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Automatic Continuity in Associative and
Nonassociative Context

A. R. VILLENA

Abstract. There are excellent accounts on automatic conti-

nuity theory in the associative context. Since there have been
a number of advances in automatic continuity theory in the

nonassociative context, it seems to be an opportune time to
present a comprehensive discussion of the currently known

results on automatic continuity of linear maps in this con-
text. These notes are an attempt to collect together some of
the results of automatic continuity theory (concentrating on
homomorphisms and derivations) in associative and nonas-

sociative context. Moreover, we present a number of open
questions in both settings.

1. Introduction

In automatic continuity theory we are concerned with algebraic con-
ditions on a linear map between Banach spaces which make this map
automatically continuous. This theory has been mainly developed
in the context of Banach algebras, and there are excellent accounts
on automatic continuity theory [16, 17, 58] (see also [42]) in this as-
sociative context. Since there have been a number of advances in
the nonassociative context, it seems to be timely to compile a com-
prehensive list of currently known results on automatic continuity
of linear maps in the nonassociative context. Research in automatic
continuity mainly deals with two classes of linear maps on Banach al-
gebras and nonassociative Banach algebras, which are well behaved
with respect to the multiplicative structure: homomorphisms and
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derivations. Jordan-Banach algebras and Lie-Banach algebras are
the most important classes of nonassociative Banach algebras on
which the automatic continuity of homomorphisms and derivations
has been studied. These notes are an attempt to collect together the
basic results. We emphasize that when considering the associative
context, we are restricting our attention to those results that have
(or are expected to have) a nonassociative extension. Moreover, we
present a number of questions in both settings which seem to be
open.

It should be pointed out that one of our main reasons for treating
homomorphisms and derivations on nonassociative Banach algebras
is that we believe this may prove to be useful for understanding ho-
momorphisms and derivations on Banach algebras. Some results and
especially some methods of the theory of noncommutative Banach al-
gebras have proved to be useful in the study of commutative Banach
algebras. Similarly, it may turn out that the study of homomor-
phisms and derivations on nonassociative Banach algebras will give
a better picture on homomorphisms and derivations on noncommu-
tative, associative Banach algebras, in particular on those questions
in which the standard approaches have failed to give a solution.

2. Preliminaries

2.1. Nonassociative Banach Algebras. A nonassociative algebra
is a linear space A together with a bilinear map (a, b) 7→ ab from
A × A into A, which we call the product of A. We use the term
nonassociative algebra in order to emphasize that the associativity
of the product of A is not being assumed. We do not mean that
associativity fails to hold, but only that associativity is not assumed
to hold. The general references here are [24, 25, 73]. The most
important classes of nonassociative algebras are associative algebras,
Jordan algebras, and Lie algebras.

A Jordan algebra is a nonassociative algebra J (over a field of
characteristic different from 2) whose product · satisfies

a · b = b · a and (a · b) · a2 = a · (b · a2)

for all a, b ∈ J . Jordan algebras were introduced in 1934 by P. Jor-
dan, J. von Neumann, and E. Wigner motivated by quantum me-
chanics. Very important areas of applications of Jordan theory are
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Lie groups, foundations of geometry, and bounded symmetric do-
mains in infinite dimensional holomorphy.

Every associative algebra A becomes a Jordan algebra, denoted
by A+, with respect to the product a · b = 1

2 (ab + ba). A Jordan
algebra is said to be special if it can be embedded into the derived
Jordan algebra of an associative algebra, otherwise it is said to be
exceptional. Besides A+, the standard examples of Jordan algebras
are H(A, ∗) = {a ∈ A : a∗ = a} in the case when A is endowed with
a linear involution ∗ and the Jordan algebra J(X, f) of a symmetric
bilinear form f on a linear space X over a field K. That is, J(X, f) =
K⊕X endowed with the product given by (α + x) · (β + y) = αβ +
f(x, y) + βx + αy for all α, β ∈ K and x, y ∈ X. It is important to
know that there are examples of exceptional Jordan algebras such as
the Albert algebra H3(O) which consists of all matrices of the form




λ x y
x µ z
y z ν




where λ, µ, ν ∈ C and x, y, z ∈ O (the complex octonions), with
product given by a · b = 1

2 (ab + ba) for all a, b ∈ H3(O).

A Lie algebra is a nonassociative algebra L whose product [·, ·]
satisfies

[a, a] = 0 and [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

for all a, b, c ∈ L. The main area of application of Lie algebras is
Lie groups. One associates with every Lie group a Lie algebra in
such a way that local problems concerning Lie groups are reduced
to corresponding problems on Lie algebras.

Let A be an associative algebra. Then A becomes a Lie algebra,
denoted by A−, with respect to the product [a, b] = ab−ba. The stan-
dard examples of Lie algebras are the Lie subalgebras of an associa-
tive algebra such as A, the skew elements KA = {a ∈ A : a∗ = −a}
in the case when A is endowed with a linear involution, and the
derivation algebra Der(A) of A. In fact, the Poincaré-Birkhoff-Witt
theorem states that every Lie algebra is a Lie subalgebra of an asso-
ciative algebra.

A nonassociative Banach algebra is a nonassociative (real or com-
plex) algebra A whose underlying linear space is a Banach space with
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respect to a norm ‖ · ‖ satisfying

‖ab‖ ≤ γ ‖a‖‖b‖
for all a, b ∈ A and some γ > 0. The most important classes of
nonassociative Banach algebras are Banach algebras, Jordan-Banach
algebras, and Lie-Banach algebras. As it is customary by a Banach
algebra we mean an associative Banach algebra. By a Jordan-Banach
algebra we mean a nonassociative Banach algebra whose underlying
linear algebra is a Jordan algebra. By a Lie-Banach algebra we mean
a nonassociative Banach algebra whose underlying algebra is a Lie
algebra. For every Banach algebra A, A+ becomes a Jordan-Banach
algebra and A− becomes a Lie-Banach algebra (with γ = 2). In the
sequel we will consider complex algebras.

From now on, the left and right multiplication operators by a ∈ A
are the continuous linear operators La, Ra : A → A which are defined
in the obvious way

La(x) = ax and Ra(x) = xa

for each x ∈ A. As it is usual, when L is a Lie-Banach algebra, we
write ad(a) (a ∈ L) for the multiplication operator from L into itself
defined by ad(a)(x) = [a, x] for each x ∈ L.

2.2. Radicals. The basic automatic continuity problem for homo-
morphisms and derivations on Banach algebras often involves the
notion of a radical. Therefore, we first review some of the standard
facts on this concept.

Several different radicals are studied in algebra, but the Jacobson
radical is definitely the most important in Banach algebra theory,
and it is usually just called the radical. The radical Rad(A) of an
associative algebra A is the largest ideal of A consisting of quasi-
invertible elements. We say that A is semisimple if Rad(A) = 0 and
we say that A is radical if Rad(A) = A.

The standard concept of invertibility in associative algebras was
extended to the context of Jordan algebras by N. Jacobson. An
element a in a unital Jordan algebra J is said to be invertible if
there exists b ∈ J such that a · b = 1 and a2 · b = a. This is
equivalent to the invertibility of the operator Ua from J to itself
given by Ua(x) = 2a · (a · x) − a2 · x for each x ∈ J . The standard
spectral theory can be extended to the context of Jordan-Banach
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algebras. This follows from the fact that if J is a complex Jordan-
Banach algebra and a ∈ J , then there exists a closed associative
subalgebra A of the unitisation J1 of J containing 1 and a. Therefore
the spectral theory runs as in the associative case.

McCrimmon proved that in each Jordan algebra J there exists
a largest ideal consisting of quasi-invertible elements. This ideal is
called the Jacobson-McCrimmon radical of J and it will be denoted
by Rad(J). We say that J is semisimple if Rad(J) = 0. If A is
an associative algebra, then Rad(A+) coincides with the classical
Jacobson radical of A.

In Lie context the radical may be defined as follows. If I is an ideal
of a Lie algebra L, then we define the derived sequence I ′ = [I, I] and
I(n+1) = [I(n), I(n)] for each n ∈ N. The ideal I is said to be solvable
if there exists n ∈ N such that I(n) = 0. For every finite-dimensional
Lie algebra L there is a largest solvable ideal of L which is called
the radical of L. As far as we know there is no such device in the
case of an infinite-dimensional Lie algebra L. It is natural to call
a Lie algebra semisimple if it has no nonzero abelian ideal. Let us
remark that the Lie-Banach algebra A− is semisimple provided that
A is a semisimple Banach algebra whose centre equals zero. From
now on Z(A) denotes the centre of the associative algebra A. Of
course, Z(A) ⊂ Rad(A−) for any reasonable notion of radical of a
Lie algebra.

It should be noted that the (associative) strong radical makes
sense for any nonassociative algebra. The strong radical of a nonas-
sociative algebra, s-Rad(A), of A is the intersection of the maxi-
mal modular ideals of A, and A is said to be strongly semisimple if
s-Rad(A) = 0. In the case where A is either associative or Jordan,
we have

Rad(A) ⊂ s-Rad(A).

3. Homomorphisms

Let A and B be nonassociative algebras. A homomorphism from A
into B is a linear map Φ: A → B with the property that

Φ(ab) = Φ(a)Φ(b)

for all a, b ∈ A. In the case in which A and B are nonassociative
Banach algebras the basic automatic continuity problem for homo-
morphisms is to impose algebraic conditions on the domain algebra
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A or on the range algebra B which make these maps automatically
continuous.

A key notion for studying the continuity of a linear map T from
a Banach space X into a Banach space Y is that of the separating
space S(T ) of T , which is defined as follows

S(T ) = {y ∈ Y : there exists (xn) in X, xn → 0 and Txn → y}.
S(T ) is a closed subspace of Y that measures the closability of T .
The closed graph theorem shows that T is continuous if and only
if S(T ) = 0. For a thorough discussion of the separating space we
refer the reader to [58].

The use of the separating space in the study of homomorphisms
between Banach algebras was developed by Rickart. It is worth
pointing out that the separating space S(Φ) is a closed ideal of B
provided that Φ(A) is dense in B.

3.1. Conditions on the range algebra in the associative con-
text. The starting point for automatic continuity of homomorphisms
is the continuity of every homomorphism Φ from any Banach algebra
A into C. This property can be obviously derived from the fact that
Φ(a) ∈ Sp(a) for each a ∈ A. Here and subsequently, Sp(a) stands
for the spectrum of a. This basic property immediately leads to the
following result.

Theorem 3.1. (Gelfand [19], Silov [54]). Let A be a Banach al-
gebra, let B be a semisimple commutative Banach algebra, and let
Φ be a homomorphism from A into B. Then Φ is continuous. Ac-
cordingly, every semisimple commutative Banach algebra carries a
unique Banach algebra topology.

A simple example shows that the preceding theorem does not hold
true when B is not commutative, even if we replace semisimple by
simple. Indeed, let A be any infinite-dimensional Banach space made
into a Banach algebra by defining all the products to be zero, let f
be a discontinuous linear functional on A, and let Φ be the map from
A into M2(C) defined by

Φ(a) =
(

0 f(a)
0 0

)

for each a ∈ A. Then Φ is a discontinuous homomorphism from A
into the simple Banach algebra M2(C).
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Theorem 3.2. (Rickart [44]). Let A be a Banach algebra, let B be a
strongly semisimple Banach algebra, and let Φ be a homomorphism
from A onto a dense subalgebra of B. Then Φ is continuous. Ac-
cordingly, every strongly semisimple Banach algebra carries a unique
Banach algebra topology.

This result is stronger than Theorem 3.1, but unfortunately this
theorem is not strong enough to study the Banach algebra L(X) for
an infinite-dimensional Banach space X because the strong radical
of L(X) contains the ideal F (X) of operators with finite-dimensional
range. Of course, the radical of L(X) is zero.

Definitely, the most important result in this area is the famous
theorem by Johnson.

Theorem 3.3. (Johnson [27]). Let A be a Banach algebra, let B
be a semisimple Banach algebra, and let Φ be an epimorphism from
A onto B. Then Φ is continuous. Accordingly, every semisimple
Banach algebra carries a unique Banach algebra topology.

Theorems 3.2 and 3.3 naturally lead to the following question.

Question 1. Let A be a Banach algebra, let B be a semisimple Ba-
nach algebra, and let Φ be a homomorphism from A onto a dense
subalgebra of B. Is Φ automatically continuous?

This problem is still open even in the case where A and B are C∗-
algebras. It is easily seen that the preceding question is equivalent
to the following one.

Question 2. Let A and B be Banach algebras and let Φ be a homo-
morphism from A into B. Is b quasinilpotent whenever b ∈ S(Φ)?

In order to prove his theorem, Johnson used intensively irreducible
representations. However, Aupetit brought spectral techniques into
automatic continuity in [1], and he gave a beautiful proof of Johnson
theorem based on the subharmonicity of the spectral radius in an es-
sential way. His influential proof was followed up by Ransford in [43],
who obtained a very simple and short proof of Johnson’s theorem.
This technique has proved to be very useful to study the automatic
continuity of homomorphisms when dealing with conditions on the
range algebra. The following result illustrates this technique; it can
be easily derived from [1, 43] (see also [2]).
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Lemma 3.4. Let X be a Banach space, let B be a Banach algebra,
and let Φ be a linear map from X into B. Suppose that there exists
M > 0 such that r(Φ(x)) ≤ M‖x‖ for each x ∈ X. Then r(Φ(x))2 ≤
M‖x‖dist(Φ(x), S(Φ)) for each x ∈ X. Accordingly, S(Φ) ∩ Φ(X)
consists of quasinilpotent elements.

In the preceding result and subsequently, r(·) stands for the spec-
tral radius.

It is worth pointing out that the preceding result is the key fact
to obtain nonassociative versions of Theorem 3.3. Let us illustrate
this assertion with the following result.

Lemma 3.5. Let A and B be nonassociative Banach algebras and
let Φ be an epimorphism from A onto B. Then S(Φ) is a closed
ideal of B, and the multiplication operators Lb and Rb on B are
quasinilpotent operators for each b ∈ S(Φ).

Proof. Let φ : A → L(B) be the linear map defined by φ(a) = LΦ(a).
For every a ∈ A, we have Φ ◦La = LΦ(a) ◦Φ. Since Φ is surjective, a
standard result from spectral theory shows that r(LΦ(a)) ≤ r(La) ≤
‖a‖. Consequently, φ satisfies the requirement in Lemma 3.4. Let
b ∈ S(Φ). It is easily checked that Lb ∈ S(φ). On the other hand,
there is a ∈ A such that Φ(a) = b and therefore φ(La) = Lb. From
Lemma 3.4 it follows that Lb is a quasinilpotent operator. In the
same manner we can see that Rb is a quasinilpotent operator. ¤

3.2. Conditions on the range algebra in the nonassociative
context. First, let us remark that as far as we know it is not cur-
rently known whether or not Theorem 3.2 extends to general nonas-
sociative Banach algebras.

Question 3. Let A be a nonassociative Banach algebra, let B be a
strongly semisimple nonassociative Banach algebra, and let Φ be a
homomorphism from A onto a dense subalgebra of B. Is Φ automat-
ically continuous?

It is easy to extend Theorem 3.2 (just the usual associative proof
carries over) to Jordan-Banach algebras.

Theorem 3.6. Let J be a Jordan-Banach algebra, let H be a strongly
semisimple Jordan-Banach algebra, and let Φ be a homomorphism
from J onto a dense subalgebra of H. Then Φ is continuous.
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Obviously, the canonical homomorphisms in Lie context are the
so-called Lie homomorphisms between Banach algebras. If A and
B are Banach algebras, then a homomorphism from the Lie algebra
A− into the Lie algebra B− is said to be a Lie homomorphism from
A into B.

Surprisingly it seems to be not known whether or not Theorem
3.2 extends to the Lie context in the following sense.

Question 4. Let A be a Banach algebra, let B be a strongly semisim-
ple Banach algebra, and let Φ be a Lie homomorphism from A onto
a dense subalgebra of B. Is S(Φ) contained in Z(B)?

Our next concern will be the nonassociative extensions of John-
son’s theorem. Aupetit extended Theorem 3.3 to the Jordan context.

Theorem 3.7. (Aupetit [1]). Let J be a Jordan-Banach algebra, let
H be a semisimple Jordan-Banach algebra, and let Φ be an epimor-
phism from J onto H. Then Φ is continuous. Accordingly, every
semisimple Jordan-Banach algebra carries a unique Jordan-Banach
algebra topology.

Proof. Let b ∈ S(Φ). From Lemma 3.5 we have r(Lb) = 0. On the
other hand, we have

r(b) = lim ‖bn+1‖ 1
n+1 = lim ‖Lb

n(b)‖ 1
n+1

≤ lim ‖Lb
n‖ 1

n+1 ‖b‖ 1
n+1 = r(Lb)

and so r(b) = 0. Therefore S(Φ) is an ideal of B consisting of
quasinilpotent elements, which gives S(Φ) ⊂ Rad(H) = 0. ¤

Since Rad(A+) = Rad(A) whenever A is a Banach algebra, it
follows that Theorem 3.3 can obviously be derived from the preceding
theorem.

Theorems 3.3 and 3.7 were extended in [46] by observing that
Aupetit’s technique still works for the spectral subalgebras of a Ba-
nach algebra in the sense of [42]. This idea was used to canonically
associate with any nonassociative algebra the so-called ultra-weak
radical uw-Rad(A) and to prove the following.

Theorem 3.8. (Rodriguez [46]) Let A be a nonassociative Banach
algebra, let B be a nonassociative Banach algebra whose ultra-weak
radical equals zero, and let Φ be an epimorphism from A onto B.
Then Φ is continuous.
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It is known that uw-Rad(A) ⊂ Rad(A) in the case where A is
either a Banach algebra or a Jordan-Banach algebra. However, this
theorem has not proved to be useful when dealing with Lie algebras,
even with the most elementary examples of Lie algebras such as A−

and KA for an associative algebra A.
The extension of Theorem 3.3 to the Lie context started by investi-

gating the continuity of Lie isomorphisms between Banach algebras.

Theorem 3.9. (Berenguer-Villena [9]). Let A and B be semisimple
Banach algebras, and let Φ be a Lie isomorphism from A onto B.
Then S(Φ) is contained in the centre of B.

The proof of the preceding theorem relied strongly on the struc-
ture of Lie isomorphisms and it was extended in [2] by removing the
previously mentioned device. Here and subsequently, Z(A) stands
for the centre modulo the radical of a Banach algebra A, that is

Z(A) = {a ∈ A : [a,A] ⊂ Rad(A)} .

Theorem 3.10. (Aupetit-Mathieu [2]). Let A and B be Banach
algebras, and let Φ be a Lie epimorphism from A onto B. Then
S(Φ) ⊂ Z(B). Accordingly, Φ is continuous provided that B is
semisimple and its centre is zero.

In fact, the same conclusion can be drawn when A is a Lie-Banach
algebra.

Proof. Let b ∈ S(Φ). Since S(Φ) is an ideal of B− it follows that
[b, c] ∈ S(Φ) and Lemma 3.5 now shows that ad([b, c]) is a quasinilpo-
tent operator for each c ∈ B. The result follows from the following
spectral characterization of the centre modulo the radical. ¤

Lemma 3.11. ([2]). Let A be a Banach algebra and let a ∈ A. Then
a ∈ Z(A) if and only if the operator ad([a, b]) on A is quasinilpotent
for each b ∈ A.

This characterization has proved to be very useful even when deal-
ing with the structure of derivation algebras on a Banach algebra
[68].

It should be pointed out that Theorem 3.3 can be obtained as
a consequence of Theorem 3.10 in the following way. Let Φ be an
epimorphism from a Banach algebra A onto a Banach algebra B.
Then Φ extends to an epimorphism Φ1 from the unitisation A1 =
A⊕C of A onto the unitisation B1 = B ⊕C of B and Φ1 lifts to an
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epimorphism Φ2 from the matrix algebra M2(A1) onto the matrix
algebra M2(B1). On account of Theorem 3.10, [S(Φ2), M2(B1)] ⊂
Rad(M2(B1)). For every b ∈ S(Φ), it is easily seen that

(
b 0
0 0

) ∈
S(Φ2). Therefore

(
0 b
0 0

)
=

[(
b 0
0 0

)
,
(

0 1
0 0

)] ∈ Rad
(
M2(B1)

)
. On the

other hand, Rad
(
M2(B1)

)
= M2(Rad(B1)) and so b ∈ Rad(B1) ∩

B = Rad(B) as required.

A second step in the study of automatic continuity of homomor-
phisms in Lie context was the investigation of the continuity of iso-
morphisms between the skew elements of some semisimple Banach
algebras with involution.

Theorem 3.12. (Berenguer-Villena [8]). Let A and B be centrally
closed prime Banach algebras with linear involution and assume that
B is in addition semisimple. If Φ is a Lie isomorphism from KA

onto KB, then Φ is continuous.

In order to prove the preceding result, we used methods from the
structure theory of Lie maps, such as the fact that Φ extends to an
(associative) isomorphism from the subalgebra 〈KA〉 of A generated
by KA onto 〈KB〉, and spectral methods in the spirit of [43].

We recall that a prime algebra A is centrally closed if every linear
map f from a two-sided ideal I of A to A with the property that
f(ab) = af(b) and f(ba) = f(b)a for all a ∈ A and b ∈ I is a multiple
of the identity operator. It is known that primitive Banach algebras
and prime C∗-algebras are centrally closed.

Of course, it is to be expected that a similar result holds true for
epimorphisms from a Lie-Banach algebra onto the skew elements of
a Banach algebra endowed with a linear involution.

Question 5. Let L be a Lie-Banach algebra, let A be a Banach al-
gebra endowed with a continuous linear involution, and let Φ be a
homomorphism from L onto KA. Does [S(Φ),KA] ⊂ Rad(A)?

Clearly, we only need to obtain an spectral characterization of the
radical of KA similar to that given in Lemma 3.11.

Question 6. Let A be a Banach algebra endowed with a continuous
linear involution and let a ∈ KA such that the operator ad([a, b]) on
KA is quasinilpotent for each b ∈ A. Is [a, KA] contained in Rad(A)?

It is also natural to ask the following question.
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Question 7. Let A be a Lie-Banach algebra, let B be a semisimple
Lie-Banach algebra, and let Φ be an epimorphism from A onto B.
Is Φ automatically continuous?

3.3. Conditions on the domain algebra. A key idea to study the
continuity of a homomorphism Φ from a Banach algebra A into a
Banach algebra B by imposing algebraic restrictions on the domain
algebra A is the so-called continuity ideal C(Φ) of Φ, which is defined
by

C(Φ) = {a ∈ A : Φ(a)S(Φ) = S(Φ)Φ(a) = 0}.
Furthermore, a main tool in this theory is the main boundedness

theorem of Badé and Curtis [3]. These authors prove that every
homomorphism from C(K) is continuous on some dense subalgebra
of C(K). In fact, they describe in great detail the structure of such
a homomorphism.

Theorem 3.13. (Badé-Curtis [3]) Let K be a compact Hausdorff
space, let B be a Banach algebra, and let Φ be a homomorphism
from C(K) into B. Then the following assertions hold.

i. The hull {ω ∈ K : f(ω) = 0 ∀f ∈ C(Φ)} of the continuity
ideal C(Φ) is a finite subset {ω1, . . . , ωn} of K.

ii. The restriction of Φ to the dense subalgebra of C(K) given
by

{f ∈ C(K) : f is constant near each ωj , j = 1, . . . , n}
is continuous and therefore it extends to a continuous homo-
morphism Ψ from C(K) into B.

iii. Ψ(C(K)) is closed in B, Rad(Φ(C(K))) = S(Φ), and

Φ(C(K)) = Rad(Φ(C(K)))⊕Ψ(C(K)).

iv. The difference Θ = Φ−Ψ when restricted to

I = {f ∈ C(K) : f(ωj) = 0 for each j = 1, . . . , n}
is a homomorphism onto a dense subalgebra of
Rad(Φ(C(K))).

v. There are linear maps Θ1, . . . , Θn : C(K) → B such that
Θ1 + . . . + Θn = Θ, the restriction of Θj to {f : f(ωj) = 0}
is a homomorphism for each j = 1, . . . , n, and
Rad(Φ(C(K))) = Θ1(C(K))⊕ · · · ⊕Θn(C(K)).

Part of Theorem 3.13 still holds for noncommutative C∗-algebras.
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Theorem 3.14. (Sinclair [57]). Let A be a unital C∗-algebra, let B
be a Banach algebra, and let Φ be a homomorphism from A into B.
Then the following assertions hold.

i. C(Φ) has finite codimension in A.
ii. There is a finite-dimensional subspace F of A such that A =
C(Φ) ⊕ F , C(Φ) ⊕ F is a dense subalgebra of A, and the
restriction of Φ to C(Φ) ⊕ F is continuous and therefore it
extends to a continuous homomorphism Ψ from A into B.

iii. Ψ(A) is closed in B, Rad(Φ(A)) ⊂ S(Φ), and B = Ψ(A) ⊕
S(Φ).

iv. The difference Θ = Φ − Ψ when restricted to C(Φ) is a ho-
momorphism onto a dense subalgebra of S(Φ).

As far as we know there is not any extension of Theorems 3.13 and
3.14 to nonassociative C∗-algebras. For an account of nonassociative
C∗-algebras we refer the reader to [47]. We recall that a JB∗-algebra
is a complex Jordan-Banach algebra J equipped with a (conjugate-
linear) involution ∗ such that ‖Ua(a∗)‖ = ‖a‖3 for each a ∈ J .

Question 8. Let J be a JB∗-algebra, let H be a Jordan-Banach
algebra, and let Φ be a homomorphism from J into H. Is there a
dense subalgebra of J on which Φ is continuous?

4. Derivations

Derivations are defined by the familiar Leibniz formula and they
clearly have their origin in the concept of differentiation. In this
section, we shall see that they arise in a number of situations. A
derivation on a nonassociative algebra A is a linear map D : A → A
such that

D(ab) = D(a)b + aD(b)
for all a, b ∈ A. When A is a nonassociative Banach algebra the ba-
sic automatic continuity problem for derivations is to give algebraic
conditions on A which make these maps automatically continuous.
It is easily checked that S(D) is a closed ideal of A.

The important point to note here is that the spectral techniques
have not proved to be useful in the study of the continuity of deriva-
tions. When considering the automatic continuity of derivations the
so-called gliding hump argument is intensively used. This principle
lies at the heart of many theorems on the automatic continuity of
homomorphisms and derivations and it was brought into automatic
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continuity by Johnson and Sinclair [28, 30]. For a thorough discus-
sion of this and other basic principles in automatic continuity we
refer the reader to [17]. The following result illustrates this tech-
nique.

Lemma 4.1. Let X and Y be Banach spaces, and let T : X → Y
be a linear map. Suppose that there exist continuous linear maps
Rn : X → X and continuous linear maps Qn from Y into Banach
spaces Yn such that QnTR1 · · ·Rn is continuous for each n ∈ N.
Then there exists m ∈ N such that QnTR1 · · ·Rm is continuous for
each n ∈ N.

4.1. Continuity of derivations in the associative context. Let
us remark that the Singer-Wermer conjecture has been one of the
main reasons to study the continuity of derivations. We shall discuss
this subject later.

In 1958 Kaplansky conjectured that every derivation on a C∗-
algebra is continuous [31] and that every derivation on a semisim-
ple Banach algebra is continuous [32]. Sakai confirmed Kaplansky’s
conjecture for C∗-algebras in [50], Youngson extended this result to
JB∗-algebras in [71], and finally Barton and Friedman extended it
to JB∗-triple systems in [6]. The second conjecture by Kaplansky
was confirmed by Johnson and Sinclair in [30].

Theorem 4.2. (Johnson-Sinclair [30]) Let A be a semisimple Ba-
nach algebra and let D be a derivation on A. Then D is continuous.

This theorem was generalized by Jewell and Sinclair.

Theorem 4.3. (Jewell-Sinclair [26]) Let A be a Banach algebra such
that:

i. For each infinite-dimensional closed ideal I of A, there is a
sequence (an) in A such that Ian+1 · · · a1 is strictly contained
in Ian · · · a1.

ii. A contains no nonzero finite-dimensional nilpotent ideal.
Then every derivation on A is continuous.

We include a proof of this result in order to illustrate the use of
the gliding hump argument.

Proof. Suppose that dim S(D) = ∞. Then there is a sequence (an)
in A such that S(D)an+1 · · · a1 is strictly contained in S(D)an · · · a1
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for each n ∈ N. Let Rn : A → A be defined by Rn(a) = aan for each
a ∈ A and let Qn be the quotient map from A onto A/S(D)an · · · a1.
Since QnΦR1 . . . Rn is continuous for each n ∈ N, there exists n ∈ N
such that Qn+1ΦR1 . . . Rn is continuous. From this we deduce that
S(D)an . . . a1 ⊂ S(D)an+1 · · · a1, a contradiction. As dim S(D) <
∞, for every b ∈ S(D) the map a 7→ D(ab) is continuous and there-
fore S(D)b = 0. Therefore S(D)2 = 0, which gives S(D) = 0. ¤

Jewell and Sinclair showed that every semisimple Banach algebra
satisfies the conditions of the preceding theorem. Moreover this re-
sult applies to several interesting non-semisimple Banach algebras
including the Volterra algebra L1(0, 1), the weighted convolution al-
gebra L1(ω) for any weight function ω on R+, and Banach algebras
of power series.

The main questions in the non-semisimple context are the follow-
ing.

Question 9. i. Is every derivation on a semiprime Banach al-
gebra automatically continuous?

ii. Is every derivation on a prime Banach algebra automatically
continuous?

iii. Is the separating space of a derivation on a Banach algebra
necessarily nilpotent?

Runde showed in [48] that all the preceding questions are equiva-
lent in the commutative case. Mathieu and Runde observed in [40]
that the same arguments also works in the noncommutative case
and therefore that all the preceding questions are equivalent. More-
over Cusack showed in [15] that if the answer to any of the preceding
questions is positive then every derivation on a Banach algebra leaves
each primitive ideal invariant and otherwise, there exists a topolog-
ically simple radical Banach algebra. The question whether or not
there exists such an algebra is one of the big open problems in Banach
algebra theory. It should be pointed out that the preceding problems
are still open even in the commutative case and that a commutative
topologically simple radical Banach algebra leads to an example of
a quasinilpotent operator with no hyperinvariant closed subspace.

Partial answers to the preceding question often involve a condition
like ∩∞n=1(Rad(A))n = 0 (see [65]) because in such a situation one
can put into action the Mittag-Leffler Theorem (see [16]).
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Theorem 4.4. (Villena [65]) Let A be a Banach algebra, and let D
be a derivation on A. Then D is continuous provided that one of the
following assertions holds.

i. A is semiprime and dim(Rad(A) ∩⋂∞
n=1 An) < ∞.

ii. A is prime and dim
⋂∞

n=1[aA ∩ Rad(A)]n < ∞ for some
a ∈ A with a2 6= 0.

iii. A is an integral domain and dim
⋂∞

n=1[aA ∩ Rad(A)]n < ∞
for some non-zero a ∈ A.

Let us point out that a nonassociative approach to this problem
may prove to be useful. Let D be a derivation on a prime Ba-
nach algebra A. Consider B, the Banach space of all sequences
(an) in A with lim an = 0 equipped with the product given by
(an)(bn) = (0, a1b1, . . . , anbn, . . .). We can define d : B0 → B by
d(an) = (D(an)), where B0 = {(an) : an = 0 for sufficiently large n}.
It is easily checked that B is a prime nonassociative Banach algebra,
that B0 is a dense ideal of B, that

⋂∞
n=1 Bn = 0, that d is a deriva-

tion, and that D is continuous just in the case when d is closable.
The difficulties with this approach are that d is a partially defined
derivation on B and that associativity fails to hold for B.

Question 10. Let A be a prime nonassociative Banach algebra with
the property that

⋂∞
n=1 An = 0, let B be a dense ideal of A, and let

D : B → A a derivation. Is D closable?

The answer to this question is affirmative when A is associative
[65] and it is to be expected to be also true in the Jordan context.

We recall that partially defined derivations often arise in the C∗-
algebraic formulation of quantum mechanics ([10, 51]). The time evo-
lution of a system is modeled by a strongly continuous one parameter
group of ∗-automorphisms whose generator is a derivation partially
defined on the ambient C∗-algebra. In the case where we consider
a one parameter group of isometries instead of ∗-automorphisms,
the generator of the action is a derivation partially defined on the
JB∗-triple system associated to the C∗-algebra. On the other hand,
the automatic closability of the essentially defined derivations on
semisimple Banach algebras [63] has proved to be useful to study
the automatic continuity of the (everywhere) defined derivations on
the Lie-Banach algebra of the skew elements of a Banach algebra
with involution (Theorem 4.10).
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The continuity of derivations from a Banach algebra into a Banach
bimodule arises in a number of situations. In particular it arises
in cohomology theory of Banach algebras and also in the theory of
extensions of Banach algebras [4]. Let A be a Banach algebra. There
are many classical theorems asserting that all derivations from A
into all, or some, Banach A-bimodules are automatically continuous
under a variety of conditions on A. The fact that every derivation
from a C∗-algebra into a Banach bimodule is continuous was proved
by Ringrose in [45].

Theorem 4.5. (Ringrose [45]). Let A be a C∗-algebra, let X be a
Banach A-bimodule, and let D be a derivation from A into X. Then
D is continuous.

4.2. Continuity of derivations in the nonassociative context.
Sinclair proved in [56] that every continuous Jordan derivation on
a semisimple Banach algebra is a derivation and he asked whether
or not every Jordan derivation on a semisimple Banach algebra is
continuous.1 Based on this question Aupetit [1] asked whether or
not every derivation on a semisimple Jordan-Banach algebra is con-
tinuous. This question was solved in [62].

Theorem 4.6. (Villena [62]). Let A be a semisimple Jordan-Banach
algebra, and let D be a derivation on A. Then D is continuous.

Of course, Theorem 4.2 follows from the preceding theorem be-
cause Rad(A+) = Rad(A).

The proof of this result requires the powerful Zel’manov methods
on Jordan algebras [72], such as the so-called imbedded pentad eaters
(a very sophisticated algebraic device). Sometimes the problem can
be associativized but in such a case we have to deal with noncomplete
(associative) algebras. Let us point out that some of the devices
introduced when dealing with this problem have proved to be useful
to study the closability of partially defined derivations on Banach
algebras. As a matter of fact, the author obtained the following
result.

Theorem 4.7. (Villena [65]). Let A be a Banach algebra, let B
be a subalgebra of A, and let D be a derivation from B into A.
Suppose that BAB ⊂ B and that dim(Rad(A) ∩ ⋂∞

n=1 Bn) < ∞.
Then B(S(D) ∩B)B ⊂ Rad(A).

1Editorial Note. Cusack showed in [14] that every Jordan derivation on a
semiprime Banach algebra is in fact a derivation.
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The general problem of automatic continuity of derivations in the
Lie context is the following.

Question 11. Let L be a semisimple Lie-Banach algebra. Is every
derivation on L automatically continuous?

This question is still open. However, the automatic continuity of
derivations in Lie context has been studied for some of the standard
examples of Lie-Banach algebras such as A− and KA, where A is a
Banach algebra. The most elementary derivations in Lie context are
the so-called Lie derivations, which are just the derivations of the
Lie algebra A− associated with an associative algebra A.

De la Harpe gave a very partial answer to the above-stated ques-
tion by proving that every derivation on a classical Lie-Banach alge-
bra of operators on a Hilbert space is continuous.

Theorem 4.8. (de la Harpe [20]). Let L be a classical Lie-Banach
algebra of operators on a Hilbert space and let D be a derivation on
L. Then D is continuous.

Theorem 4.2 and part of Theorem 4.8 were extended to Lie deriva-
tions on Banach algebras in [7]. The remaining part of Theorem 4.8
was extended in [8] to a much more general context.

Theorem 4.9. (Berenguer-Villena [7]). Let A be a semisimple Ba-
nach algebra, and let D be a Lie derivation on A. Then S(D) is
contained in the centre of A.

The proof of the preceding result involves the gliding hump argu-
ment (Lemma 4.1) and modifications of methods used in the struc-
ture theory of Lie maps, such as in [11].

Let us point out that we can proceed similarly to the observation
to Theorem 3.10 in order to see that Theorem 4.2 can be deduced
from Theorem 4.9. Indeed, let D be a derivation on a semisimple
Banach algebra A. Then D extends to a derivation D1 on A1 and
this latter derivation lifts to a derivation D2 on M2(A1). On account
of the above theorem, S(D2) ⊂ Z

(
M2(A1)

)
. If a ∈ S(D), then(

a 0
0 0

) ∈ S(D2) and therefore
(

0 a
0 0

)
=

[(
a 0
0 0

)
,
(

0 1
0 0

)]
=

(
0 0
0 0

)
, which

gives a = 0 as required.

Theorem 4.10. (Berenguer-Villena [8]). Let A be a centrally closed
prime semisimple Banach algebra with linear involution, and let D
be a derivation on KA. Then D is continuous.
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A question still unanswered is whether or not some of the require-
ments in the preceding theorem can be removed.

Question 12. Let A be a semisimple Banach algebra with linear
involution and let D be a derivation on KA. Does [S(D),KA] = 0
hold?

On the other hand, it should be pointed out that a semisimple
Banach algebra may have discontinuous Lie derivations. Even in
the Banach algebra L(X) there are discontinuous Lie derivations for
some Banach spaces X. In fact if X is the Banach space constructed
in [18], then every derivation from L(X) into each Banach L(X)-
bimodule is continuous and surprisingly there is a discontinuous Lie
derivation on L(X). The author has the conjecture that every Lie
derivation on L(X) is continuous provided that X is a Banach space
such that X ∼= X ⊕X.

Question 13. Let X be a Banach space such that X ∼= X ⊕ X. Is
every Lie derivation on L(X) automatically continuous?

As an attempt to extend Ringrose’s theorem to the Jordan con-
text, Hejazian and Niknam studied in [21] the continuity of deriva-
tions from a JB∗-algebra into a Jordan-Banach module. They found
out that unfortunately there exist discontinuous derivations from
some spin factors J into some Jordan-Banach J-modules.

It is important to note that the continuity of nonassociative deriva-
tions from a Banach algebra into a Banach bimodule is often required
in order to determine its structure. As an example, we present the
following theorem by Johnson.

Theorem 4.11. (Johnson [29]). Let A be a C∗-algebra, and let X
be a Banach A-bimodule. Then every continuous Jordan derivation
from A into X is an associative derivation and every continuous
Lie derivation from A into X is of the form d + τ , where d is an
associative derivation from A into X and τ is a linear map from A
into Z(X).

On account of Theorem 4.5 and the above theorem, it is natural
to ask the following questions.

Question 14. Let A be a C∗-algebra and let X be a Banach A-
bimodule.

i. Is every Jordan derivation from A into X continuous?
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ii. Is the separating space of every Lie derivation from A into
X contained in the centre of X?

4.3. The Singer-Wermer conjecture in the associative con-
text. A comprehensive account on this topic is given in [36].

Silov showed in [53] that C∞([0, 1]) cannot be given a norm which
makes it a Banach algebra. Kaplansky conjectured that the reason
for this is that a commutative semisimple Banach algebra has no
non-zero derivations. Singer and Wermer showed in [59] that every
continuous derivation on a commutative Banach algebra maps into
the radical and these authors conjectured that the condition of con-
tinuity was unnecessary. This question was subsequently called the
Singer-Wermer conjecture.

Theorem 4.12. (Singer-Wermer [59]). Let A be a commutative
Banach algebra, and let D be a continuous derivation on A. Then
D(A) is contained in the radical of A.

The Singer-Wermer conjecture has been one of the main motiva-
tions to investigate the automatic continuity of derivations on Ba-
nach algebras. As a matter of fact, Johnson studied the continuity of
derivations on commutative Banach algebras to obtain the following
result.

Theorem 4.13. (Johnson [28]). Let A be a commutative Banach
algebra with identity, and let D be a derivation on A. Then there
exist orthogonal idempotents e0, e1, . . . , en in A such that e0 + · · ·+
en = 1, such that D(e0A) ⊂ Rad(e0A), and such that each algebra
e1A, . . . , enA has just one maximal ideal. Moreover, if A is semisim-
ple, then D is continuous.

From Johnson’s theorem it is clear that in order to confirm the
Singer-Wermer conjecture it suffices to consider derivations on the
unitisation of a commutative radical Banach algebra. The Singer-
Wermer conjecture was finally confirmed by Thomas.

Theorem 4.14. (Thomas [60]). Let A be a commutative Banach
algebra, and let D be a derivation on A. Then D(A) is contained in
the radical of A.

There are some results which extend the Singer-Wermer theorem
to noncommutative Banach algebras. One such generalization is the
Kleinecke-Shirokov theorem.
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Theorem 4.15. (Kleinecke [33], Shirokov [52]) Let A be a Banach
algebra, and let a, b ∈ A such that [a, [a, b]] = 0. Then [a, b] is
quasinilpotent.

The preceding result was independently obtained by Kleinecke
and by Shirokov. It had been conjectured by Kaplansky on the
base of a result by Jacobson [23] and some results by Wintner [70]
and Wielandt [69], which were motivated by the question whether
or not bounded observables can fulfill the Heisenberg uncertainty
principle of quantum mechanics. Heisenberg’s formalism identified
the coordinates of particle momentum and position with operators
pi and qj satisfying the canonical commutation relations

pipj − pjpi = qiqj − qjqi = 0, piqj − qjpi = −i~δij1.

In the 1940s, it was of central interest as to whether or not the com-
mutation relations could be realized by bounded linear operators on
a Banach space X. Since every operator a ∈ L(X) gives a derivation
on the Banach algebra L(X) defined by ad(a), the question whether
or not bounded observables can fulfill the Heisenberg uncertainty
principle of quantum mechanics stimulated the study of derivations
on Banach algebras. Wintner for the case of Hilbert spaces and
Wielandt for general Banach spaces proved that this is impossible.

Note that we can express the bracket [a, [a, b]] either in the way
−[a, ad(b)(a)] or in the way ad(a)2(b), and it turns out that we can
replace either the inner derivation x 7→ [x, b] or the inner derivation
x 7→ [a, x] in Theorem 4.15 by an arbitrary continuous derivation D
on A.

Theorem 4.16. (Mathieu-Murphy [39]). Let A be a Banach alge-
bra, and let D be a continuous derivation on A. Then the following
assertions hold.

i. D(a) is quasinilpotent for every a ∈ A such that [D(a), a] =
0.

ii. D(b) is quasinilpotent for every b ∈ A such that D2(b) = 0.

It is clear that the first assertion in the preceding theorem gener-
alizes the Singer-Wermer theorem.

Another way to generalize the Singer-Wermer theorem to non-
commutative Banach algebras was observed by Sinclair in [55]. This
extension involves the notion of primitiveness. An ideal P of an
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associative algebra A is called primitive if it is the kernel of some
irreducible representation of A on some linear space X. If A is not a
radical algebra, then it is well known that Rad(A) is the intersection
of all primitive ideals of A.

Theorem 4.17. (Sinclair [55]). Let A be a Banach algebra, and let
D be a continuous derivation on A. Then D leaves each primitive
ideal of A invariant.

It should be pointed out that Theorem 4.17 can be proved in much
the same way as Theorems 4.15 and 4.16.

A number of authors have considered other properties of deriva-
tions on Banach algebras and extended the Singer-Wermer theorem
in various directions. The question whether the continuity condition
can be removed from each of these results has been of permanent
interest and it has been a motivation for steady development of au-
tomatic continuity theory.

Thomas removed the continuity condition from Theorem 4.16.ii
and he also proved that this property implies the truthfulness of the
Singer-Wermer conjecture.

Theorem 4.18. (Thomas [61]). Let A be a Banach algebra, and
let D be a derivation on A. Then D(a) is quasinilpotent whenever
a ∈ A is such that D2(a) = 0.

However, it is still currently not known whether or not the conti-
nuity can be removed from Theorems 4.16.i and 4.17.

Question 15. Let A be a Banach algebra, and let D be a derivation on
A. Is D(a) quasinilpotent whenever a ∈ A is such that [D(a), a] = 0?

Question 16. Does every derivation on a Banach algebra leave each
primitive ideal invariant?

The affirmative answer to question 15 is called ‘ the unbounded
Kleinecke-Shirokov theorem’; it was first conjectured in [35]. One
usually refers to the invariance of primitive ideals under deriva-
tions as to the noncommutative Singer-Wermer conjecture. It is
worth pointing out that the truthfulness of the noncommutative
Singer-Wermer conjecture implies the truthfulness of the unbounded
Kleinecke-Shirokov theorem.

The following questions are clearly closely related to the noncom-
mutative Singer-Wermer conjecture.
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Question 17. i. Does every derivation on a Banach algebra
leave the radical invariant?

ii. Does every derivation on the unitisation of a radical Banach
algebra leave the radical invariant?

We now consider a generalization of the unbounded Kleinecke-
Shirokov theorem and some questions closely related to it.

Question 18. Let A be a Banach algebra, and let D be a derivation
on A. Is D(a) quasinilpotent whenever a ∈ A is such that [D(a), a] ∈
Rad(A)?

Question 19. Let A be a Banach algebra and let D be a derivation
on A.

i. Does [D(a), a] ∈ Rad(A) for some a ∈ A imply that D(a) is
quasinilpotent?

ii. Does [D(a), a] ∈ Rad(A) for each a ∈ A imply that D(A) ⊂
Rad(A)?

iii. Does [D(a), A] ⊂ Rad(A) for some a ∈ A imply that D(a) ∈
Rad(A)?

iv. Does [D(A), A] ⊂ Rad(A) imply that D(A) ⊂ Rad(A)?
v. Does [D(A), D(A)] ⊂ Rad(A) imply that D(A) ⊂ Rad(A)?

Surprisingly, Questions 16, 17, 18, and 19 are equivalent [13, 36].
Moreover Cusack [15] showed that if the answer to Question 16 is
negative, then there exists a topologically simple radical Banach alge-
bra. Let us remark that the answer to any of the preceding questions
is affirmative for continuous derivations.

Thomas gave in [61] a partial answer to the noncommutative
Singer-Wermer conjecture by studying which, and how many, prim-
itive ideals can fail to be invariant.

Theorem 4.19. (Thomas [61]). Let A be a Banach algebra, and let
D be a derivation on A. Then the following assertions hold

i. A primitive ideal P of A is invariant under D if and only if
S(Dn) ⊂ P for each n ∈ N.

ii. D(P ) ⊂ P for each primitive ideal P of A except possibly
finitely many exceptional primitive ideals. Moreover, if P is
an exceptional primitive ideal then P is finite-codimensional.

There are also some partial answers to the noncommutative Singer-
Wermer conjecture in the commuting version.



66 A. R. Villena

Theorem 4.20. (Mathieu [37]). Let A be a Banach algebra, and let
D be a derivation on A such that, for each a ∈ A, [D(a), a] ∈ Nil(A),
the nil radical of A. Then D(A) ⊂ Rad(A).

There are also some partial versions of the unbounded Kleinecke-
Shirokov Theorem.

Theorem 4.21. (Runde [49]). Let A be a Banach algebra, let D be
a derivation on A, and let a ∈ A be such that [a,Dn(a)] = 0 for each
n ∈ N. Then D(a) is quasinilpotent.

In [12], a spectral approach to the noncommutative Singer-Wermer
conjecture is proposed by proving the following result.

Theorem 4.22. (Brešar-Mathieu [12]). Let A be a Banach algebra,
and let D be a derivation on A. Then D(A) ⊂ Rad(A) if and only
if there is a constant C such that r(D(a)) ≤ Cr(a) for each a ∈ A.

We may summarize the above results to the statement that deriva-
tions on commutative Banach algebras are rather rare and that the
same applies to derivations on general Banach algebras which satisfy
certain commuting relations.

4.4. The Singer-Wermer conjecture in the nonassociative
context. We now consider the Singer-Wermer conjecture in the Jor-
dan context. In order to do this we first require the notion of prim-
itive ideals in Jordan context.

It is known that an ideal P of an associative algebra A is primitive
if there is a maximal modular left ideal M of A such that P is the
largest ideal of A contained in M . In a similar way the primitive
ideals of a Jordan algebra are defined. A linear subspace I of a
Jordan algebra J is said to be an inner ideal of J if UI(J1) ⊂ I.
We say that an inner ideal I in J is x-modular for some x ∈ J is
U1−xJ ⊂ I, {1−x, J1, I} ⊂ I, and x−x2 ∈ I, where {·, ·, ·} stands for
the Jordan triple product {a, b, c} = (a·b)·c+a·(b·c)−(a·c)·b for all
a, b, c ∈ J . We call an ideal P of J primitive if it is the largest ideal
of J contained in a maximal modular inner ideal of J . It turns out
that Rad(J) is the intersection of all primitive ideals of J and that
the primitive ideals of an associative algebra A are primitive ideals
of the Jordan algebra A+. E. I. Zel’manov introduced the notion of
primitiveness for unital Jordan algebras to derive his characterization
of prime Jordan algebras. This concept was extended to nonunital
Jordan algebras by L. Hogben and K. McCrimmon.
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Similarly to the associative context it is natural to ask the follow-
ing question.

Question 20. Does every derivation on a Jordan-Banach algebra
leave each primitive ideal invariant?

This question can be considered as the Singer-Wermer conjecture
in Jordan context. Since every primitive ideal of a Banach algebra
A is a primitive ideal of A+, it follows that the truthfulness of the
Singer-Wermer conjecture in Jordan context implies the truthfulness
of the noncommutative Singer-Wermer conjecture.

The following questions are clearly closely related to the Singer-
Wermer conjecture in Jordan context as well as to Question 17.

Question 21. i. Does every derivation on a Jordan-Banach al-
gebra leave the radical invariant?

ii. Does every derivation on the unitisation of a radical Jordan-
Banach algebra leave the radical invariant?

On the other hand, similarly to the associative context we should
expect that derivations of Jordan-Banach algebras can only excep-
tionally satisfy some associating relations. We set

[a, b, c] = (a · b) · c− a · (b · c)
for the associator of elements a, b, c in a Jordan-Banach algebra J .
Let us remark that Jordan associators are closely related to associa-
tive commutators. In the case where J = A+ we have

[a, b, c] =
1
4
[[c, a], b].

Question 22. Let J be a Banach algebra and let D be a derivation
on J .

i. Does [D(a), J, a] ∈ Rad(J) for some a ∈ J imply that D(a)
is quasinilpotent?

ii. Does [D(a), J, a] ∈ Rad(J) for each a ∈ J imply that D(J) ⊂
Rad(J)?

iii. Does [D(a), J, J ] ⊂ Rad(J) for some a ∈ J imply that D(a)
is quasinilpotent?

iv. Does [D(J), J, J ] ⊂ Rad(J) imply that D(J) ⊂ Rad(A)?
v. Does [D(J), D(J), D(J)] ⊂ Rad(J) imply that D2(A) con-

sists of quasinilpotent elements?
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It is quite apparent that the preceding questions are closely related
to the corresponding ones in Question 19. Brešar and the author
recently proved in [13] that Questions 20, 21, and 22 are equivalent.
It is also natural to ask the following.

Question 23. Suppose that the noncommutative Singer-Wermer con-
jecture is true and that the Singer-Wermer conjecture in Jordan con-
text is false. What kind of pathological Jordan-Banach algebra arise
in this situation?

A partial answer to the problem of invariance of primitive ideals
was given in [62]. This result extends Theorem 4.19. A partial
answer to the problem of associating derivations was given in [13].

Theorem 4.23. (Villena [62]) Let J be a Jordan-Banach algebra,
and let D be a derivation on J . Then the following assertions hold.

i. A primitive ideal P of J is invariant under D if and only if
S(Dn) ⊂ P for each n ∈ N.

ii. D(P ) ⊂ P for each primitive ideal P of J except possibly
finitely many exceptional primitive ideals. Moreover, if P is
an exceptional primitive ideal then J/P is simple and it is
either finite-dimensional or it is the Jordan-Banach algebra
of a continuous nondegenerate symmetric bilinear form f on
a complex Banach space X of dimension greater than one.

iii. If D is continuous, then D(P ) ⊂ P for each primitive ideal
P of J .

Theorem 4.24. (Brešar-Villena [13]) Let J be a complex Jordan-
Banach algebra, and let D be a derivation on J . Then the following
assertions hold.

i. Suppose that [D(a), J, a] = 0 for each a ∈ J . Then D(J) ⊂
Rad(J).

ii. Suppose that [D(a), J, a] ⊂ Rad(J) for each a ∈ J . Then
there are pairwise orthogonal idempotents e1, . . . , en in J
such that

D(J) ⊂ Ce1 + · · ·+ Cen + Rad(J).

iii. Suppose that [D(J), D(J), D(J)] = 0. Then D2(J) consists
of quasinilpotent elements.

iv. Suppose that [D(J), D(J), D(J)] ⊂ Rad(J). Then there are
pairwise orthogonal idempotents e1, . . . , en in J such that

D2(J) ⊂ Ce1 + · · ·+ Cen +Q(J),
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where Q(J) denotes the set of all quasinilpotent elements
of J .

Let us mention that there are non-zero derivations D on simple
Jordan-Banach algebras J such that D2(a) = 0 = D(a)2 for all
a ∈ J . This shows that a well-known result of Posner fails to be true
in Jordan context and that there exist derivations on (even simple)
Jordan-Banach algebras J whose range consists of quasinilpotent
elements but it does not lie in the radical. Hence Theorem 4.22 fails
to be true in the Jordan context.

We leave as an open question whether the appearance of idempo-
tents can be removed in Theorem 4.24. This question is equivalent
to the Singer-Wermer conjecture in Jordan context.

A standard approach when treating a possibly discontinuous deri-
vation D is to consider its separating space and often it is also nec-
essary to treat the separating spaces of its powers. Brešar and the
author introduced in [13] the closed ideal I(D) of A generated by

{S(Dn) : n ∈ N}.
The reason to do this is that S(D) is a closed ideal of J , but S(Dn)
does not have such nice algebraic structure in case n > 1. This
device has proved to be very useful when dealing with the range
of a derivation. We shall illustrate how I(D) works. As a matter
of fact, if [D(a), J, a] = 0 for each a ∈ J then we can see that
[I(D), J, J ] = 0. Moreover [I(D), I(D), I(D)] = 0 provided that
[D(J), D(J), D(J)] = 0. In each case I(D) is a commutative Banach
algebra and for every y ∈ I(D) the map

d : I(D) → I(D), d(a) = D(a) · y
is a derivation of I(D). Therefore we can apply Theorem 4.14 in
order to obtain information about D.

It is important to realise that similar arguments apply to the case
in which D is a derivation on a Banach algebra that satisfies some
commuting relation.

A possible approach to the noncommutative Singer-Wermer con-
jecture in the Lie context is by considering the structure of Lie deriva-
tions in the spirit of Herstein programme.

The simplest examples of derivations in the Lie context are Lie
derivations on Banach algebras. It is clear that any associative
derivation is a Lie derivation and the main interest in the study of
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the structure of Lie derivations is how similar are Lie derivations to
associative derivations. This question was suggested by Herstein [22]
in the frame of simple rings. There are some theorems [5, 11, 34]
which state that, if some requirements are satisfied, then any Lie
derivation D on a ring R has the form d + τ , where d is an associa-
tive derivation from the ring R to an enlargement R′ of the ring and
τ is an additive map from the ring to the center of the enlargement.
The problem is that the enlargement may be too large. In fact this
enlargement is usually too large to be useful in the analytical study of
Lie derivations on Banach algebras. The most perfect decomposition
of a Lie derivation would be a decomposition of the form D = d + τ
in such a way that d is an associative derivation from the ring to it-
self. We call such a Lie derivation a standard Lie derivation. There
are some theorems [29, 38, 41] which asserts that any Lie derivation
on some special classes of Banach algebras are standard. From the
work by Johnson we know that every continuous Lie derivation on a
C∗-algebra is standard.

Theorem 4.25. (Johnson [29]) Let D be a continuous Lie derivation
on a C∗-algebra A. Then D is of the form d + τ , where d is a
derivation on A and τ is a linear map from A into the centre of A.

It is important to know that unfortunately there are examples
of discontinuous Lie derivations on some C∗-algebras. Indeed, if
A = `∞(M2(C)) then codim[A,A] = ∞. Therefore there exists a
discontinuous linear functional τ on A such that τ([A,A]) = 0 which
gives a discontinuous Lie derivation on A.

Consequently, one may ask whether Johnson’s theorem is still true
if we consider discontinuous derivations on C∗-algebras.

Question 24. Is every (possibly discontinuous) Lie derivation on a
C∗-algebra standard?

It was proved in [66] that every Lie derivation on an arbitrary
Banach algebra is standard modulo almost all the primitive ideals.
We call a Lie derivation D on a Banach algebra A standard modulo a
primitive ideal P if there exist an associative derivation dP on A/P
and a linear map τP from A into the centre of A/P such that

QP D(a) = dP (a + P ) + τP (a) (a ∈ A),

where QP stands for the quotient map from A onto A/P .
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Theorem 4.26. (Villena [66]). Let A be a unital complex Banach
algebra, and let D be a Lie derivation on A. Then the following
assertions hold.

i. D is standard modulo a primitive ideal P if and only if
[S(Dn), A] ⊂ P for each n ∈ N.

ii. D is standard modulo P for each primitive ideal P except
possibly finitely many exceptional primitive ideals. More-
over, if P is an exceptional primitive ideal then P has finite
codimension greater than one.

iii. If D is continuous, then D is standard modulo P for each
primitive ideal P .

iv. D is standard modulo a primitive ideal P if and only if
D(P ) ⊂ C+ P .

The proof of the preceding result combines ideas in both [11] and
[61].

One may ask whether there are actually no exceptional primitive
ideals for the decomposition of Lie derivations given in the preceding
theorem. We can state the following open question which can be
considered as the Singer-Wermer conjecture in Lie context.

Question 25. Let A be a unital complex Banach algebra and let D be
a Lie derivation on A. Is D(P ) contained in C+P for each primitive
ideal P of A?

We note that it is easy to show that the truthfulness of the Singer-
Wermer conjecture in Lie context implies the truthfulness of the
noncommutative Singer-Wermer conjecture. Indeed, assume that
the answer to Question 25 is affirmative and let D be a derivation
on the unitisation R1 of a radical Banach algebra R. Then D lifts to
a derivation ∆ on M2(R1). Since M2(R1)/M2(R) ∼= M2(R1/R) ∼=
M2(C), it follows that M2(R) is a maximal two-sided ideal of M2(R1)
and so

(
D(R) D(R)
D(R) D(R)

)
= ∆(M2(R)) ∈ C

(
1 0
0 1

)
+

(
R R
R R

)
.

Hence D(R) ⊂ R. This gives an unexpected intimate connection
between the structure of Lie derivations and the noncommutative
Singer-Wermer conjecture. On the other hand, it is natural to ask
the following.
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Question 26. Suppose that the noncommutative Singer-Wermer con-
jecture is true and that the Singer-Wermer conjecture for Lie deriva-
tions is false. What kind of pathological Banach algebra arises in
this situation?

Let A be a semisimple Banach algebra and let D be a Lie deriva-
tion on A. It can be proved that D is standard modulo all the
primitive ideals and that D is standard if and only if for every a ∈ A
there exists τ(a) ∈ A such that QP (τ(a)) = τP (a) for each primitive
ideal P of A. It should be pointed out that in the case in which A is
a C∗-algebra this latter condition is equivalent to the continuity of
the map P 7→ τP (a) from the set Prim(A) of all primitive ideals of
A (endowed with the Jacobson topology) into C for each a ∈ A.
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