
Irish Math. Soc. Bulletin 47 (2001), 41–65 41

Old and New on the Bass Note,

the Torsion Function and the Hyperbolic Metric

Tom Carroll
1

1. The torsion function and Brownian motion

A cylindrical beam of uniform cross section is subject to an infinites-
imal torsion. One needs to know the resulting stresses. The theory
of elasticity reduces this to the solution of the problem

{

∆u = −2 in D,
u = 0 on ∂D,

(0.1)

if the beam in three dimensional Cartesian coordinates is D × R

where the cross section D is a simply connected domain in the xy-
plane. The partial derivatives uy and −ux give the components in
the x and y directions respectively of the stress vector relative to the
normal direction to D .

The torsional rigidity of the beam is

P
def
=

∫

D

|gradu|2 = 2

∫

D

u,

where to obtain the second equality we used Green’s theorem. It is
the torque required per unit angle of twist per unit length of beam
and so is a measure of the resistance of the beam to torsion. A famous
problem raised by St. Venant (1856) and solved by Pólya (1948) was
to show that among all simply connected domains of given area, a
disk of that area has the greatest torsional rigidity (see Pólya and
Szegö [18, Page 121]).

This is a good example of the isoperimetric-type problems that
are the subject of this survey. The classical isoperimetric inequality
is

4πA ≤ L2,
1Research supported in part by Enterprise Ireland Basic Research Grant

SC/1997/625/.



42 TOM CARROLL

for the area A enclosed by a perimeter of length L. Equality holds
only in the case of a disk bounded by a circle. Whereas the proto-
typical isoperimetric inequality relates two geometric quantities, area
and length, those under consideration here relate an analytic quan-
tity (the torsional rigidity, for example) and a geometric quantity
(the area, for example).

There is an important probabilistic interpretation of the torsion
function, the solution to (0.1). A standard Brownian motion in the
plane departs from a point in D and runs until it exits D at a time
τD that depends on the path. This is a stochastic process in D
whose transition probabilities are denoted by pD(t,x,y), so that the
probability that the process that initially departs from x lies in the
Borel subset A of D at time t is

∫

A

pD(t,x,y) dy.

These transition probabilities are the fundamental solutions of the
heat equation in D - the heat kernel for D - they satisfy

1

2
∆y pD(t,x,y) =

∂

∂t
pD(t,x,y).

The calorific interpretation is that of a plate with shape D, its bound-
ary maintained at zero temperature and one unit of heat put at x

at time t = 0: the resulting heat density at the point y at time t
is pD(t,x,y). The connection between this heat problem and the
Brownian motion in D is, in a sense, obvious – each is a diffusion
of a concentration at x at time 0 that is absorbed on reaching the
boundary of the domain.

The exit time τD of the diffusion depends on the particular Brow-
nian path and as such it is a random variable, a measurable function,
on path space. We can therefore take the expectation, or integral,
relative to Wiener measure Px on path space and we denote this by
ExτD . Taking horizontal approximating rectangles to the area under
the graph of Px(τD > t) as a function of t on [0,∞) makes it clear
that

ExτD =

∫ ∞

0

Px(τD > t) dt,

(see Lieb and Loss [13, Theorem 1.13]). Now Px(τD > t) is the
probability that a Brownian motion that departs from x has not, at
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time t, already been absorbed at the boundary of the domain. Thus
it is the probability that this Brownian motion is still in D at time
t and therefore equals

∫

D
pD(t,x,y) dy. This gives

ExτD =

∫

D

(
∫ ∞

0

pD(t,x,y) dt

)

dy.

We notice that

f(x,y) =

∫ ∞

0

pD(t,x,y) dt

is a function of x and y alone. For fixed x, the function f(x,y) is
positive and harmonic in D \ {x} as a function of y and it vanishes
on the boundary of D. Thus (see Chung and Zhao [8], Chapter 2,
especially Page 44), f(x,y) is the Green’s function GD(x,y) for D,
and the expected lifetime of Brownian motion in D starting from x

is

ExτD =

∫

D

GD(x,y) dy.

This is the probabilist’s normalization of the Green’s function for
one half of the Dirichlet Laplacian (it is twice the analyst’s Green’s
function): in the unit disk U = {y : |y| < 1} it is

GU (0,y) =
1

π
log

1

|y| .

At this point we may conclude that

∆(ExτD) = ∆

(∫

D

GD(x,y) dy

)

= −2,

since the Green’s function provides the solution

v(x) =

∫

D

GD(x,y)f(y) dy

to the Poisson problem 1
2∆v+f = 0 in D and v = 0 on the boundary

of D. The expected lifetime of Brownian motion in D and the torsion
function from elasticity are one and the same.

The probabilistic interpretation of the torsion function makes it
intuitively obvious that if x is a point in D1 and if the domain D1

is contained in the domain D2 then u1(x) ≤ u2(x), where u1 and u2

are the torsion functions for D1 and D2 respectively.
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One may compute explicit formulae for the torsion function or
the expected lifetime of Brownian motion in certain domains. For
example, for the disk D = D(0, R) one has ExτD = 1

2 (R2−|x|2) and
for the strip S = {(x1, x2) : |x2| < R} one has ExτS = R2 − x2

2.
This interplay between analysis and probability is a two-way

street. For example, one may solve the Dirichlet problem with
boundary data f by running a Brownian motion. The solution is

v(x) = Ex (f(BτD
)) .

2. The hyperbolic metric

Each simply connected domain D may be equipped with a metric
d(z, w; D) that is compatible with conformal mapping, in that if f
is one-to-one and analytic in D and z and w are points in D then

d(z, w; D) = d(f(z), f(w); f(D)).

This metric is referred to as the hyperbolic or Poincaré metric on the
domain. A conformal map is an isometry between simply connected
domains when each domain is viewed as a metric space endowed with
its hyperbolic metric.

The metric is Riemannian: a density σD(z) scales the lengths of
vectors based at a general point z in D. If γ(t), t ∈ [0, 1], is a smooth
curve in D then its σD-length is

lσD
(γ) =

∫ 1

0

σD(γ(t))|γ′(t)| dt.

The infinitesimal Euclidean length along the curve at γ(t) is |γ ′(t)| dt
and this is scaled by the scaling factor σD(γ(t)) at γ(t) and integrated
along the curve to give the ‘length’ of the curve from the point of
view of the density σD. In the Riemannian manner, we define the
distance between two points z and w in D to be the infimum σD-
length of all curves in D that join z and w. This gives rise to a
metric if σD is positive and continuous, though there is no a priori
reason to believe that a curve of shortest length exists.

The density in the unit disk U = {z : |z| < 1} is

σU (z) =
1

1− |z|2 .
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The scaling factor σU becomes unbounded near the unit circle. If
M(z) is a conformal map of U onto U , that is an automorphism of
U , so that M(z) = eiθ(z − α)/(1 − αz) for some real θ and some α
in U , then

σU (M(z))|M ′(z)| = σU (z).

It follows that, for any smooth curve γ in U ,

lσU
(M ◦ γ) =

∫ 1

0

σU ((M ◦ γ)(t))|(M ◦ γ)′(t)| dt

=

∫ 1

0

σU (M(γ(t)))|M ′(γ(t))| |γ′(t)| dt

=

∫ 1

0

σU (γ(t))||γ′(t)| dt

= lσU
(γ)

and then d(z, w; U) = d (M(z), M(w); U): that is, M is an isometry.
It is a worthwhile exercise to show that this argument is reversible
and one finds that the only densities for which automorphisms of the
unit disk are isometries in the resulting Riemannian metric are mul-
tiples of 1/(1−|z|2). It may furthermore be shown that for each point
z in U there is a curve of shortest σU -length, a geodesic arc, joining
the origin to z and that it coincides with the Euclidean geodesic arc,
the line segment [0, z]. The σU -length of this line segment is easily
calculated to give

d(0, z; U) =
1

2
log

(

1 + |z|
1− |z|

)

.

Since each automorphism in the group of automorphisms of the unit
disk is an isometry, and since any pair of points z1 and w1 may
be mapped to a second given pair of points z2 and w2 by an ap-
propriate automorphism, all geodesic curves in U are images under
automorphisms of a diameter of the disk. The automorphisms are
linear fractional transformations in the case of a disk and so pre-
serve the collection of all circles and all straight lines. Moreover,
these automorphisms are conformal, even on the unit circle. These
observations combine to demonstrate that the geodesic curves in the
unit disk are all diameters and all arcs of circles that meet the unit
circle at right angles. This is shown in Figure 1. Note that two
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geodesic arcs pass through the point P , yet neither intersects the
diameter L of the disk, another geodesic arc. That is, two distinct
‘lines’ pass through P and each is parallel to the given ‘line’ L and
the Parallel Postulate fails. Clearly one may draw infinitely many
geodesic arcs through P that are parallel to L, just as the theory
suggests.

Figure 1: Geodesic Arcs in the Unit Disk

For a general simply connected domain D, we may take a Riemann
map of D onto the unit disk and set

σD(z) = σU (f(z))|f ′(z)| = |f ′(z)|
1− |f(z)|2 . (0.1)

This is independent of the particular Riemann map, since any other
such map takes the form M ◦ f where M is an automorphism of
the unit disk. The Riemannian metric d(z, w; D) is then constructed
from the density σD(z). It is called the hyperbolic metric because,
as a Riemannian manifold, D has constant negative curvature.

It transpires that

σD(z) = σf(D)(f(z))|f ′(z)| (0.2)

whenever f is one-to-one and analytic in D. (One may prove this
first for the case D = U . For the general case one writes f = F2 ◦F1
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where F1 : D → U and F2 : U → f(D).) As was the case for
automorphisms of the unit disk, lσD

(γ) = lσf(D)
(f(γ)) which in turn

implies the aforementioned invariance of the resulting Riemannian
metric under conformal mapping.

On taking f(z) = (z− 1)/(z + 1) in (0.1), the hyperbolic density
of the half plane H = {z : Re z > 0} is found to be

σH(z) =
1

2Re z
.

Then taking D = S and f(z) = exp z in (0.2), the hyperbolic density
of the strip S = {z : |Im z| < π/2} is found to be

σS(z) =
1

2 cos(Im z)
.

The hyperbolic density σD behaves monotonically: if z lies in the
simply connected domain D1 and, in turn, D1 is contained in the
simply connected domain D2 then σD1 (z) ≥ σD2(z). One chooses f1

and f2 to be conformal mappings of D1 and D2, respectively, onto
U with f1(z) = f2(z) = 0. The Schwarz Lemma for the function
g = f2 ◦ f−1

1 leads to |g′(0)| = |f ′2(z)|/|f ′1(z)| ≤ 1. This is sufficient
since σDi

(z) = |f ′i(z)|.
The distance from a point z in D to the complement of D we

denote by δD(z). The disk centre z and radius δD(z) is contained in
D and, relative to this disk, the hyperbolic density at z is 1/δD(z).
By monotonicity, σD(z) ≤ 1/δD(z). The Koebe 1/4-theorem may
be rephrased as a lower bound on the hyperbolic density, so that

1

4δD(z)
≤ σD(z) ≤ 1

δD(z)
for z ∈ D.

Finally, we note the effect of scaling on the hyperbolic metric. If
D is a simply connected domain and r is positive then f(z) = rz is
a conformal mapping of D onto the scaled domain rD. Then (0.2)
yields

σrD(rz) =
1

r
σD(z) for z ∈ D.

In particular, the quantity σD(z)δD(z) is scale invariant.
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3. The bass note of a drum

A drum is a membrane, fixed on its boundary, whose shape is a cer-
tain simply connected domain D. The vertical displacement F (x, t)
at a point x and at time t that results from striking the drum is mod-
elled by the wave equation ∆F (x, t) = ∂2F/∂t2, with zero boundary
conditions. On seeking a solution of the form F (x, t) = u(x)eiωt,
one is led to the eigenvalue problem

{

∆u + λu = 0 in D,
u = 0 on ∂D.

The eigenvalues correspond to the squares of the pure notes that
the drum can emit. They are countable in number and form a non-
decreasing, unbounded sequence {λn}∞n=1 with 0 < λ1 < λ2, at least
when D is bounded. The eigenfunctions φn corresponding to the
eigenvalues λn, n ≥ 1, may be chosen to form an orthonormal ba-
sis for L2(D), [12, Chapter 10]. The first eigenfunction φ1(x) is
positive in D. It is important to be aware of a pitfall that awaits
those who read the work of both analysts and probabilists: in prob-
ability one works with half the Laplacian in the heat equation (and
for a good reason – see Kai Lai Chung’s book [7] where Einstein’s
original derivation of the mathematical laws for Brownian motion
are discussed) while in analysis one works with the full Laplacian.
Thus while the probabilist’s eigenfunctions are the same as those of
the analyst, the eigenvalues of the probabilist are half those of the
analyst.

The eigenvalue problem may be expressed in variational form.
The first eigenvalue λ1(D) is

λ1(D) = inf
f∈C∞c (D)

∫

D |grad f |2
∫

D |f |2 .

A minimizing f in L2(D) exists and is, up to normalization, the
eigenfunction φ1 for λ1.

As we will be concerned only with the bass note or fundamental
frequency, we sometimes write λD for λ1(D). As is clear from the
variational formulation, the bass note behaves monotonically – a
larger drum has a lower bass note – if the domain D1 is contained
in the domain D2 then λD2 ≤ λD1 .

The eigenvalue for a disk of radius R is j2
0/R2 where j0 is the

smallest positive zero of the Bessel function J0. That for a strip of
width 2R is π2/(4R2).
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The bass note has a number of probabilistic connections. The
heat kernel pD(t,x,y) is in L2(D) and it has an expansion in L2(D)
in terms of the eigenvalues and normalized eigenfunctions for one
half the Laplacian in D. In terms of the eigenvalues for the full
Laplacian, the expansion is

pD(t,x,y) =

∞
∑

n=1

e−λnt/2φn(x)φn(y).

Then, for a fixed x in D,

Px(τD > t) =

∫

D

pD(t,x,y) dy

=

∫

D

(

∞
∑

n=1

e−λnt/2φn(x)φn(y)

)

dy

=
∞
∑

n=1

anφn(x)e−λnt/2,

where an =
∫

D
φn(y) dy. Hence,

1

t
log

[

1

Px(τD > t)

]

=
1

t
log

[

1

/

∞
∑

n=1

anφn(x)e−λnt/2

]

=
1

t
log

[

eλ1t/2

/

∞
∑

n=1

anφn(x)e(λ1−λn)t/2

]

=
λ1

2
+

1

t
log

[

1

/

∞
∑

n=1

anφn(x)e(λ1−λn)t/2

]

.

Since λn > λ1 for n > 1, the series
∑∞

n=1 anφn(x)e(λ1−λn)t/2 con-
verges to a1φ1(x) as t →∞ . This gives

λD = 2 lim
t→∞

1

t
log [1 /Px(τD > t) ] . (0.1)

A further connection between the the bass note λD and the first
exit time τD was found by Graversen and Rao [9]. They showed that

λD = 2 sup{c ≥ 0 : sup
x∈D

Ex [exp(c τD)] < ∞}. (0.2)
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Next is a connection between the first eigenvalue λD and the
torsion function u(x). This will be used in the next section when we
obtain a lower bound on the bass note of a domain in terms of the
inradius of the domain.
∫

D

φ1(x) dx = −1

2

∫

D

(∆u)(x)φ1(x) dx

= −1

2

∫

D

u(x)∆φ1(x) dx (by Green’s Theorem)

=
1

2
λD

∫

D

u(x)φ1(x) dx

≤ 1

2
λD

(

sup
x∈D

u(x)

)∫

D

φ1(x) dx

from which it follows that

λD ≥ 2

supx∈D u(x)
. (0.3)

4. Isoperimetric-type inequalities

The prime directive is to measure the effect of the geometry of the
domain on the analytic quantities that have now been introduced.

4.1 Fixed Area

The most fundamental geometric quantity that one may associate
with a domain is its area and the first problems and conjectures of
an isoperimetric type are for domains of fixed area. As mentioned
in Section 1, St. Venant (1856) conjectured that among all simply
connected domains of given area, a disk of that area has the largest
torsional rigidity – that a beam of circular cross section is the most
resistant to twisting of all beams of prescribed cross sectional area.
This was proved by Pólya in (1948). Lord Rayleigh (1877) conjec-
tured that among all simply connected domains of given area, a disk
of that area has the lowest fundamental frequency – that a circu-
lar drum has the lowest bass note of all drums of prescribed area.
This was proved independently by G. Faber and E. Krahn (1923–4).
The classic reference in this area is Pólya and Szegö’s Isoperimetric

Inequalities in Mathematical Physics [18]. The book by Catherine
Bandle Isoperimetric Inequalities and Applications [1] may be viewed
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as a sequel to Pólya and Szegö’s book. Therein she proves a sym-
metrization result for the Green’s function [1, Theorem 2.4]. We set
D∗ to be the disk with centre 0 and with the same area as D. Then

area ({y ∈ D : GD(x,y) > t}) ≤ area ({y ∈ D∗ : GD∗(0,y) > t})
(0.1)

for each positive t. From this it follows (again see Lieb and Loss [13,
Theorem 1.13]) that for each non-decreasing function φ on [0,∞),

∫

D

φ(GD(x,y)) dy ≤
∫

D∗

φ(GD∗(0,y)) dy.

This result even holds for arbitrary domains of finite volume in Rn.
As a consequence of a rearrangement inequality for multiple in-

tegrals proved by Luttinger [14],

Px(τD > t) ≤ P0(τD∗ > t) for t > 0. (0.2)

In words, a Brownian motion has a greater probability of being alive
at time t if it departs from the center of the disk D∗ than from the
point x in D. From this follows

Exφ(τD) ≤ E0φ(τD∗),

for each non-decreasing function φ on [0,∞).
The distributional inequality for the lifetime (0.2) also gives the

Rayleigh-Faber-Krahn Theorem. In fact by (0.1),

λD = 2 lim
t→∞

1

t
log [1 /Px(τD > t) ]

≥ 2 lim
t→∞

1

t
log [1 /P0(τD∗ > t) ]

= λD∗

Let us, at this point, outline the approach to isoperimetric inequal-
ities introduced by Luttinger and perfected in the Brascamp-Lieb-
Luttinger rearrangement inequality for multiple integrals [6]. We
denote by f∗ the symmetric decreasing rearrangement of a non-
negative measurable function f , so that f ∗ has the properties

(i) f∗(x) = f∗(y) if |x| = |y|
(ii) if 0 < |x| < |y| then f∗(x) ≥ f∗(y)

(iii) area{f > t} = area {f∗ > t} for each t > 0.
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Implicit in (iii) is the assumption that the sets {f > t} have finite
area for each positive t, this being the meaning attached to the phrase
‘f vanishes at infinity’. In the present situation we will make two
distinct choices of function f , the first being that of the characteristic
function of a domain D of finite area. The second choice of f is that
of the transition probabilities for Brownian motion in the plane, the
heat kernel for R2,

pR2(t,x,y) =
1

2πt
e−

|x−y|2

2t ,

which we view as the function pt(x−y) with pt(x) = e−|x|
2/(2t)/(2πt).

This function is its own symmetric decreasing rearrangement. Here,
then, is the Brascamp-Lieb-Luttinger inequality for R2, there being
a corresponding version in n-dimensions.

Theorem Suppose that fi(x), 1 ≤ i ≤ k, are measurable, non-

negative functions on R2 that vanish at infinity. Suppose that aij ,

1 ≤ i ≤ k, 1 ≤ j ≤ m are real numbers. Then

∫

R2

· · ·
∫

R2

k
∏

i=1

fi





m
∑

j=1

aijxj



 dx1 . . . dxm

≤
∫

R2

· · ·
∫

R2

k
∏

i=1

f∗i





m
∑

j=1

aijxj



 dx1 . . . dxm.

Note that the number of functions (k) and the number of variables
(m) are independent of each other. Thus we may take m functions
where

fi





m
∑

j=1

aijxj



 = 1D(xi) for 1 ≤ i ≤ m,

and then k further functions of a general form. Since (1D)∗ = 1D∗ ,
we obtain

∫

D

· · ·
∫

D

k
∏

i=1

fi





m
∑

j=1

aijxj



 dx1 . . . dxm

≤
∫

D∗

· · ·
∫

D∗

k
∏

i=1

f∗i





m
∑

j=1

aijxj



 dx1 . . . dxm.
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Now, Px(τD > t) is the probability that Brownian motion that de-
parts from x has not left D by time t. Since the Brownian paths
are continuous, it is enough to check very often that Brownian mo-
tion in the plane that departs from x is in D, say at each of the
times it/m, 1 ≤ i ≤ m, for large m. By the independence of the
increments of Brownian motion and the normal distribution of these
increments, this last probability is a multiple integral over D of the
transition probabilities for Brownian motion in the plane and it was
Luttinger’s key idea to seek a general rearrangement inequality for
such multiple integrals. By a translation of D if necessary, we may
assume that the Brownian motion departs from 0 and then use the
rearrangement inequality to obtain

P0(τD > t)

= lim
m→∞

[

P0

(

Bit/m ∈ D, i = 1, 2, . . . , m
)]

= lim
m→∞

∫

D

· · ·
∫

D

pt/m(x1)

m
∏

i=2

pt/m(xi − xi−1) dx1 . . . dxm

≤ lim
m→∞

∫

D∗

· · ·
∫

D∗

pt/m(x1)

m
∏

i=2

pt/m(xi − xi−1) dx1 . . . dxm

= lim
m→∞

[

P0

(

Bit/m ∈ D∗, i = 1, 2, . . . , m
)]

= P0(τD∗ > t).

There is a minor technical difficulty with the above argument as it
stands, but it seems a shame to complicate such an elegant idea
with technicalities. The interested reader may discover the problem
and/or its solution in [5]. The Brascamp-Lieb-Luttinger inequality
may also be used to resolve St. Venant’s problem. The torsional
rigidity P is

P = 2

∫

D

ExτD dx

= 2

∫

D

∫

D

GD(x,y) dy dx

= 2

∫

D

∫

D

∫ ∞

0

pD(t,x,y) dt dy dx

= 2

∫ ∞

0

QD(t) dt
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where

QD(t) =

∫

D

∫

D

pD(t,x,y) dx dy.

The quantity QD(t) is called the heat content of D. Imagine that
the initial temperature is uniformly 1 throughout D and that the
boundary of D is maintained at 0 temperature at all times. Then
QD(t) represents the total heat in D at time t. Arguing as before,

QD(t)

=

∫

D

Px0(τD > t) dx0

=

∫

D

(

lim
m→∞

(

∫

D

· · ·
∫

D

m
∏

i=1

pt/m(xi − xi−1) dx1 . . . dxm

))

dx0

= lim
m→∞

∫

D

(

∫

D

· · ·
∫

D

m
∏

i=1

pt/m(xi − xi−1) dx1 . . . dxm

)

dx0

= lim
m→∞

∫

D

· · ·
∫

D

m
∏

i=1

pt/m(xi − xi−1) dx0 . . . dxm

≤ lim
m→∞

∫

D∗

· · ·
∫

D∗

m
∏

i=1

pt/m(xi − xi−1) dx0 . . . dxm

= QD∗(t),

since all the previous steps are reversible, including that where the
bounded convergence theorem was used to interchange the limit and
the integral. St. Venant’s conjecture is thereby verified.

4.2 Fixed Inradius

A second and, in a sense, more appropriate quantitative indicator
of the geometry of a domain D is its inradius RD, the supremum
radius of all disks contained in the domain. For example, a strip of
width L has inradius L/2; the inradius of a halfplane is infinite. It
follows from monotonicity that

• sup
x∈D

Ex(τD) ≥ R2
D/2,

• inf
z∈D

σD(z) ≤ 1/RD,

• λD ≤ j2
0/R2

D.



OLD AND NEW ON THE BASS NOTE 55

Equality holds in each inequality if and only if D is a disk. Sig-
nificantly, an analogous inequality in the other direction holds in
each case, so that each of the analytical quantities sup

x∈D Ex(τD),
infz∈D σD(z) and λD is finite and non-zero if and only if D has finite
inradius. Bañuelos and Carroll [2] proved

sup
x∈D

Ex(τD) ≤ (3.228)R2
D. (0.3)

The idea of the proof was to take the representation of the expected
lifetime in terms of the Green’s function and to rewrite the Green’s
function in terms of the hyperbolic distance. Both the Green’s func-
tion GD(z, w) and the hyperbolic distance d(z, w; D) are conformal
invariants that depend on two interior points – there is only one such
conformal invariant, in the sense that any two are functions one of
the other. In this case,

GD(z, w) =
1

π
log[coth(d(z, w; D))],

which is obtained from the explicit formulas for the Green’s func-
tion and the hyperbolic metric in the disk and holds in general by
conformal invariance. A classical problem in complex analysis is to
determine the best constant U in the inequality

σD(z) ≥ c/RD (0.4)

as z ranges over all points in each simply connected domain D. That
one may take c = 1/4 follows from the Koebe 1/4-theorem.

Let us make explicit the equivalence of (0.4) and the schlicht
Bloch constant problem. Suppose that f(z) is analytic and one-to-
one (univalent) in the unit disk and that f(0) = 0 and f ′(0) = 1,
that is f belongs to the class S. Then the image of the unit disk U
under f must contain the disk centre 0 and radius 1/4: this is the
Koebe 1/4-theorem. The schlicht Bloch constant U is the supremum
of those numbers c such that the image domain f(U) must contain
a disk of radius c somewhere (not just centred at 0). That is, we
want the largest c such that Rf(U) ≥ c for each f ∈ S. The number
U was introduced by Landau in 1929 on which occasion he proved
U ≥ 9/16. Reich improved this to 0.569 in 1956. James Jenkins
proved U ≥ 0.5705 in 1961. In 1968, Toppila obtained the lower
bound of 0.5708, which was improved by Zhang (1989) to 0.57088.
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Jenkins gave his own account of this in [11] and he too obtained
the lower bound 0.57088. We shall speak of upper bounds for U
in due course. If f(z) is simply analytic and univalent in the unit
disk U and no normalization is assumed then Rf(U) ≥ U|f ′(0)|, this
because g(z) = (f(z) − f(0))/f ′(0) is in the class S. But |f ′(0)|
is the reciprocal of the hyperbolic density for f(U) at f(0), that is
|f ′(0)| = 1/σf(U)(f(0)) and we are led to σf(U)(f(0))Rf(U) ≥ U .
By the Riemann mapping theorem, if D is simply connected and z
belongs to D then we may choose f so that f(U) = D and f(0) = z.
This is (0.4) and so the best constant c in (0.4) is the schlicht Bloch
constant U .

Integration of (0.4) along a geodesic γ in D that joins 0 to z will
give

d(0, z; D) =

∫

γ

σD(z) |dz| ≥ U
RD

(Euclidean length of γ) ≥ U
RD

|z|

(0.5)
and then

GD(0, z) ≤ 1

π
log [coth (U|z| /RD )] .

This leads to an upper bound for the expected lifetime of Brownian
motion,

E0τD =

∫

D

GD(0, z) dz ≤
∫

C

1

π
log

[

coth

(U|z|
RD

)]

dz =
7ζ(3)

8U2
R2

D .

The Jenkins/Zhang estimate U ≥ 0.57088 gives (0.3). Honesty com-
pels us to admit that (0.5) is a very crude estimate. Even so, no
one has as yet been able to improve on it and it did lead to a much
better lower bound on the bass note.

The story of the lower bound for the bass note of a drum is inter-
esting. The Rayleigh-Faber-Krahn theorem is λD ≥ πj2

0/area (D).
Pólya and Szegö [18] proved a lower bound in terms of the inradius
but only for convex domains, and they raised the problem of finding
such a lower bound for general simply connected domains – for a
non-convex simply connected domain of finite inradius and infinite
area the bounds they had gave no information. Fraenkel mentioned
this problem to Hayman who proved (1976)

λD ≥ 1

900R2
D

.
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Osserman (1977), who described Hayman’s theorem as showing, in
effect, ‘that in order for a drum to produce an arbitrarily deep note
it is necessary that it include an arbitrarily large circular drum’,
improved the result to

λD ≥ 1

4R2
D

.

Our interest in the bound (0.3) is that together with the estimate
(0.3) it gives

λD ≥ 0.6197

R2
D

.

This is currently the best constant available in Hayman’s theorem.
Now comes the twist in the story. We learned from Mark Ashbaugh
(via Richard Laugesen, that Endre Makai [15] had proved λD ≥
1/(4R2

D) in 1965, eleven years before Hayman and Osserman. His
paper had been missed for years on end. Only now do we know that
we are in fact looking for the best constant in Makai’s theorem on
the fundamental frequency.

The estimate (0.3) also leads to an estimate for the torsional
rigidity,

P = 2

∫

D

ExτD ≤ 6.456 R2
D area (D).

Though it follows from monotonicity of the torsional rigidity that
P ≥ πR4

D/2, a bound of the form P ≤ CR4
D doesn’t hold in gen-

eral since a strip has finite inradius but infinite torsional rigidity.
Bañuelos, Carroll and van den Berg [4] have worked on the problem
of characterizing in terms of their geometry those domains of infinite
area but finite torsional rigidity.

5. Extremal Domains

What are the best constants in the inequalities

ExτD ≤ C1R
2
D,

σD(z) ≥ c2/RD,

λD ≥ c3/R2
D,

where D is any simply connected domain? The inequalities hold
with C1 = 3.228, c2 = 0.57088 and c3 = 0.6197. This is not simply a
numerical problem; the particular values of the constants are not of



58 TOM CARROLL

great interest. The real problem is to determine what the extremal
domains are. For example, we would be perfectly happy to know
that the schlicht Bloch constant U is the value of the hyperbolic
density at a particular point in a particular domain even if we were
unable to compute this exactly.

Among those attacks made on the schlicht Bloch constant that
yield upper bounds, the domain constructed by Ruth Goodman
(1945), building on previous work by Robinson (1935), was consid-
ered for some time to be a candidate for an extremal domain. Here
it is, in part.

Figure 2: Ruth Goodman’s Domain G

Suppose that we wish to make σD(0) as small as possible. The
general inequality σD(z) ≥ 1/δD(z) seems to suggest that we should
keep the boundary of the domain as far away as possible from the
origin. The counterbalance is that there can be no disk of radius
greater than 1, say. Let us denote by ray(ρ, t) the half-ray {reit : r ≥
ρ}. The first three rays are ray(1, 0), ray(1, 2π/3) and ray(1,−2π/3).
There is a maximal disk of radius 1 centred at 0. The next three
rays bisect the three sectors formed by the original three rays and
begin on the circle of radius 2, so that there are now 3 more maximal
disks, one of which is shown, and 6 sectors.

Consider the first of these sectors, bounded by ray(1, 0) and
ray(2, π/3). This sector contains a maximal disk C centred at c + i
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where 1 = |(c+ i)−2eiπ/3|. This gives c = 1+
√

2
√

3− 3. Goodman
chose to bisect this sector, inserting ray (ρ, π/6), labelled R in Figure
2, so as to touch the disk C and block it from becoming any larger.
This process of bisecting each sector as it is formed by a ray designed
to touch the maximal disks and block their growth is continued to
produce a simply connected domain G of inradius 1. Goodman, by
means of explicit conformal mappings, computes

0.65646 ≤ σG(0) ≤ 0.65647.

Since

U = inf{σD(z)RD : z ∈ D and D is simply connected },

this shows that U ≤ 0.65647.
Many years later Beller and Hummel (1985) returned to Good-

man’s example, computer at their side. They focused on the third
set of rays – the ray labelled R in Figure 2. They noticed that while
the maximal disk C that it touches is tangent to ray(1, 0) it is not
tangent to the second ray that defines its sector, namely ray(2, π/3).
The circle C peeks around the tip of this second ray and so its cen-
tre does not have argument π/6. As a result, when Goodman chose
the third generation ray to have argument π/6, the ray R came a
bit closer to the origin that may be strictly necessary. This prob-
lem doesn’t occur at any later stage in the construction since the
later sectors have narrower apertures. We imagine a disk of radius
1 that rolls towards the narrow end of the sector. If the sector has a
relatively small opening angle then the disk becomes wedged before
reaching the opening. The anomalous, asymmetric, maximal disk C
that does not become wedged before reaching the opening of its sec-
tor was exploited by Beller and Hummel, who varied the argument
of the ray R while making sure that it touched the circle C, and
found its optimal position. The optimal argument is about 0.3931
as opposed to Goodman’s choice of π/6 ≈ 0.5236. Having estimated
the hyperbolic density of their domain at the origin by numerical
methods, Beller and Hummel found that

U ≤ 0.6564155.

This is the best upper bound available for the schlicht Bloch con-
stant.
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Beller and Hummel never claimed that their domain could be
extremal for the schlicht Bloch constant. On the contrary, they de-
scribe a criterion told to them by Jenkins that must be satisfied by
an extremal domain and that is not satisfied by their domain. Jenk-
ins subsequently published this criterion separately [11]. Suppose
that σD(0)RD = U (a compactness argument shows that extremal
domains do exist so that this supposition is not vacuous).

Figure 3: Jenkins’ Criterion for an Extremal Domain

We have a point P , a disk D0 centred at P and a line L through
P . The diameter L ∩ D0 of the disk belongs to the boundary of D
while D0 \ L is part of the domain D. Furthermore, P is not on
the boundary of any disk of radius RD in D. The conclusion is that
L passes through the origin and D is symmetric in L. The Beller-
Hummel domain fails this extremality test since it is not symmetric
in the ray R.

It is currently the case that no candidate for an extremal domain
for the schlicht Bloch constant has been put forward. In [2] we
suggest an approach that may lead to such a candidate, though we
were unable to compute anything for this domain. What did strike us
as significant was that, in attempting to imagine an extremal domain
for the expected lifetime, that is a simply connected domain D of
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inradius 1 in which E0τD is maximal, we came up with something
resembling the Goodman domain. This, and the knowledge that the
strip is an extremal convex domain in each case, led us to conjecture
that the extremal domains for each of the three inequalities listed at
the beginning of this section are the same.

6. Convex domains with fixed inradius

In the case of a convex domain, rather than a general simply con-
nected domain, more precise information is available on the influence
of geometry on the fundamental frequency, the hyperbolic metric and
the torsion function. Among convex domains of fixed inradius the
infinite strip is the ‘largest’ and turns out to be extremal for the
isoperimetric type problems we consider. Here are three results for
which no sharp counterpart is available for general simply connected
domains. If D is a convex domain of finite inradius RD then

σD(z) ≥ π/(4RD) Szegö (1923)

ExτD ≤ R2
D Payne (1968)/ Sperb (1981)

λD ≥ π2/(4R2
D) Hersch (1960)

Equality holds in the first two inequalities if and only if D is an
infinite strip and z lies in the centre of the strip. The lower bound
on the fundamental frequency is attained, for example, in the case
of an infinite strip.

The methods by which these results were originally obtained are
quite different. Szegö used the Schwarz-Christoffel formula to map
onto a triangle – a simplfying observation is that any convex do-
main of finite inradius can be enclosed in a strip or a triangle of the
same inradius. By monotonicity of the Poincaré density, it is then
sufficient to prove the result for triangles. Sperb in his monograph
[19] shows that appropriately constructed P–functions (‘P’ being in
honour of Payne, in whose work the method originated) satisfy a
maximum principle. A typical result of this type is that, if the do-
main is convex, the P–function

P = |gradu|2 + 4u,

u being the torsion function, attains its maximum at a point where
gradu = 0. The bound u(x) ≤ R2

D follows from this. In the context
of the eigenvalue λD , the P–function

P = |gradu|2 + λDu2
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where u is the eigenfunction for λD, has the same property and
this leads to a proof of Hersch’s result that differs from the original.
John O’Donnell includes a readable account of P–functions in the
case of the torsion function in his M.Sc. thesis [17]. He also proves a
monotonicity result related to the convex Bloch constant and Szegö’s
work.

An alternative formulation of the above inequalities is as follows.
We denote by S∗ the infinite horizontal strip of the same inradius as
D and symmetric in the real axis. Then, if D is a convex domain of
finite inradius,

λD ≥ λS∗ , ExτD ≤ E0τS∗ , σD(z) ≥ σS∗(0).

Recently, Bañuelos, Latala and Méndez-Hernández [5] proved a Bras-
camp-Lieb-Luttinger type re-arrangement inequality in which the
multiple integral over a convex domain D is found to be majorized
by the corresponding multiple integral over the infinite strip S∗. The
infinite strip S∗ of the same inradius as D in the Bañuelos, Latala,
Méndez-Hernández setting replaces the disk D∗ of the same area
as D in the Brascamp-Lieb-Luttinger setting. Following the line of
reasoning described in Section 4.1, Bañuelos, Latala and Méndez-
Hernández obtain as a consequence of their inequality that

Px(τD > t) ≤ P0(τS∗ > t) for t > 0,

for any convex domain D of finite inradius. This estimate for the
probability that a Brownian traveller in a convex domain is alive
at time t was first proved by Bañuelos and Kroger (1997) by a P–
function argument and immediately implies the estimate of Payne
and Sperb on the torsion function and the eigenvalue estimate of
Hersch.

This approach has been taken even further by Méndez-Hernández,
who proves a rearrangement inequality for multiple integrals over
convex domains in Rn and in which the infinite hyperstrip S∗ is re-
placed by a smaller hyper-rectangle. This is an improvement on the
known results even in the case of the plane.

Precise results on rearrangements of the Green’s function of a
convex domain when the pole of the Green’s function lies at the
centre of the largest disk in the domain were obtained by Bañuelos,
Carroll and Housworth [3].
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Let us end with an elegant theorem of David Minda on the hy-
perbolic density in convex domains. Suppose that D is a convex
domain of finite inradius RD and that z is a point in D. We suppose
that w is a point on the boundary of D closest to z and construct
a comparison strip S of width 2RD that is tangent to D at w and
contains z. Then σD(z) ≥ σS(z). The hyperbolic density for a strip
can be computed explicitly and, in any case, its minimum occurs
along the main axis of the strip, with value π/(4RS). Thus Szegö’s
determination of the convex Bloch constant is a simple consequence
of Minda’s result.

Epilogue

This survey is an expanded version of a talk presented at the Thir-
teenth September Meeting of the Irish Mathematical Society held
at Maynooth in 2000. Technical details have been kept to a mini-
mum in this survey and some may grimace at what has been skated
over in places. Certainly, anyone who finds something of use here
would do well to consult the original papers or a serious textbook or
monograph before taking the matter any further. Not all relevant
references are included by any means, my excuse being that there
are extensive bibliographies in the books by Bandle, by Pólya and
Szegö and by Sperb, and in the paper [2].

It is an honour to acknowledge my debt to my friend and collaborator
Rodrigo Bañuelos at Purdue University. We have often discussed the
mathematics described here, and much else besides, over the past
twelve years. What little I know of this area I have learnt from him.
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