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Elementary Operators on Calkin Algebras

Martin Mathieu

This paper is dedicated to the memory of Professor Klaus Vala.

Properties of elementary operators, especially on algebras of operators,
have been vigorously studied over the past decades. It emerges that
the situation of the Calkin algebra is full of surprises. In this setting,
an elementary operator with dense range is surjective, and injectiv-
ity entails boundedness below. In the case of Hilbert space, positivity
implies complete positivity, and the norm and the cb-norm of every el-
ementary operator coincide. We present an overview on some results of
this flavour, in particular on recent extensions of the latter two results
to antiliminal-by-abelian C*-algebras (obtained by Archbold, Somerset,
and the author), and strong rigidity properties of the norm of elemen-
tary operators on Calkin algebras due to Saksman and Tylli.

1. Introduction

Properties of elementary operators have been investigated during
the past two decades under a variety of aspects. There are detailed
studies of their spectra, see [8] for an overview, a number of works
were devoted to structural questions, such as compactness and norm
properties, cf. [9], and also their compatibility with various order
relations has been closely examined. Through all these studies it
emerged that, for general elementary operators, a full description of
their properties is rather intricate since these are often intimately
interwoven with the structure of the underlying algebras.
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It thus comes as a surprise that, on algebras which have an appar-
ently complicated structure themselves, like the Calkin algebra on a
Banach space and related algebras, almost all of the complications
that one encounters in the general setting seem to disappear and
the theory runs extremely smoothly. It is the goal of this survey to
highlight a number of instances where this can be observed and to
try to underline the properties of the Calkin algebra which can be
exploited in each case to obtain the neatest results.

In following Grothendieck in his programme to study operators
on Banach spaces via tensor products, we will introduce elementary
operators by a canonical mapping from the algebraic tensor product
of the underlying Banach algebra with itself. In fact, elementary
operators do feature prominently in various approximation results
for more complicated classes of mappings!

In the sequel, A will denote a (complex) unital Banach algebra.
Let L(E) stand for the Banach algebra of all bounded linear opera-
tors on a Banach space E. On the algebraic tensor product A⊗ A,
the following canonical mapping Θ is defined through

Θ: A⊗A → L(A), a⊗ b 7→ Ma,b,

where Ma,bx = axb for some a, b ∈ A. The image of Θ is denoted by
È (A) and called the algebra of elementary operators on A. Thus, an
element of È (A) is a linear mapping of the form

S:x 7→
n∑

j=1

ajxbj (x ∈ A).

Remark 1.1. There are various other settings for the definition of
elementary operators. For instance, if A is non-unital, then it is more
natural to take the coefficients aj , bj from the multiplier algebra of
A rather than A. An axiomatic approach to elementary operators
has been proposed in [6, 7].

In infinite dimensions, Θ cannot be expected to be surjective, but
often, the image of Θ is rich enough to describe other interesting
classes of operators. For example, the norm closure of È (K(H))
coincides with K(K(H)); here, K(E) stands for the algebra of com-
pact operators on a Banach space E and H denotes a Hilbert space
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(throughout). On the other hand, injectivity of Θ is closely related
to the algebraic structure of A. Let us suppose, for a moment, that
Θ is one-to-one so that A ⊗ A ∼= È (A). Then, the operator norm
induces a norm on A ⊗ A but to get a cross norm, we must have
‖Ma,b‖ = ‖a ⊗ b‖ = ‖a‖ ‖b‖ for all a, b ∈ A. This has severe conse-
quences for A, namely A has to be ultraprime and, in particular, the
centre Z(A) of A has to be trivial. For more details on this we refer
the reader to [17] and confine ourselves here with the remark that,
in order to relate elementary operators fully to tensor products, we
need to consider module tensor products (over Z(A) or related com-
mutative algebras) rather than vector space tensor products. For an
initial discussion how to use primeness of C*-algebras in describing
properties of elementary operators, see [19].

Let E be a Banach space. By C(E) = L(E)/K(E) we shall, as
is customary, denote the Calkin algebra on E (although C(E) does
not act on E). We will now start our discussion of properties of
elementary operators on Calkin algebras.

2. Spectral Properties

Let us begin with a very basic observation. Suppose that the two-
sided multiplication Ma,b has dense range. Since the group of invert-
ible elements in A is open, there thus exists x ∈ A such that axb is
invertible. Consequently, b has a left inverse, say b′. Similarly, a has
a right inverse, say a′. It follows that Ma,bMa′,b′ = idA wherefore
Ma,b is surjective.

This nice property, however, does not extend to more general
elementary operators. For instance, it fails for a generalised in-
ner derivation δa,b:x 7→ ax − xb even on such ‘good’ algebras as
A = L(H). The picture changes drastically once we consider the
Calkin algebra.

Theorem 2.1. [12] Let A = C(`2), and let S =
∑n

j=1 Maj ,bj for
some commutative subsets {aj}, {bj} in A. Then S is surjective if
it has dense range and S is bounded below if it is injective.

What is the property of the Calkin algebra that is used in this
result? On the one hand, a close relation between the left essential
spectrum, the approximate point spectrum and the boundary of the
spectrum which was observed by Fillmore, Stampfli and Williams
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[10]. On the other hand, an effective use of the primeness of a
C*-algebra allows a full description of the spectrum of an arbitrary
elementary operator, see [18, Part I]. Putting these two together we
obtain an extension of Gravner’s theorem, in which the notation is
as follows. For T ∈ L(A) we let

σd(T ) = {λ ∈ C | λ− T is not surjective},
σc(T ) = {λ ∈ C | λ− T does not have dense range},
σπ(T ) = {λ ∈ C | λ− T is no topological isomorphism},

and
σp(T ) = {λ ∈ C | λ− T is not injective}

denote the defect, compression, approximate point, and point spec-
trum, respectively.

Theorem 2.2. [17] Let A be a unital prime C*-algebra such that
every topological divisor of zero is a divisor of zero. Suppose that
S =

∑n
j=1 Maj ,bj

for some commutative subsets {aj}, {bj} in A.
Then

σd(S) = σc(S) and σπ(S) = σp(S).

More recently, Saksman and Tylli took up the situation of the
Calkin algebra on Banach spaces which are no Hilbert spaces and
obtained the following generalisation of Theorem 2.1. Note, in par-
ticular, that all commutativity assumptions on the sets of coefficients
have now disappeared.

Theorem 2.3. [23] Let A = C(`p), where 1 < p < ∞, and let
S ∈ È (A). Then S is non-surjective only if A/im S is non-separable
and S is not bounded below only if kerS is non-separable.

Of course, their result implies that σd(S) = σc(S) and σπ(S) =
σp(S), but in a much stronger form.

3. Compactness Properties

An element a in a Banach algebra A is called compact if the mul-
tiplication Ma,a is a compact operator on A. This concept was in-
troduced by Vala [28] in 1967 since, if A = L(`2) then this amounts
to the requirement that a ∈ K(`2). In 1975 Ylinen showed that this
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is equivalent to the weak compactness of Ma,a. In [11], Fong and
Sourour characterised compact elementary operators on L(H); from
their description, the following conjecture arose:

There is no non-zero compact elementary operator on the
Calkin algebra on a (separable) Hilbert space.

In the sequel, this conjecture was tackled from various viewpoints.
In [1], Apostol and Fialkow confirmed the conjecture by establishing
a strong rigidity property of the essential norm, see also the next
section. Magajna [14] exploited the simplicity of C(`2) together
with some algebraic arguments to come up with an alternative proof.
Using the primeness of the Calkin algebra, the fact that C(H) does
not contain any non-zero compact element, and some representation
theory, the following extension of the Fong-Sourour conjecture was
then found.

Theorem 3.1. [18, Part II] Let A be a C*-algebra without any
non-zero compact elements. Then every weakly compact elementary
operator on A must vanish.

This somewhat stronger result initiated the generalised Fong-Sou-
rour conjecture which asks for a characterisation of those Banach
spaces E for which there are no non-zero weakly compact elemen-
tary operators on C(E). Very recently, Saksman and Tylli made an
important contribution towards this question by taking up the ideas
of Apostol and Fialkow from [1] and developing them much further.
They obtained the following result.

Theorem 3.2. [24] Let A = C(`p), where 1 < p < ∞. Then
every weakly compact elementary operator on A vanishes.

This theorem in fact holds in a somewhat wider setting, which we
shall now proceed to discuss.

4. Norm Properties

In [1] it was shown that the norm of every elementary operator S
on C(`2) agrees with the distance from S to the compact operators
on C(`2). In this way, the Fong-Sourour conjecture was confirmed.
The proof by Apostol and Fialkow rests on the non-commutative
Weyl-von Neumann theorem.



38 MARTIN MATHIEU

Using a more Banach space geometric approach and a delicate
gliding-hump argument, Saksman and Tylli extended this result to
Calkin algebras on Banach spaces with 1-unconditional basis; indeed,
they proved the following theorem.

Theorem 4.1. [24] Let E be a Banach space with a 1-uncondition-
al basis. For every S ∈ È (C(E)), we have

‖S‖ = ‖S‖e = ‖S‖w,

where ‖ · ‖e and ‖ · ‖w denote the essential and the weak essential
norm, respectively.

Clearly, this result immediately yields Theorem 3.2.
There is no general formula known describing the norm of an arbi-

trary elementary operator, even for such ‘simple’ algebras as K(H).
(For a survey on the state-of-the-art of this problem, see [22].) Al-
ready the case of an inner derivation on a C*-algebra took some time
to be settled; see [3; Section 4.6] for an overview of the history of this
problem. Once again, the situation of the Calkin algebra appears to
be an exception. Combining results in [15] and [2], we obtain the
following quite satisfactory description.

Theorem 4.2. Let S be an elementary operator on C(H). Then

‖S‖ = inf
{∥∥∥

n∑

j=1

aja
∗
j

∥∥∥
1/2 ∥∥∥

n∑

j=1

b∗j bj

∥∥∥
1/2}

,

where the infimum is taken over all representations of S as S =∑n
j=1 Maj ,bj .

The key to this result is, on the one hand, the Haagerup tensor
norm ‖ · ‖h on A ⊗ A, which has exceptional properties for every
C*-algebra A. These, in particular, enabled us to prove that Θ is
an isometry from A ⊗h A into the space of all completely bounded
operators on A, provided that A is a prime C*-algebra [2]. And,
on the other hand, the fact that ‖S‖ and ‖S‖cb, the cb-norm of
S, coincide for A = C(H) [15]. This clearly raises the question for
which class of C*-algebras the latter property persists; since, at least
in the prime case, it would yield a description of the norm of S.

This question was completely solved in [5].
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Theorem 4.3. For every C*-algebra A, the following conditions are
equivalent.

(a) For all S ∈ È (A), ‖S‖ = ‖S‖cb ;
(b) There is an exact sequence of C*-algebras

0 −→ J −→ A −→ B −→ 0

such that J is abelian and B is antiliminal.

C*-algebras satisfying condition (b) of the theorem are called anti-
liminal-by-abelian. Let us remind the reader that a C*-algebra A is
said to be antiliminal if, for every non-zero positive element a ∈ A,
the hereditary C*-subalgebra aAa generated by a is non-abelian.
As a consequence of the Glimm-Sakai theorem, for a dense set of
irreducible representations π of an antiliminal C*-algebra A, there
are no non-zero compact operators contained in π(A). In this sense,
these are the ‘Calkin algebra-like’ C*-algebras.

The antiliminal-by-abelian C*-algebras had already appeared in
connection with the study of factorial states in the work by Archbold
and Batty [4] and will play an important role when we now turn to
positivity properties.

5. Positivity Properties

In this section we will solely be concerned with C*-algebras since
they have an interesting order structure. Recall that an element a
in a C*-algebra A is said to be positive if a = x∗x for some x ∈ A.
Equivalently, a is self-adjoint and has positive spectrum. We denote
the cone of all positive elements in A by A+. A linear mapping
T :A → B between two C*-algebras is called positive if TA+ ⊆ B+.

In trying to characterise positive elementary operators it turns out
that stronger positivity properties play an important role. This is
due to the concept of matricial order on a C*-algebra. Let n ∈ N.
The algebra Mn(A) of n × n matrices over A is a C*-algebra in
a canonical, and unique, way. E.g., if A ⊆ L(H) then Mn(A) ⊆
L(Hn). Every linear mapping T : A → B can be extended to a lin-
ear mapping T (n):Mn(A) → Mn(B) by T (n)((xij)) = (Txij) for
each (xij) ∈ Mn(A). If T is positive, then e.g. T (2) need not be
positive. The simplest example is provided by the transposition on
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A = M2(C). The mapping T is said to be n-positive if T (n) is pos-
itive. If T is n-positive for all n ∈ N then T is called completely
positive.

In [16] we proved that Ma,b is positive if and only if it is com-
pletely positive and then, it is of the form Mc∗,c for some c ∈ A.
This observation does not take over to more general elementary op-
erators on arbitrary C*-algebras. However, criteria for positivity of
elementary operators can be given, see [21] and [25]. In the special
case of the Calkin algebra once more the situation is very neat.

Theorem 5.1. [13, 21] Every positive elementary operator on
C(`2) is completely positive.

Let us sketch our argument for this result. Suppose S =
∑n

j=1 Maj ,bj

in È (A) is positive. Then the question of whether S is completely
positive can be reduced to the generic case that S is actually of the
form S =

∑
j Mc∗j ,cj

−Md∗,d for some family of coefficients {cj , d}
related to {aj}, {bj}. Now assume that d is not contained in the
linear span of {cj}. By a result of Magajna [14], there are then
x, y ∈ A = C(`2) such that xcjy = 0 for all j and xdy 6= 0. Since S
is positive, we have

∑
j c∗jx

∗xcj ≥ d∗x∗xd. Hence,
∑

j y∗c∗jx
∗xcjy ≥

y∗d∗x∗xdy which, by the choice of x and y, entails that xdy = 0, a
contradiction. Therefore, d is a linear combination of {cj} and S can
be re-written as S =

∑
k Mv∗k,vk

, which proves complete positivity.
Since every positive operator on an abelian C*-algebra is com-

pletely positive, we have two rather distant classes of C*-algebras
on which all positive elementary operators are completely positive.
It turns out that these can be subsumed into the same class of C*-
algebras that occurred in the previous section.

Theorem 5.2. [5] For every C*-algebra A, the following condi-
tions are equivalent.

(a) For all S ∈ È (A), S positive =⇒ S completely positive;
(b) A is antiliminal-by-abelian.

The connection between this result and Theorem 4.3 becomes
clearer if one realises that the cb-norm of an operator T is given
by ‖T‖cb = supn∈N ‖T (n)‖ and hence relates to the matrix norm
structure of a C*-algebra algebra A.
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The latter result has been extended by Timoney to cover the case
of k-positive elementary operators [27]. He also made some recent
contribution to the norm problem (see the previous section) in [26].
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Ser. A I 407 (1967).

Martin Mathieu,
Department of Pure Mathematics,
Queen’s University Belfast,
Belfast BT7 1NN,
Northern Ireland
m.m@qub.ac.uk

Received on 15 June 2001.


