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Representations and Derivations of Modules

JANKO BRAČIČ

Abstract. In this article we define and study derivations
between bimodules. In particular, we define the Gelfand

radical of a Banach bimodule and show that, under some
reasonable conditions, every derivation between two Banach
bimodules over a commutative Banach algebra maps into the
Gelfand radical. This is a module version of the famous

Singer-Wermer Theorem.

1. Introduction

LetA be an algebra and X anA-bimodule. If δ is a derivation fromA
into X, then its adjoint δ′ : X′ → A′ is, in general, no longer a deriva-
tion. The situation is rather different if we consider δ′′ : A′′ → X′′,
see [5]. The aim of this article is to extend the notion of deriva-
tion to bimodules in such a way that the adjoint of a derivation is a
derivation between the dual bimodules.

Our starting point is the identity

δ(ab) = a · δ(b) + δ(a) · b (a, b ∈ A), (1)

written in the form

δ(ab) = κ(a)δ(b) + χ(b)δ(a) (a, b ∈ A). (2)

Here κ and χ are the representation, respectively the antirepresenta-
tion, associated with the A-bimodule X. In Section 2 we study those
module homomorphisms (resp. antihomomorphisms) that can be
called representations (resp. antirepresentations) of modules. Then,
in Section 3, we define derivations between bimodules by rewriting
(2) in the context of bimodules. It is also shown there that the ad-
joint of a derivation between two bimodules is again a derivation. In
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Section 4 we confine ourselves to the case of Banach bimodules over
a unital commutative Banach algebra. We introduce the notion of
point multiplier and define the Gelfand radical of a Banach bimod-
ule. The last result in the section is a variant of the Singer-Wermer
Theorem.

The notation we shall use through this article is quite standard.
If X is a linear space, then X′ denotes its dual. Topological dual
of a Banach space X is X∗. The space of all linear maps from a
linear space X into a linear space Y is denoted by L(X, Y) and L(X)
denotes the algebra of all linear operators on X. For T ∈ L(X,Y) let
T ′ ∈ L(Y′, X′) denote its adjoint map. In the case of Banach spaces
B(X, Y) denotes the Banach space of all bounded linear maps, B(X)
is the Banach algebra of all bounded linear operators on X, and
T ∗ ∈ B(Y∗, X∗) is the topological adjoint of T ∈ B(X, Y).

Let X and Y be left A-modules. We shall denote by LA(X, Y) the
space of all module homomorphisms from X into Y. In the case of
Banach left A-modules, BA(X,Y) denotes the Banach space of all
bounded module homomorphisms. Of course, L(X, Y)B, B(X, Y)B,
etc., have similar meaning. If X = Y, then we shall write LA(X), etc.

2. Representations

It is assumed that the reader is familiar with the notion of repre-
sentation (and antirepresentation) of an algebra. At this point we
would like to point out only two things.

If θ is a representation of an algebra A on a space X, then it defines
a left A-module structure on X. Conversely, if X is a left A-module,
then the map θ : A → L(X) defined by θ(a)x = a·x (a ∈ A, x ∈ X)
is a representation of A on X. In this situation we shall say that θ
is the representation associated to the module X. There is a similar
relationship between antirepresentations and right modules. In the
case of Banach modules representations and antirepresentations are
normed (i.e. they map into B(X) ) and bounded. The reader is
referred to [2, 4, 6] for details.

Let Y or Z be an A-module. Then L(Y,Z) has a natural structure
of an A-module, see [4], Definition 1.4.12. For instance, if Z is a left
A-module, then L(Y, Z) is a left A-module via the multiplication

(a · T )y = a · Ty (a ∈ A, T ∈ L(Y, Z), y ∈ Y).

In the case of Banach modules Y and Z the space B(Y, Z) can be
given a structure of a Banach module.
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Let X be a left A-module. We shall say that a linear map Θ : X →
L(Y,Z) is a representation of X on a pair (Y,Z) if there exists a
representation θ of the algebra A on Z such that

Θ(a · x) = θ(a)Θ(x) (a ∈ A, x ∈ X).

An antirepresentation of X on a pair (Y,Z) is a linear map H : X →
L(Y, Z) such that

H(a · x) = H(x)η(a) (a ∈ A, x ∈ X)

for some antirepresentation η of the algebra A on Y.
Now let X be an A-B-bimodule. A linear map Θ : X → L(Y, Z)

is a representation of X on a pair (Y,Z) if it represents both module
structures of X on (Y,Z). Thus, Θ is a representation if there exist
representations θ : A → L(Z) and π : B → L(Y) such that

Θ(a · x · b) = θ(a)Θ(x)π(b) (a ∈ A, x ∈ X, b ∈ B).

Similarly, a linear map H : X → L(Y,Z) is an antirepresentation if
there exist antirepresentations η : A → L(Y) and σ : B → L(Z)
such that

H(a · x · b) = σ(b)H(x)η(a) (a ∈ A, x ∈ X, b ∈ B).

Example 2.1. Let X be an A-bimodule with the associated repre-
sentation κ and antirepresentation χ. For each x ∈ X define maps
Λ(x) and P(x) from A into X by

Λ(x) : a 7→ x · a and P(x) : a 7→ a · x (a ∈ A).

Let λ : A → L(A) be the left regular representation and ρ : A →
L(A) the right regular representation of A. Then

Λ(a · x · b) = κ(a)Λ(x)λ(b) (a, b ∈ A, x ∈ X)

and
P(a · x · b) = χ(b)P(x)ρ(a) (a, b ∈ A, x ∈ X).

Thus Λ is a representation and P is an antirepresentation of X on
the pair (A,X). We shall call Λ the left regular representation of X

and P the right regular representation of X.
Note that a left (respectively, a right) module has only the right

(respectively, the left) regular representation.

Let Θ be a representation of a left A-module X on a pair (Y,Z).
We shall say that a representation θ of the algebra A on Z corre-
sponds to Θ if Θ(a · x) = θ(a)Θ(x) (a ∈ A, x ∈ X). In general a
representation θ is not uniquely determined by Θ. For instance, if Θ
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is trivial (i.e. Θ(x) = 0 for all x ∈ X ), then any representation of A
on Z corresponds to Θ.

Proposition 2.2. Let X be a left A-module. If Θ is a representation
of X on a pair (Y, Z) such that

lin{
⋃

x∈X

imΘ(x)} = Z,

then there exists only one representation of A on Z that corresponds
to Θ.

For an antirepresentation H of X on a pair (Y,Z) there exists only
one corresponding antirepresentation of A on Y if

⋂

x∈X

kerH(x) = {0}.

We shall omit the proof since it is evident.
The left and the right module structures on an A-B-bimodule X

are connected by the equation

(a · x) · b = a · (x · b) (a ∈ A, x ∈ X, b ∈ B). (3)

This property of bimodules is very important. For instance, let Y

be a left and a right A-module such that the module structures are
not connected by the equation (3). Then derivations from A into
Y cannot be well defined. Namely, for some a, b, c ∈ A, the vectors
δ((ab)c) and δ(a(bc)), where δ : A → Y is a linear map satisfying
(1), can be, in general, distinct.

Since our goal is to define a derivations between bimodules, we
need a property which is a counterpart of (3) in the context of mod-
ules.

Note that if κ : A → L(X), respectively χ : B → L(X), are the
associated representation of A, respectively the associated antirep-
resentation of B, then (3) can be interpreted as

κ(a) ∈ L(X)B and χ(b) ∈ LA(X) (a ∈ A, b ∈ B).

Definition 2.3. Let X be a left A-module and Θ a representation of
X on a pair (Y, Z). Assume that Y and Z are left B-modules. Then
Θ is said to be left B-modular if

Θ(x) ∈ LB(Y,Z) (x ∈ X),

i.e. if, for each x ∈ X, the map Θ(x) is a module homomorphism
between left B-modules Y and Z.
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Right modularity and modularity of antirepresentations are de-
fined similarly.

Examples 2.4. (a) Let X be an A-bimodule. Then the left regular
representation Λ is right A-modular:

Λ(x)(a1a2) = x · (a1a2) = (x · a1) · a2 = [Λ(x)a1] · a2

(a1, a2 ∈ A, x ∈ X).

Similarly, the right regular representation P is left A-modular.
(b) Let X be a left A-module and Y a right B-module. Then the

tensor product X ⊗ Y is an A-B-bimodule (see [4], Example 1.4.9
(ii)). It is easily seen that

Θ(x)y := x⊗ y (x ∈ X, y ∈ Y)

defines a right B-modular representation of X on (Y, X⊗ Y).

Definition 2.5. Let X be an A-bimodule and let it be represented
on a pair of linear spaces (Y,Z) by a representation Θ and by an
antirepresentation H. Then (Y, Z) is said to be a modular pair over
X if Θ is right A-modular and H is left A-modular.

In the case of Banach modules it is also required that Θ and H
are bounded.

Examples 2.6. (a) If an A-bimodule X is represented on (A, X) via
the regular representations Λ and P, then the pair (A, X) is modular
over X.

(b) Let X be an A-bimodule. Then X⊗AX is also an A-bimodule
(see [4], Example 1.4.9 (iii)). For each x ∈ X define maps Θ(x) and
H(x) from X into X⊗A X by

Θ(x)y := x⊗ y and H(x)y := y ⊗ x (y ∈ X).

It is straightforward to see that Θ is a right A-modular representa-
tion and H is a left A-modular antirepresentation of the bimodule X

on the pair (X, X⊗A X).

3. Derivations

Let (Y, Z) be a modular pair over X. Denote by Θ: X → L(Y, Z)A the
corresponding representation and let θ : A → L(Z) and π : A →
L(Y) be the associated representations of the algebra A. By H : X →
LA(Y, Z) denote the corresponding antirepresentation of X and let
σ : A → L(Z) and η : A → L(Y) be the associated antirepresenta-
tions of the algebra A.
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Definition 3.1. A linear map ∆ : X → Z is a derivation if there
exists an ordinary derivation δ : A → Y such that

∆(a · x) = θ(a)∆(x) + H(x)δ(a) = a ·∆(x) + H(x)δ(a)

and

∆(x · a) = Θ(x)δ(a) + σ(a)∆(x) = Θ(x)δ(a) + ∆(x) · a
for all a ∈ A and all x ∈ X.

Note that ∆ is well defined because of the modularity of Θ and H.
If ∆ is a derivation from X into Z, then it is not necessarily true

that there exists only one ordinary derivation δ : A → Y such that
the equations in Definition 3.1 are fulfilled. However, if Θ and H are
nondegenerate, i.e.

⋂

x∈X

kerΘ(x) = {0} =
⋂

x∈X

kerH(x),

then there is a uniquely determined derivation δ which corresponds
to ∆. From now on we shall always assume that Θ and H are non-
degenerate.

Examples 3.2. (a) Every ordinary derivation δ : A → X is a
derivation in the sense of Definition 3.1. Indeed, the pair (X, X) is
modular over A and δ corresponds to itself.

(b) If (Y, Z) is a modular pair over X, then every bimodule ho-
momorphism M ∈ LA(X,Z)A is a derivation. The corresponding
ordinary derivation from A into Y is the trivial one. On the other
hand, if ∆ : X → Z is a derivation with 0 as the corresponding
ordinary derivation, then ∆ is a module homomorphism.

(c) Let (Y,Z) be a modular pair over X. For y ∈ Y define

∆y : x 7→ Θ(x)y −H(x)y (x ∈ X).

This is an inner derivation from X into Z. The corresponding ordi-
nary derivation is the inner derivation

δy : a 7→ a · y − y · a (a ∈ A).

Denote by Der (X, Z) the set of all derivations from X into Z and
let Der δ(X,Z), where δ : A → Y is an ordinary derivation, be the
set of all derivations from Der (X,Z) whose corresponding ordinary
derivation is δ. In particular Der 0(X,Z) = LA(X,Z)A.

It is easy to see that Der (X, Z) is a linear space: if ∆ ∈ Der δ(X, Z),
E ∈ Der ε(X, Z), and α, β ∈ C, then α∆ + βE ∈ Der αδ+βε(X, Z).
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Let an A-bimodule X be represented on the pair (A,X) by the
regular representations Λ and P. The Lie product of derivations ∆ ∈
Der δ(X,X) and E ∈ Der ε(X, X) is the derivation ∆E − E∆, which
has δε− εδ as the corresponding derivation.

The dual module of an A-bimodule X is the dual space X′ with a
bimodule structure that is given by

〈b · ξ · a, x〉 = 〈ξ, a · x · b〉 (a, b ∈ A, x ∈ X, ξ ∈ X′)

(see [4], Example 2.6.2 (v)).

Proposition 3.3. Let X be an A-bimodule and (Y,Z) a modular pair
over X with Θ and H as the associated representation and antirep-
resentation, respectively. Then the pair (Y,X′) is modular over Z′.

Proof. We have to construct a right A-modular representation and
a left A-modular antirepresentation of Z′ on (Y,X′) in a natural
way from Θ and H. We shall show how the antirepresentation is
constructed. This is a map Θ] : Z′ → L(Y,X′) defined in the
following way. Define a linear map Θy : X → Z by Θy(x) :=
Θ(x)y (x ∈ X). Then, for ζ ∈ Z′, let Θ](ζ) be given by Θ](ζ)y :=
Θ′y(ζ) (y ∈ Y). Thus

〈Θ](ζ)y, x〉 = 〈ζ, Θ(x)y〉 (x ∈ X, y ∈ Y, z ∈ Z).

It is easy to see that Θ] : Z′ → L(Y, X′) is a left A-modular antirep-
resentation.

A similarly defined map H] : Z′ → L(Y, X′) is a right A-modular
representation. ¤

If, in Proposition 3.3, X is a Banach bimodule and (Y, Z) is a
Banach modular pair over X, then (Y, X∗) is a Banach modular pair
over Z∗. The construction of the bounded antirepresentation Θ] and
representation H] is the same as in the above proof.

Theorem 3.4. Let X be an A-bimodule and (Y,Z) a modular pair
over X. If ∆ : X → Z is a derivation with the corresponding ordinary
derivation δ : A → Y, then the adjoint map ∆′ : Z′ → X′ is a
derivation with the corresponding derivation −δ.

Proof. Let Θ and H be the representation and the antirepresentation,
respectively, of X on (Y, Z). It is straightforward to see that

∆′(a · ζ) = a ·∆′(ζ)−Θ](ζ)δ(a)
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and
∆′(ζ · a) = −H](ζ)δ(a) + ∆′(ζ) · a

for all a ∈ A and ζ ∈ Z′. ¤

For derivations in Examples 3.2 we have the following corollary.

Corollary 3.5. (a) The adjoint δ′ of an ordinary derivation δ : A →
X is a derivation from X′ into A′ with −δ as the corresponding or-
dinary derivation.

(b) If M ∈ LA(X, Z)A, then M′ ∈ LA(Z′,X′)A,
(c) The adjoint of an inner derivation ∆y(x) = Θ(x)y − H(x)y

is the inner derivation ∆′
y(ζ) = Θ](ζ)y − H](ζ)y with −δy as the

corresponding derivation.

4. Singer-Wermer Theorem

In this section we shall confine ourselves to the case of Banach bi-
modules over a unital commutative Banach algebra. Our goal is to
extend the well known Singer-Wermer Theorem (see [2], §18, Theo-
rem 16) to Banach bimodules.

Recall first that the Gelfand radical of A is the intersection of
all maximal ideals. It is well known (cf. [2, 4, 6]) that: (i) maximal
ideals in A are closed and hyper maximal, i.e. their codimension is 1;
(ii) there is a bijective correspondence between maximal ideals and
characters (i.e. nonzero multiplicative linear functionals).

Following these facts we shall introduce a notion which is a coun-
terpart of the notion of character.

Definition 4.1. Let X be a Banach A-bimodule and (ϕ,ψ) a pair
of characters on A. A linear functional ξ ∈ X∗ is a point multiplier
at (ϕ,ψ) if

〈ξ, a · x · b〉 = ϕ(a)ψ(b)〈ξ, x〉 (a, b ∈ A, x ∈ X).

Let us denote by Σ(ϕ,ψ)(X) the set of all point multipliers at (ϕ,ψ).
It is easily seen that Σ(ϕ,ψ)(X) is a weak∗ closed submodule in X∗.
The algebra actions are very simple on Σ(ϕ,ψ)(X). For arbitrary ξ ∈
Σ(ϕ,ψ)(X) and a, b ∈ A we have a · ξ · b = ϕ(b)ψ(a)ξ.

Example 4.2. Let A be considered as a Banach A-bimodule via
the regular representations. If ϕ and ψ are characters on A, then
Σ(ϕ,ϕ)(A) = Cϕ and Σ(ϕ,ψ)(A) = {0}, if ϕ 6= ψ. This follows from

ϕ(a)〈ξ, 1〉 = 〈ξ, a〉 = ψ(a)〈ξ, 1〉 (a ∈ A)
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for ξ ∈ Σ(ϕ,ψ)(A).

For a pair of characters (ϕ, ψ) on A, let C(ϕ,ψ) be the A-bimodule
C defined by

a · z = ϕ(a)z and z · a = ψ(a)z (a ∈ A, z ∈ C).

Set Cϕ := C(ϕ,ϕ). It is evident that every point multiplier ξ ∈ X∗

at (ϕ,ψ) can be considered as a bounded representation of X on the
pair (Cψ,Cϕ).

For a submodule P in a Banach A-bimodule X we shall say that
it is hyper maximal if it is maximal and has codimension 1 (i.e. it
is a linear subspace with codimension 1, invariant for the actions of
A).

Proposition 4.3. Let X be a Banach A-bimodule. A subspace P in
X is a closed hyper maximal submodule if and only if there exists a
nonzero point multiplier ξ on X such that P = ker ξ.

Proof. Let P be a closed hyper maximal submodule. Choose ξ ∈ X∗

and x ∈ X such that P = ker ξ and 〈ξ, x〉 = 1. We shall prove that

ϕ(a) := 〈ξ, a · x〉 and ψ(a) := 〈ξ, x · a〉 (a ∈ A)

define a pair of characters. It is evident that ϕ and ψ are nonzero
bounded linear functionals on A. Let a and b be arbitrary from A.
Since each y ∈ X can be written as y = 〈ξ, y〉x+ z with z ∈ ker ξ, we
have

ab · x = 〈ξ, ab · x〉x + x1

for some x1 ∈ ker ξ. On the other hand, we also have

a · x = 〈ξ, a · x〉x + x2 and b · x = 〈ξ, b · x〉x + x3

for some x2, x3 ∈ ker ξ. Multiply the latter equation by a and use
then the former. We get ab · x = 〈ξ, b · x〉〈ξ, a · x〉x + x4, where
x4 ∈ ker ξ. It follows

ϕ(ab) = 〈ξ, 〈ξ, b · x〉〈ξ, a · x〉x + x4〉 = ϕ(a)ϕ(b).

It is straightforward now that ξ ∈ Σ(ϕ,ψ)(X). The converse direction
is evident. ¤

Theorem 4.4. Let X be a Banach A-bimodule such that A acts
topologically cyclically on both sides of X, i.e. there exist u and v in
X such that A · u and v · A are dense in X.
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If ξ ∈ X∗ is a nonzero functional such that for each x ∈ ker ξ
there exists a nonzero point multiplier ξx with 〈ξx, x〉 = 0, then ξ is
a point multiplier.

Proof. Step 1. If ζ is a nonzero point multiplier at (ϕ,ψ), then u
and v are not in ker ζ.

If u were in ker ζ, then 〈ζ, a ·u〉 = ϕ(a)〈ζ, u〉 = 0 (a ∈ A), would
give ζ = 0, which is not the case. Similarly, v /∈ ker ζ.

Step 2. u, v /∈ ker ξ.
If u were in ker ξ, then there would be a nonzero point multiplier

ξu such that u ∈ ker ξu. However this is not the case, by Step 1. The
proof of v /∈ ker ξ is the same.

There is no loss of generality if we assume that

〈ξ, u〉 = 1 = 〈ξ, v〉. (4)

Step 3. The functionals µ and ν, defined by

µ(a) = 〈ξ, a · u〉 and ν(a) = 〈ξ, v · a〉 (a ∈ A),

are characters on A.
It is evident that µ and ν are bounded linear functionals on A. It

follows from (4) that µ(1) = 1 = ν(1). If a ∈ ker µ, then x := a · u ∈
ker ξ. By the assumption, there exists a nonzero point multiplier ξx

at (ϕx, ψx), for some characters ϕx and ψx, such that

0 = 〈ξx, a · u〉 = ϕx(a)〈ξx, u〉.
By Step 1, ϕx(a) = 0 and therefore a is not invertible (since ϕx is a
character). Thus, there do not exist invertible elements in ker µ. By
the Gleason-Kahane-Żelazko Theorem, ker µ is an ideal. It follows
that µ is multiplicative. The multiplicativity of ν is proven similarly.

Step 4. ξ is a point multiplier at (µ, ν).
Let a ∈ A and x ∈ X be given. If x = b · u, then

〈ξ, a · x〉 = 〈ξ, ab · u〉 = µ(ab) = µ(a)〈ξ, x〉.
Since ξ is continuous and using the hypotheses on X and A we also
have 〈ξ, a·x〉 = µ(a)〈ξ, x〉 for an arbitrary x ∈ X. Of course, 〈ξ, x·a〉 =
ν(a)〈ξ, x〉 is proven in the same way. ¤

The previous theorem shows that point multipliers are indeed
like characters. Namely, this theorem can be considered as a module
version of the famous Gleason-Kahane-Żelazko Theorem. Let A be a
unital commutative Banach algebra and let M be a closed subspace
in A with codimension 1. Gleason and, independently, Kahane and
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Żelazko proved that M is an ideal if and only if it does not contain
an invertible element, i.e. if each element of M is contained in some
maximal ideal. The reader is referred to [2, 6] for details. According
to Proposition 4.3 we can rephrase Theorem 4.4 as follows. Let X

be a Banach A-bimodule such that A acts topologically cyclically on
both sides of X. If P is a closed subspace in X with codimension 1
such that each x ∈ P is contained in some hyper maximal submodule
Px, then P is a submodule.

Definition 4.5. The Gelfand radical rad(X) of a Banach A-bimodule
X is the intersection of all closed hyper maximal submodules in X.

We shall say that the bimodule X is hyper semisimple if rad(X) =
{0}.

Recall from [1] that the Jacobson radical of an A-module X is the
intersection of all maximal submodules. Hence the Jacobson radical
of a Banach bimodule is always included in the Gelfand radical.
However, since it is not necessarily that a maximal submodule in a
Banach module is closed and hyper maximal, it is possible that the
Jacobson radical is a proper subset in the Gelfand radical.

Examples 4.6. (a) The A-bimodule C(ϕ,ψ) is hyper semisimple.
Indeed, the map

ι : C(ϕ,ψ) → C, z 7→ z

is a nonzero point multiplier at (ϕ,ψ) with the kernel ker ι = {0}.
(b) If the algebra A is considered as an A-bimodule via the regular

representations, then the Gelfand radical is the intersection of all
maximal ideals (i.e. it is the Jacobson radical of the algebra A.)

(c) Let C[0, 1] be the Banach algebra of all continuous complex
functions defined on the interval [0, 1] and let C1[0, 1] be the Banach
algebra of all functions in C[0, 1] that have continuous derivative.
Then C[0, 1] is a hyper semisimple Banach C1[0, 1]-bimodule. Indeed.
For t ∈ [0, 1] let Mt denote the subset of all those functions f ∈ C[0, 1]
that vanish at t. It is well known and easily to see that every Mt is a
closed submodule with codimension 1 in the C1[0, 1]-bimodule C[0, 1].
The assertion follows since ∩t∈[0,1]Mt = {0}.

Let X be a Banach A-bimodule and (Y,Z) a Banach modular pair
over X. Let ∆ : X → Z be a bounded derivation. Is the range of
∆ included in the Gelfand radical of Z? The answer is no as the
following two examples show.
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Examples 4.7. (a) Let A be a unital commutative Banach alge-
bra and ϕ a character on it. Recall that a point derivation at ϕ is
a derivation δ that maps from A into the A-bimodule Cϕ (cf. [4],
Definition 1.8.7). It is well known that there do exist algebras with
nontrivial point derivations. Of course, these serve as counter ex-
amples to the above question because Cϕ is hyper semisimple (see
Example 4.6 (a)).

(b) We already know that (C[0, 1], C[0, 1]) is a Banach modular
pair over C1[0, 1] and that C[0, 1] is hyper semisimple. The derivation

C1[0, 1] → C[0, 1], f 7→ f ′

is bounded and nonzero, hence its range is not included in the
Gelfand radical of C[0, 1].

In order to avoid the previous examples we shall confine ourselves
to the situation when Y = A. However, this is not enough.

Example 4.8. Let X be a hyper semisimple Banach A-bimodule.
Then (A, X) is a Banach modular pair over X (via the regular rep-
resentations Λ and P). If M is a nonzero module homomorphism on
X, then it is a derivation on X whose range is not included in the
Gelfand radical.

Hence module homomorphisms have to be excluded. We shall
make the following additional restriction. The smallest closed sub-
module in X that contains ker∆ is X. In other words, A · ker∆ · A
is dense in X. Note that every ordinary derivation δ on A has this
property because of 1 ∈ ker δ.

Theorem 4.9. Let X be a Banach A-bimodule and (A,Z) a Banach
modular pair over X. If ∆ is a bounded derivation from X into Z

such that A·ker∆ ·A is dense in X, then its range is included in the
Gelfand radical of Z.

Proof. Let X be represented on (A,Z) by Θ and H. If ζ ∈ Σ(ϕ,ψ)(Z),
then

Θ(x)∗ζ ∈ Cψ and H(x)∗ζ ∈ Cϕ (x ∈ X).
Indeed, it is clear that, for each x ∈ X, Θ(x)∗ζ is a bounded linear
functional on A. Since

〈Θ(x)∗ζ, a〉 = 〈ζ, Θ(x)a〉 = 〈ζ, (Θ(x) 1) · a〉
= ψ(a)〈Θ(x)∗ζ, 1〉 (a ∈ A)

the assertion follows.
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Let δ : A → A be the ordinary derivation that corresponds to ∆.
For arbitrary a, b ∈ A and x ∈ ker∆ we have

∆(a · x · b) = a ·Θ(x)δ(b) + a ·∆(x) · b + H(x)δ(a) · b
= a ·Θ(x)δ(b) + H(x)δ(a) · b

and therefore, for an arbitrary point multiplier ζ ∈ Σ(ϕ,ψ)(Z),

〈ζ, ∆(a · x · b)〉 = ϕ(a)〈Θ(x)∗ζ, δ(b)〉+ ψ(b)〈H(x)∗ζ, δ(a)〉 = 0,

by the Singer-Wermer Theorem. Since A·ker∆ ·A is dense in X and
since ∆ is linear and continuous it follows, by Proposition 4.3, that
∆(X) ⊆ rad(Z). ¤
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