.

Proof. Let us assume that ω ∈ Ω1Rm is of the form (10). As to
Lemma 7, it is sufficient to show that ΦA(ω) = 0. By the corollary of
the non-linear Peetre theorem ([6]) for the case of the local operator
〈A,KA

Rm( ∂
∂xm )〉 : Ω1Rm → C∞(KARm,R), the section ω and the

compact set {σ} ⊂ KARm, there is a r = r(ω) ∈ N such that
ΦA(ω̄) = ΦA(ω) for any ω̄ ∈ Ω1Rm with jr

0 ω̄ = jr
0ω. So, we can

assume that ω is of the form (10) with f1, . . . , fk, g : Rk+1 → R
being polynomials of degree at most r.

Let us denote Φr
A the restriction of ΦA to the (finite dimensional)

vector space of all forms having the form (10) with f1, . . . , fk, g be-
ing polynomials of degree at most r. Since A satisfies the regular-
ity condition, Φr

A is smooth. The diffeomorphisms ητ : Rm → Rm,
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ητ : (x1, . . . , xm) 7→ (x1, . . . , xm−1, τxm), τ 6= 0, preserve σ and they
send ∂

∂xm to τ ∂
∂xm . Similarly as for Lemma 6, we deduce

τΦr
A(ω) = Φr

A(η∗τω) =

Φr
A((f1 ◦ (x1, . . . , xk, τxm))dx1 + · · ·+ (fk ◦ (x1, . . . , xk, τxm))dxk

+ τ(g ◦ (x1, . . . , xk, τxm))dxm). (12)

Differentiating both sides of this formula and of the similar formula
with ω̃ = (f1◦(x1, . . . , xk, 0)+ ∂f1

∂xm ◦(x1, . . . , xk, 0)xm)dx1+· · ·+(fk◦
(x1, . . . , xk, 0)+ ∂fk

∂xm ◦(x1, . . . , xk, 0)xm)dxk +(g◦(x1, . . . , xk, 0))dxm

instead of ω with respect to τ and then putting τ = 0, we derive
Φr
A(ω) = Φr

A(ω̃). Nevertheless, ω̃ is of the form (11). Then using
the assumption of the lemma we obtain ΦA(ω) = 0. ¤

Lemma 9. If ΦA(αdxm) = 0 for any α ∈ R, then ΦA = 0.

Proof. Let ω̃ ∈ Ω1Rm be of the form (11). Let us choose a sequence
{φn}∞n=1 of automorphisms φn ∈ Aut A such that φn → κA for
n → ∞. Then there exists a sequence {Φn}∞n=1 of diffeomorphisms
Φn : Rk → Rk, Φn(0) = 0, with j∞0 Φn → 0 such that Φ∗n(i) = i and
φn = [Φ∗n] is the quotient homomorphism. We define Ψn : Rm →
Rm, Ψn := Φn × idRm−k . Then Ψn preserve KA

Rm( ∂
∂xm )(σ), as they

preserve ∂
∂xm (because m ≥ k + 1) and σ (because KAΨn(σ) =

π(jAΨn(t1, . . . , tk, 0, . . . , 0)) = π(jA(t1, . . . , tk, 0, . . . , 0) ◦ Φn) =
π(φn(jA(t1, . . . , tk, 0, . . . , 0))) = π(jA(t1, . . . , tk, 0, . . . , 0)) = σ).

According to Lemma 6,

ΦA(ω̃) = ΦA(Ψ∗nω̃) = ΦA(q∗(Φ∗nω0)+q∗(Φ∗nω1)xm+(H◦Φn◦q)dxm).

But j∞0 (Φ∗nω0) → 0, j∞0 (Φ∗nω1) → 0 and j∞0 (H ◦ Φn) → j∞0 (H(0))
as n → ∞. Then ΦA(ω̃) = ΦA(H(0)dxm) = 0 because of the as-
sumption. Next we use Lemma 8. ¤

3.2. The classification theorem. Thanks to the thorough ground-
work, we are now in position to prove the following main theorem
without effort.

Theorem 1. Let A be a dwindlable Weil algebra, m ≥ w(A) + 1.
Then every natural operator A : T ∗ Ã T ∗KA is a constant multiple
of the vertical lifting.
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Proof. The operator A is determined uniquely by

ΨA : R→ R, ΨA(α) := ΦA(αdxm)

according to Lemma 9. If we take into account the homotheties

(x1, . . . , xm) 7→ (x1, . . . , xm−1, τxm),

we deduce by the naturality of A that ΨA(τα) = τΨA(α), i.e. ΨA
is linear as to the homogeneous function theorem, see e.g. [6]. Hence
A is determined uniquely by the real number ΨA(1). Therefore the
vector space of all natural operators A : T ∗ Ã T ∗KA has dimension
at most 1. The proof is complete. ¤
Corollary. If A = Dr1

k1
⊗ · · · ⊗ Drl

kl
, m ≥ w(A) + 1. Then every

natural operator A : T ∗ Ã T ∗KA is a constant multiple of the vertical
lifting.

Proof. Every Weil algebra A = R[t1, . . . , tk]/i, where i is a homoge-
neous ideal, is dwindlable. ¤
Remark 4. Up to now, only the special case of the Corollary for
l = 1 was known, see [7].
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