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A Stochastic Predator-Prey Model

RANDALL J. SWIFT

Abstract. A stochastic version of the classical predator-
prey population model is considered through a simple birth-
death formulation. The expected value of the process is ob-
tained and shown to correspond to the deterministic predator-
prey population model.

1. Introduction

Often in courses in probability theory and mathematical modeling,
simple birth-death processes are studied which provide a useful in-
troduction to stochastic modeling. The birth, death and birth-death
processes are well known, and elementary treatments of these pro-
cesses can be found in the recent probability text [3] or the modeling
text [2].

These processes are natural stochastic generalizations of the deter-
ministic population model for population growth of a single species
inhabiting an environment in which the amount of resources never
changed and the number of other species also remained fixed.

In this note, we will consider a natural stochastic generalization
of the classical predator-prey model. The predator-prey model was
originally proposed by A. J. Lotka and V. Volterra in the 1920’s.
It is a relatively simple model to formulate and it is often studied
in elementary differential equation courses. The classical model is
formulated by considering two interacting populations at a time t, a
predator species, denoted f(t) and a prey species, r(t).
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In the absence of predators, the prey species exhibit exponential
growth. In particular,

dr(t)
dt

= αr(t),

where r(t) > 0 for all t and α is the prey birth rate. It is assumed
that there is always sufficient food for the prey. Similarly, in the
absence of prey, the predators die exponentially. That is,

df(t)
dt

= −δf(t)

where f(t) > 0 for all t and δ > 0 is the predator death rate. It
can be assumed there is other food for the predators, but it is not
sufficient to sustain the population.

When both populations are present, the interaction of the species
is modeled as a product of the population sizes (i.e. r(t)f(t)). The
term r(t)f(t) is borrowed from chemistry models of rates of reaction
where molecules in solution interact by randomly bumping into one
another. An interesting discussion of this interaction term and the
classical predator-prey model can be found in the recent modeling
text [2].

In the classical model, a predator-prey interaction results in a prey
death at a rate βr(t)f(t), where β > 0. Since it is assumed that the
prey are the primary food source for the predators, the predators
have a birth rate γr(t)f(t), where γ > 0.

The classical predator-prey model, with the assumptions discussed
above, yields the following system of equations:

dr(t)
dt

= αr(t)− βr(t)f(t)

df(t)
dt

= γr(t)f(t)− δf(t), (1)

where α, β, γ, δ are all nonnegative constants. In the next section, a
stochastic version of this model is considered.

2. A Stochastic Predator-Prey Model

Let R(t) be the size of the prey population at time t and F (t) be
the size of the predator population at time t. In the model to be
formulated, it is now assumed that instead of a (deterministic) rate
of predator and prey births and deaths, there is a probability of
a predator and prey birth or death. Thus R(t) and F (t) are time
dependent random variables.
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Let the probability of there being r preys and f predators at time
t be denoted by

Pr,f (t) = P [R(t) = r, F (t) = f ], for r = 0, 1, 2, . . . , f = 0, 1, 2, . . . .

As in the simple birth-death process for a single species, births and
deaths in this process occur proportional to the population size. We
assume that the infinitesimal probability of an individual prey birth
during the small time interval ∆t is αr∆t + o(∆t), where α > 0
is the prey birth rate. Similarly, we assume that the infinitesimal
probability of an individual predator death during the small time
interval ∆t is δf∆t + o(∆t), where δ > 0 is the predator death rate.

To mimic the deterministic model interaction term, we assume
that the infinitesimal probability of a prey death occuring during
∆t is βrf∆t + o(∆t), where β > 0 is the prey death rate. Simi-
larly, a predator birth occurs during ∆t with infinitesimal probability
γrf∆t + o(∆t), with γ > 0.

Thus, this predator-prey process can be described as having the
following transitions and rates:

transition rate
r → r + 1, f → f α r
r → r − 1, f → f β rf
r → r, f → f + 1 γ rf
r → r, f → f − 1 δ f

The standard argument using the forward Kolmogorov equations
is used to obtain Pr,f (t), by considering the probability Pr,f (t+∆t).
This probability is obtained as the sum of the probabilities of the
following mutually exclusive events:
a) There are r prey and f predators by time t and no birth or deaths
of either species occur in (t, t + ∆t).
b) There are r − 1 prey and f predators by time t and a prey birth
occurs in (t, t + ∆t).
c) There are r prey and f − 1 predators by time t and a predator
birth occurs in (t, t + ∆t).
d) There are r + 1 prey and f predators by time t and one prey
death occurs in (t, t + ∆t).
e) There are r prey and f + 1 predators and one predator death
occurs in (t, t + ∆t).
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It is assumed that ∆t is sufficiently small to guarantee that only one
such event can occur in (t, t + ∆t). These probabilities yield

Pr,f (t + ∆t) = (1− βrf + δf + rα + rfγ + o(∆t))∆tPr,f (t)
+ (α(r − 1) + o(∆t))∆tP(r−1,f)(t)
+ (γ(f − 1)r + o(∆t))∆tP(r,f−1)(t)
+ (β(r + 1)f + o(∆t))∆tP(r+1,f)(t)
+ (δ(f + 1) + o(∆t))∆tP(r,f+1)(t) (2)

for r = 0, 1, 2 . . . and f = 0, 1, 2 . . ..
Rearranging (2) and letting ∆t → 0, we obtain for r = 0, 1, 2 . . .

and f = 0, 1, 2 . . ., the state equations for this process as

P
′
r,f (t) = lim

∆t→0

Pr,f (t + ∆t)− Pr,f (t)
∆t

= −(βrf + δf + rα + rfγ)Pr,f (t) + α(r − 1)P(r−1,f)(t)

+ γ(f − 1)rP(r,f−1)(t) + β(r + 1)fP(r+1,f)(t). (3)

The doubly infinite system (3) of differential equations is not eas-
ily solved and in fact, it appears to be an open problem to obtain its
closed form solution. It should be noted that a numerical solution
for birth-death type systems is possible through the method of ran-
domization. The basic method is given in [1], its application to (3)
is a subject of possible further investigation to the interested reader.

The system can however, be studied by letting

φ(z1, z2, t) =
∞∑

r=0

∞∑

f=0

Pr,f (t)zr
1zf

2 (4)

be the probability generating function (p.g.f.) for this system. Then,
φ(·, ·, ·) can be expressed as a partial differential equation.
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In particular, using (3) in (4) gives
∞∑

r=0

∞∑

f=0

P ′r,f (t)zr
1zf

2 =
∞∑

r=0

∞∑

f=0

(−(βrf + δf + rα + rfγ))Pr,f (t)zr
1zf

2

+
∞∑

r=0

∞∑

f=0

(α(r − 1)P(r−1),f (t))zr
1zf

2

+
∞∑

r=0

∞∑

f=0

(γ(f − 1)rPr,(f−1)(t))zr
1zf

2

+
∞∑

r=0

∞∑

f=0

(β(r + 1)fP(r+1),(t))zr
1zf

2

+
∞∑

r=0

∞∑

f=0

(δ(f + 1)Pr,(f+1)(t))zr
1zf

2 .

(5)

Expanding by distributing the summation through the first term in
(5), we obtain

∂φ(z1, z2, t)
∂t

=−
∞∑

r=0

∞∑

f=0

rfγPr,f (t)zr
1zf

2 −
∞∑

r=0

∞∑

f=0

fαPr,f (t)zr
1zf

2

−
∞∑

r=0

∞∑

f=0

δrfPr,f (t)zr
1zf

2

+
∞∑

r=0

∞∑

f=0

[β(r + 1)fP(r+1),f (t)]zr
1zf

2

+
∞∑

r=0

∞∑

f=0

[δ(f + 1)Pr,(f+1)(t)]zr
1zf

2 .

Recognizing partial derivatives of the pgf (4), we see that

∂φ(z1, z2, t)
∂t

= β[z2(1− z1)− γz1z2(1− z2)]
∂2φ(z1, z2, t)

∂z2∂z1

+ δ(1− z2)
∂φ(z1, z2, t)

∂z2

− αz1(1− z1)
∂φ(z1, z2, t)

∂z1
,
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as the partial differential equation for the probability generating
function of the system (3). From this expression, the (possible) in-
tractibility of the system (3) is apparent.

The probability generating function (4) can be used to find the
expected population sizes. In particular, differentiating (6) with re-
spect to z1 gives an expression for the expected prey population size
as

∂

∂z1

∂φ(z1, z2, t)
∂t

= (2z1 − 1)α
∂φ(z1, z2, t)

∂z1

+ z1(z1 − 1)α
∂2φ(z1, z2, t)

∂z2
1

+ (1− z2)δ
∂2φ(z1, z2, t)

∂z2∂z1

+ (−z2β + (z2
2 − z2)γ)

∂2φ(z1, z2, t)
∂z2∂z1

+ [z2(1− z1)β + z1z2(z2 − 1)γ]
∂2φ(z1, z2, t)

∂z2∂z2
2

.

Substituting z1 = z2 = 1 and recognizing expectations gives
∂

∂t
E(R(t)) = αE(R(t))− βE(R(t)F (t)) (6)

where E (·) is the expectation.
Similarly, the expectation for the predators is found by differen-

tiating (6) with respect to z2. In particular,

∂

∂z2

∂φ(z1, z2, t)
∂t

= z1(z1 − 1)α
∂2φ(z1, z2, t)

∂z1∂z2
− δ

∂φ(z1, z2, t)
∂z2

+ (1− z2)δ
∂2φ(z1, z2, t)

∂z2

+ [(1− z1)β + (2z1z2 − z1)γ]
∂2φ(z1, z2, t)

∂z2∂z1

+ [(z2(1− z1)β) + z1z2(z2 − 1)γ]
∂3φ(z1, z2, t)

∂2z2∂z1
.

Evaluating this expression with z1 = z2 = 1, we obtain
∂

∂t
E(F (t)) = γE(R(t)F (t))− δE(F (t)). (7)

Since R(t) is a time dependent random variable, E(R(t)) is a time
dependent deterministic quantity. The same is true for F (t). Thus
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in this context, (6) and (7) are the predator-prey model obtained
in (1).
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