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C*-Algebras in Numerical Analysis

Albrecht Böttcher

These are the notes for two lectures I gave at the Belfast Functional
Analysis Day 1999. The purpose of these notes is to give an idea of
how C∗-algebra techniques can be successfully employed in order
to solve some concrete problems of Numerical Analysis. I focus my
attention on several questions concerning the asymptotic behavior
of large Toeplitz matrices. This limitation ignores the potential
and the triumphs of C∗-algebra methods in connection with large
classes of other operators and plenty of different approximation
methods, but it allows me to demonstrate the essence of the C∗-
algebra approach and to illustrate it with nevertheless nontrivial
examples.

Prologue

The idea of applying C∗-algebras to problems of numerical analy-
sis emerged in the early 1980’s. At the beginning of the eighties,
Silbermann [54] discovered a new way of translating the problem
of the stability of the finite section method for Toeplitz operators
into an invertibility problem in Banach algebras. Using powerful
Banach algebra techniques, in particular local principles, he was so
able to prove a series of spectacular results. Soon it became clear
that the prevailing Banach algebras are or can be replaced by C∗-
algebras in many interesting situations. As C∗-algebras enjoy a lot
of nice properties that are not shared by general Banach algebras,
it was possible to sharpen various known results of numerical analy-
sis significantly, to give extremely simple and lucid proofs of several
profound theorems, and to open the door to a wealth of new insights
and results. The first explicit use of C∗-algebras in connection with
a problem of numerical analysis was probably made in the paper [17]
by Silbermann and myself.

Meanwhile the application of C∗-algebras to numerical analysis
has grown to a big business. Here, I confine myself with quoting Roch
and Silbermann’s paper [51], Arveson’s articles [3], [4], and Hagen,
Roch, and Silbermann’s monographs “Spectral Theory of Approxi-
mation Methods for Convolution Operators” and “C∗-Algebras and
Numerical Analysis” ([33] and [34]).
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In connection with the numerical analysis of Toeplitz matrices,
C∗-algebras are substantially used in my books [18] and [19] with
Silbermann. In a sense, the present text is an extract of some ideas
of these books, supplemented and completed by some recent ideas of
Roch and Silbermann.

I am very grateful to Roland Hagen, Steffen Roch, and Bernd
Silbermann for providing me with the manuscript of their book
[34] and allowing me to benefit from this inexhaustible source when
preparing these notes. I am also greatly indebted to Martin Math-
ieu and Anthony W. Wickstead for their perfect organization of the
Belfast Functional Analysis Day 1999 and for inviting me to write
these notes. The first Belfast Functional Analysis Day took place
in 1998, and I would be happy if the Belfast Functional Analy-
sis Day would become a traditional annual meeting throughout the
years to come, with the same pleasant and stimulating atmosphere
as this time.

1. Finite sections of infinite matrices

Let B(l2) denote the set of all bounded linear operators on the Hilbert
space l2 := l2({1, 2, 3, . . .}). Given A ∈ B(l2), we consider the equa-
tion

Ax = y. (1)

This equation amounts to a linear system with infinitely many equa-
tions and an infinite number of unknowns:




a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
...







x1

x2

x3

...


 =




y1

y2

y3

...


 . (2)

We replace the infinite system (2) by the finite system




a11 . . . a1n

...
...

an1 . . . ann







x
(n)
1
...

x
(n)
n


 =




y1

...
yn


 . (3)
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Passage from (2) to (3) is a special projection method. For n =
1, 2, 3, . . . define the projection Pn by

Pn : l2 → l2, (x1, x2, x3, . . .) 7→ (x1, x2, . . . , xn, 0, 0, . . .). (4)

In what follows we will freely identify Im Pn, the image of Pn, with
Cn. In particular, we always think of Cn as being equipped with
the l2 norm. The matrix

An :=




a11 . . . a1n

...
...

an1 . . . ann


 (5)

can now be identified with PnAPn, and equation (3) can be written
in the form

Anx(n) = Pny, x(n) ∈ Cn. (6)

Convergence of the finite section method. Suppose the opera-
tor A is invertible. Are the matrices An invertible for all sufficiently
large n and do, for every y ∈ l2, the solutions x(n) of (6) converge
to the solution x of (1) ? Here we regard x(n) as an element of l2,
and convergence of x(n) to x means that x(n) → x in l2. If the
answer to the above question is yes, then one says that the finite
section method is convergent for the operator A. Equivalently, the
finite section method converges if and only if the matrices An are
invertible for all sufficiently large n and if A−1

n converges strongly
(= pointwise) to A−1. In this and similar contexts, A−1

n is thought
of as being extended by zero from Cn to all of l2, so that A−1

n may
be considered as an operator on l2. Thus, the strong convergence
A−1

n → A−1 actually means that A−1
n Pny → A−1y for all y ∈ l2.

Stability. A sequence {An}∞n=1 of n × n matrices An is said to be
stable if the matrices An are invertible for all sufficiently large n, say
n ≥ n0, and if

sup
n≥n0

‖A−1
n ‖ < ∞.

Here ‖ · ‖ is the operator norm on Cn associated with the l2 norm
(in other terms: ‖·‖ is the spectral norm). Throughout what follows
we put ‖B−1‖ = ∞ if B is not invertible. With this convention, we
can say that the sequence {An}∞n=1 is stable if and only if

lim sup
n→∞

‖A−1
n ‖ < ∞.
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The following fact is well known and easily proved.

Proposition 1.1. If A is invertible, then the finite section method
for A is convergent if and only if the sequence {An}∞n=1 consisting
of the matrices (5) is stable.

Notice that this result is a concretisation of the general numerical
principle

convergence = approximation + stability.

Since An = PnAPn → A strongly, the approximation property is
automatically satisfied, and hence the question whether the finite
section method converges comes completely down to the question
whether the sequence {An}∞n=1 is stable.

As the following result shows, the sequence of the matrices (5) is
never stable if A is not invertible.

Proposition 1.2. If the sequence {An}∞n=1 of the matrices (5) is
stable, then A is necessarily invertible.

Proof. Let ‖A−1
n ‖ ≤ M for n ≥ n0. Then if x ∈ l2 and n ≥ n0,

‖Pnx‖ = ‖A−1
n Anx‖ ≤ M‖Anx‖ = M‖PnAPnx‖,

‖Pnx‖ = ‖(A∗n)−1A∗nx‖ ≤ M‖A∗nx‖ = M‖PnA∗Pnx‖,

and passing to the limit n →∞, we get

‖x‖ ≤ M‖Ax‖, ‖x‖ ≤ M‖A∗x‖ (7)

for every x ∈ l2. This shows that A is invertible.

Spectral approximation. The spectrum sp B of a bounded linear
operator B is defined as usual:

spB := {λ ∈ C : B − λI is not invertible}.

For A ∈ B(l2), let the matrices An be given by (5). What is the
relation between the spectra (sets of eigenvalues) of the matrices An

and the spectrum of the operator A? Do the eigenvalues of An for
large n, for n = 1000 say, tell us anything about the spectrum of A?
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Or conversely, if the spectrum of A is known, does this provide any
piece of information about the eigenvalues of An for very large n?

Condition numbers. Again let A ∈ B(l2) and define An by (5).
What can be said about the connection between the condition num-
ber

κ(A) := ‖A‖ ‖A−1‖
and the condition numbers

κ(An) := ‖An‖ ‖A−1
n ‖

for large n ? Clearly, this question is much more “numerical” than
the question about the sole stability of the sequence {An}∞n=1. Since
‖An‖ = ‖PnAPn‖ → ‖A‖ as n →∞, the question considered here
amounts to the question whether ‖A−1

n ‖ is close to ‖A−1‖ for suffi-
ciently large n.

Proposition 1.3. If the sequence {An}∞n=1 of the matrices (5) is
stable, then

‖A−1‖ ≤ lim inf
n→∞

‖A−1
n ‖. (8)

Proof. If ‖A−1
nk
‖ ≤ M for infinitely many nk, the argument of the

proof of Proposition 1.2 yields (7) and thus (8).

2. Compact operators

The answers to the questions raised in the preceding section are well
known in the case where A = I +K with some compact operator K.
Let K(l2) denote the collection of all compact operators on l2. In
what follows, Pn always stands for the projection defined by (4).
Notice that Pn is the identity operator on Cn; to emphasise this
fact, we write I + PnKPn for Pn + PnKPn.

Proposition 2.1. Let K ∈ K(l2). The sequence {I + PnKPn}∞n=1

is stable if and only if I + K is invertible. Moreover, we have

lim
n→∞

‖(I + PnKPn)−1‖ = ‖(I + K)−1‖.
This follows easily from the observation that the compactness

of K implies that PnKPn converges uniformly (i.e., in the norm
topology) to K.
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Things are a little bit more intricate when considering the prob-
lem of spectral approximation. We first recall two standard defi-
nitions. Given a sequence {En}∞n=1 of sets En ⊂ C, the uniform
limiting set

lim inf
n→∞

En

is defined as the set of all λ ∈ C for which there are λ1 ∈ E1, λ2 ∈
E2, λ3 ∈ E3, . . . such that λn → λ, while the partial limiting set

lim sup
n→∞

En

is the set of all λ ∈ C for which there exist n1 < n2 < n3 < . . . and
λnk

∈ Enk
such that λnk

→ λ. Obviously,

lim inf
n→∞

En ⊂ lim sup
n→∞

En.

If operators An ∈ B(l2) converge uniformly to some operator A ∈
B(l2), then, by the upper semi-continuity of the spectrum,

lim sup
n→∞

sp An ⊂ spA, (9)

but in general equality need not hold in (9). This phenomenon does
not occur for compact operators.

Proposition 2.2. If K ∈ K(l2), then

lim inf
n→∞

sp (I + PnKPn) = lim sup
n→∞

sp (I + PnKPn) = sp (I + K).

Proof (after Torsten Ehrhardt ). A moment’s thought reveals that it
suffices to show that

lim inf
n→∞

sp (PnKPn) ⊃ spK.

As K is compact, sp K is an at most countable set and the origin is
the only possible accumulation point of sp K. Fix an isolated point
λ0 in sp K. If ε > 0 is sufficiently small, then

‖(PnKPn − λI)−1 − (K − λI)−1‖ → 0 as n →∞
uniformly with respect to all λ on the circle |λ−λ0| = ε. Hence, the
Riesz projections

Πn :=
1

2πi

∫

|λ−λ0|=ε

(PnKPn − λI)−1 dλ
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converge in the norm to the Riesz projection

Π :=
1

2πi

∫

|λ−λ0|=ε

(K − λI)−1 dλ.

The projection Π is nonzero, because λ0 is in sp K. It follows that the
projections Πn are nonzero for all sufficiently large n, which implies
that the disk |λ− λ0| < ε contains a point of sp (PnKPn) for every
n large enough. As ε > 0 can be chosen arbitrarily small, it results
that

λ0 ∈ lim inf
n→∞

sp (PnKPn).

This completes the proof in the case where the origin is an isolated
point of sp K. If the origin is an accumulation point of sp K, it must
belong to lim inf sp (PnKPn) because this set is closed.

3. Selfadjoint operators

In the case of bounded selfadjoint operators, partial answers to the
questions raised in Section 1 can be given by invoking standard func-
tional analysis. Throughout this section we assume that A ∈ B(l2)
is a selfadjoint operator, A = A∗, and that An = PnAPn is defined
by (5).

Proposition 3.1. There exist selfadjoint and invertible operators
A ∈ B(l2) for which the sequence {An}∞n=1 is not stable. Moreover,
given any numbers a, b such that 0 < a ≤ b ≤ ∞, there exists a
selfadjoint operator A ∈ B(l2) such that

‖A−1‖ = a, lim sup
n→∞

‖A−1
n ‖ = b.

(In connection with the requirement a ≤ b, recall Proposition 1.3.)

Proof. Put

B =
(

0 1
1 0

)
and A = diag (B, B, B, . . .).

Then A is selfadjoint and invertible, but the matrices An contain a
zero column and are therefore not invertible whenever n is odd. This
shows that the sequence {An}∞n=1 is not stable.
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Now let

C =
(

1/b 1/a + 1/b
1/a + 1/b 1/b

)

and
A = diag (C,C, C, . . .).

The eigenvalues of C are λ1 = 1/a and λ2 = 1/a + 2/b, whence

‖A−1‖ = ‖C−1‖ = 1/λ1 = a,

and

‖A−1
n ‖ =

{
max(‖C−1‖, b) = max(a, b) = b if n is odd,
‖C−1‖ = a if n is even.

Thus, lim sup ‖A−1
n ‖ = b.

As for stability and convergence of the condition numbers, every-
thing is well for definite operators.

Proposition 3.2. Let A = A∗ ∈ B(l2) be positive definite,

(Ax, x) ≥ ε‖x‖2

with some ε > 0 for all x ∈ l2. Then {An}∞n=1 is stable and we have

‖An‖ ≤ ‖A‖ for all n ≥ 1, lim
n→∞

‖An‖ = ‖A‖,
‖A−1

n ‖ ≤ ‖A−1‖ for all n ≥ 1, lim
n→∞

‖A−1
n ‖ = ‖A−1‖.

Proof. Put

m = inf
x6=0

(Ax, x)
(x, x)

, M = sup
x6=0

(Ax, x)
(x, x)

, (10)

mn = inf
x 6=0

(AnPnx, Pnx)
(Pnx, Pnx)

, Mn = sup
x 6=0

(AnPnx, Pnx)
(Pnx, Pnx)

. (11)

By assumption, m ≥ ε > 0. We have

mn = inf
x 6=0

(PnAPnx, Pnx)
(Pnx, Pnx)

= inf
x6=0

(APnx, Pnx)
(Pnx, Pnx)

≥ inf
y 6=0

(Ay, y)
(y, y)

= m,

and, analogously, Mn ≤ M . Because

‖A‖ = M, ‖An‖ = Mn, ‖A−1‖ = 1/m, ‖A−1
n ‖ = 1/mn,
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we arrive at the inequalities ‖An‖ ≤ ‖A‖ and ‖A−1
n ‖ ≤ ‖A−1‖ for

all n. It is clear that ‖An‖ → ‖A‖, and since

‖A−1‖ ≤ lim inf
n→∞

‖A−1
n ‖ ≤ lim sup

n→∞
‖A−1

n ‖ ≤ ‖A−1‖,

it follows that ‖A−1
n ‖ → ‖A−1‖.

Spectral approximation is a delicate problem for general selfad-
joint operators, and the reader is referred to [3], [4], [34] for this
topic. We here confine ourselves to a few simple remarks.

Given a selfadjoint operator A ∈ B(l2), define the real numbers
m and M by (10). Furthermore, let λmin(An) and λmax(An) be the
minimal and maximal eigenvalues of An, respectively. Of course,
with mn and Mn given by (11), we have

λmin(An) = mn, λmax(An) = Mn.

Proposition 3.3. If A ∈ B(l2) is selfadjoint, then

m ≤ λmin(An) ≤ λmax(An) ≤ M, (12)
lim

n→∞
λmin(An) = m, lim

n→∞
λmax(An) = M, (13)

{m,M} ⊂ sp A ⊂ lim inf
n→∞

spAn ⊂ lim sup
n→∞

sp An ⊂ [m,M ]. (14)

Proof. The validity of (12) and (13) was established in the proof of
Proposition 3.2. The only nontrivial part of (14) is the inclusion

spA ⊂ lim inf
n→∞

spAn. (15)

So assume λ ∈ R is not in lim inf sp An. Then there is an ε > 0 such
that

Uε(λ) ∩ sp An = ∅ for all n ≥ n0,

where Uε(λ) := {z ∈ C : |z−λ| < ε}. Hence Uε(0)∩sp (An−λI) = ∅
for all n ≥ n0, and since (An−λI)−1 is Hermitian, and therefore its
norm coincides with the spectral radius, we get

‖(An − λI)−1‖ ≤ 1/ε for all n ≥ n0.

It follows that {An − λI)n≥n0 is stable, and therefore A − λI must
be invertible (Proposition 1.2). Consequently, λ 6∈ sp A, which com-
pletes the proof of (15).
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Example 3.4 (trivial). The limiting set limsup An may be much
smaller than [m,M ]: if A = diag (0, 1, 1, 1, . . .), then m = 0, M =
1, sp A = {0, 1}, and sp An = {0, 1} for all n ≥ 2.

Example 3.5 (less trivial). There are selfadjoint operators A ∈
B(l2) for which the limiting set lim inf sp An is much larger than
sp A. To construct an example, let an be the nth Fourier coefficient
of the characteristic function of the upper half of the complex unit
circle T,

an =
1
2π

∫ π

0

e−inθdθ =
1− (−1)n

2πin
=





1/2 if n = 0
1/(πin) if n is odd,

0 if n 6= 0 is even,

and put

A =




a0 a−1 a1 a−2 a2 a−3 a3 . . .
a1 a0 a2 a−1 a3 a−2 a4 . . .
a−1 a−2 a0 a−3 a1 a−4 a2 . . .
a2 a1 a3 a0 a4 a−1 a5 . . .
a−2 a−3 a−1 a−4 a0 a−5 a1 . . .
a3 a2 a4 a1 a5 a0 a6 . . .
a−3 a−4 a−2 a−5 a−1 a−6 a0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .




.

One can show that A induces a bounded selfadjoint operator on l2

for which

spA = {0, 1},
lim inf
n→∞

spAn = lim sup
n→∞

sp An = [0, 1].

We will return to this example (and give the mystery’s resolution)
in Section 12.
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4. Toeplitz operators

These are the operators on l2 generated by matrices of the form

(aj−k)∞j,k=1 =




a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .


 , (16)

that is, by matrices which have equal entries on the parallels to
the main diagonal. Notice that (16) is completely specified by the
complex numbers {an}∞n=−∞ in the first row and the first column.

Theorem 4.1 (Toeplitz 1911). The matrix (16) induces a bounded
operator on l2 if and only if the numbers an (n ∈ Z) are the Fourier
coefficients of some essentially bounded function, i.e., if and only if
there exists a function a in L∞ on the complex unit circle T such
that

an =
1
2π

∫ 2π

0

a(eiθ)e−inθ dθ for all n ∈ Z.

A proof can be found in [18, Theorem 2.7], for example.
If the function a ∈ L∞ := L∞(T) of the preceding theorem exists,

it is unique (as an equivalence class of L∞). This function is usually
referred to the symbol of the operator (or of the matrix) (16), and in
what follows we denote this operator/matrix by T (a).

In the case where a is a trigonometric polynomial,

a(eiθ) =
N∑

k=−N

akeikθ,

the matrix T (a) is a band matrix. Rational functions a (without
poles on T) induce Toeplitz matrices whose entries decay exponen-
tially: an = O(e−δ|n|) with some δ > 0. In these two cases we
have to deal with continuous symbols. The symbol of the so-called
Cauchy-Toeplitz matrix

(
1

j − k + γ

)∞

j,k=1

=




1
γ

1
−1+γ

1
−2+γ . . .

1
1+γ

1
γ

1
−1+γ . . .

1
2+γ

1
1+γ

1
γ . . .

. . . . . . . . . . . .


 (γ ∈ C \ Z)
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is the function
aγ(eiθ) =

π

sin πγ
eiπγe−iγθ.

This is a piecewise continuous function with a single jump. The
jump is at eiθ = 1:

aγ(1 + 0) =
π

sin πγ
eiπγ , aγ(1− 0) =

π

sin πγ
e−iπγ .

Proposition 4.2. Let a ∈ L∞.
(a) The operator T (a) is compact if and only if a vanishes iden-

tically.
(b) The operator T (a) is selfadjoint if and only if a is real-valued.

Proof. Part (b) is trivial. To prove part (a), consider the projections
Qn = I − Pn:

Qn : l2 → l2, (x1, x2, x3, . . .) 7→ (0, . . . , 0, xn+1, xn+2, . . .).

Obviously, Qn → 0 strongly and therefore, if T (a) is compact,
‖QnT (a)Qn‖ → 0. But QnT (a)Qn|Im Qn results from T (a) by
erasing the first n rows and columns and hence QnT (a)Qn|Im Qn

has the same matrix as T (a). Consequently,

‖T (a)‖ = ‖QnT (a)Qn|ImQn‖ = ‖QnT (a)Qn‖ = o(1),

implying that T (a) is the zero operator.

Proposition 4.2 tells us that the standard arguments we employed
in Sections 2 and 3 for compact and selfadjoint operators are not ap-
plicable to Toeplitz operators with properly complex-valued symbols.
In fact Toeplitz operators are a very beautiful source for illustrating
and motivating several advanced topics of functional analysis and
operator theory, including the index theory of Fredholm operators
and the use of C∗-algebras.

An operator A ∈ B(l2) is said to be Fredholm if it is invertible
modulo compact operators, that is, if the coset A+K(l2) is invertible
in the Calkin algebra B(l2)/K(l2). The essential spectrum spess A is
defined as the set

spess A := {λ ∈ C : A− λI is not Fredholm}.
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One can show that A ∈ B(l2) is Fredholm if and only if the kernel

KerA := {x ∈ l2 : Ax = 0}
is of finite dimension and the image (= range)

Im A := {Ax : x ∈ l2}
is a closed subspace of l2 with a finite-dimensional complement in l2.
If A ∈ B(l2) is Fredholm, the integer

Ind A := dimKer A− dim (l2/Im A)

is referred to as the index of A.

Theorem 4.3 (Coburn 1966). Let a ∈ L∞. The operator T (a) is
invertible if and only if it is Fredholm of index zero.

Proofs of this theorem can be found in [18, Theorem 2.38] or [19,
Theorem 1.10], for example.

Theorem 4.3 splits the problem to study invertibility of Toeplitz
operators into two “simpler tasks”: into finding Fredholm criteria
and into establishing index formulas.

Continuous symbols. Let C := C(T) be the set of all (complex-
valued) continuous function on T. We always think of T as being
oriented in the counter-clockwise sense. If a ∈ C has no zeros on T,
we denote by wind a the winding number of the closed, continuous
and naturally oriented curve a(T) with respect to the origin.

Theorem 4.4 (Gohberg 1952). Let a ∈ C. The operator T (a) is
Fredholm if and only if a has no zeros on T. In that case

Ind T (a) = −wind a.

Proofs can be found in [18, Theorem 2.42], [19, Theorem 1.17], and
many other works devoted to Toeplitz and related operators. Since
T (a) − λI = T (a − λ), Theorems 4.3 and 4.4 imply that if a ∈ C,
then

spess T (a) = a(T),

sp T (a) = a(T) ∪
{

λ ∈ C \ a(T) : wind (a− λ) 6= 0
}

.
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Piecewise continuous symbols. We denote by PC := PC(T)
the set of all (complex-valued) piecewise continuous functions on T.
Thus, a ∈ PC if and only if a ∈ L∞ and the one-sided limits

a(t± 0) := lim
ε→0±0

a(teiε)

exist at every point t = eiθ ∈ T. We remark that PC is a closed
subset (even a closed subalgebra) of L∞. If a ∈ PC, then for each
ε > 0 the set

{
t ∈ T : |a(t + 0)− a(t− 0)| > ε

}

is finite. In particular, functions in PC have at most countably many
jumps.

The essential range R(a) of a function a ∈ L∞ is the spectrum
of a as an element of the Banach algebra L∞. If a ∈ PC, then the
essential range is R(a) = {a(t ± 0) : t ∈ T}. Given a ∈ PC, we
denote by a#(T) the closed continuous and naturally oriented curve
that results from R(a) by filling in the line segment [a(t−0), a(t+0)]
whenever a(t− 0) 6= a(t + 0). If a#(T) does not contain the origin,
we let wind a# stand for the winding number of the curve a#(T)
about the origin.

Theorem 4.5. Let a ∈ PC. The operator T (a) is Fredholm if and
only if 0 6∈ a#(T). In that case

Ind T (a) = −wind a#.

This result was discovered by many people, including Calderón,
Spitzer, Widom, Gohberg, Krupnik, and Simonenko. Full proofs are
in [18, Theorem 2.74] or [19, Theorem 1.23], for instance. In the
language of spectra, Theorems 4.3 and 4.5 show that if a ∈ PC,
then

spess T (a) = a#(T),

spT (a) = a#(T) ∪
{

λ ∈ C \ a#(T) : wind (a− λ)# 6= 0
}

.

Large finite Toeplitz matrices. The above theorems tell us a lot
about Toeplitz operators, that is, about infinite Toeplitz matrices.
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For a natural number, consider the n× n Toeplitz matrix

Tn(a) := (aj−k)n
j,k=1 =




a0 a−1 . . . a−(n−1)

a1 a0 . . . a−(n−2)

...
...

. . .
...

an−1 an−2 . . . a0


 .

Our goal is to study the problems formulated in Section 1 for Toeplitz
operators. Thus, we want criteria for the stability of the sequence
{Tn(a)}∞n=1 and we are interested in the behavior of sp Tn(a) and
κ(Tn(a)) for large n. The purpose of what follows is to demonstrate
how these questions can be tackled with the help of C∗-algebras.

5. C*-algebras

In this section we summarize a few results on C∗-algebras that will
be needed in the following. Most of the results are cited without a
source because they are well known and can be found in the standard
books. My favorite references are Arveson [2], Dixmier [24], Douglas
[25], Fillmore [27], Mathieu [42], and Murphy [44].

C∗-algebras
A Banach algebra is a complex Banach space A with an associa-
tive and distributive multiplication satisfying ‖ab‖ ≤ ‖a‖ ‖b‖ for all
a, b ∈ A. If a Banach algebra has a unit element, which will be de-
noted by 1, e or I, then it is referred to as a unital Banach algebra.
A conjugate-linear map a 7→ a∗ of a Banach algebra A into itself is
called an involution if a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. Fi-
nally, a C∗-algebra is a Banach algebra with an involution subject to
the condition ‖a‖2 = ‖a∗a‖ for all a ∈ A. C∗-algebras are especially
nice Banach algebras, and they have a lot of properties that are not
owned by general Banach algebras.

Examples
We will see many examples of C∗-algebras in the forthcoming sec-
tions. We here only remark that if H is a Hilbert space, then B(H),
the set of all bounded linear operators on H, and K(H), the collec-
tion of all compact linear operators on H, are C∗-algebras under the
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operator norm and with passage to the adjoint as involution. The
sets L∞, C, PC are C∗-algebras under the ‖ · ‖∞ norm and the invo-
lution a 7→ a (passage to the complex conjugate). The C∗-algebras
L∞, C, PC are commutative, the C∗-algebras B(H) and K(H) are
not commutative in case dim H ≥ 2.

Spectrum of an element
The spectrum of an element a of a unital Banach algebra A with the
unit element e is the compact and nonempty set

spA a :=
{
λ ∈ C : a− λe is not invertible in A

}
.

Of course, invertibility of an element b ∈ A means the existence of
an element c ∈ A such that bc = cb = e.

C∗-subalgebras
A subset B of a C∗-algebra A is called a C∗-subalgebra if B itself is
a C∗-algebra with the norm and the operations of A. The following
useful result tells us that C∗-algebras are inverse closed.

Proposition 5.1. If A is a unital C∗-algebra and B is a C∗-
subalgebra of A which contains the unit of A, then spB b = spA b
for every b ∈ B.

By virtue of this proposition, we will abbreviate spA a to sp a.

Ideals
A C∗-subalgebra I of a C∗-algebra A is called a closed ideal of A if
aj ∈ I and ja ∈ I for all a ∈ A and all j ∈ I.

Proposition 5.2. If I1 and I2 are closed ideals of a C∗-algebra A,
then their sum

I1 + I2 := {j1 + j2 : j1 ∈ I1, j2 ∈ I2}

is also a closed ideal of A.
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Quotient algebras
If A is a C∗-algebra and I is a closed ideal of A, then the quotient
algebra A/I is a C∗-algebra with the usual operations and the norm

‖a + I‖ := inf
j∈I

‖a + j‖.

Morphisms
A ∗-homomorphism is a linear map ϕ : A → B of a C∗-algebra A
into a C∗-algebra B satisfying ϕ(a)∗ = ϕ(a∗) and ϕ(ab) = ϕ(a)ϕ(b)
for all a, b ∈ A. In case A and B are unital, we also require that
a ∗-homomorphism maps the unit of A to the unit of B. Bijective
∗-homomorphisms are referred to as ∗-isomorphisms.

Proposition 5.3. Let A and B be C∗-algebras and let ϕ : A → B
be a ∗-homomorphism. Then the following hold.

(a) The map ϕ is contractive: ‖ϕ(a)‖ ≤ ‖a‖ for all a ∈ A.
(b) The image ϕ(A) is a C∗-subalgebra of B.
(c) If ϕ is injective, then ϕ is an isometry: ‖ϕ(a)‖ = ‖a‖ for all

a ∈ A.
(d) If A and B are unital and ϕ is injective, then ϕ preserves

spectra: spϕ(a) = sp a for all a ∈ A.
(e) If A and B are unital and ϕ preserves spectra, then ϕ also

preserves norms: ‖ϕ(a)‖ = ‖a‖ for all a ∈ A.

Gelfand theory
Let A be a commutative unital C∗-algebra. A closed ideal I of A
is called a maximal ideal if I 6= A and if A and I themselves are
the only closed ideals of A which contain the set I. A multiplicative
linear functional is a ∗-homomorphism of A into the C∗-algebra C
of all complex numbers. The map

ϕ 7→ Ker ϕ := {a ∈ A : ϕ(a) = 0}
is a bijection between the set of the multiplicative linear functionals
of A and the set of the maximal ideals of A, and therefore maximal
ideals and multiplicative linear functionals are freely identified. Let
M(A) stand for the set of all multiplicative linear functionals of A.
The coarsest topology on M(A) for which the maps

M(A) → C, ϕ 7→ ϕ(a)
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are continuous for all a ∈ A is referred to as the Gelfand topology,
and M(A) equipped with the Gelfand topology is called the maximal
ideal space of A. The map

Γ : A → C(M(A)), (Γa)(ϕ) = ϕ(a)

is known as the Gelfand transform of A.

Theorem 5.4 (Gelfand and Naimark). If A is a commutative
unital C∗-algebra, then the Gelfand transform is a ∗-isomorphism of
A onto C(M(A)).

Central localization
The following theorem is an easy-to-use generalization of Theorem
5.4 to non-commutative C∗-algebras. The center of a C∗-algebra
A is the set of all elements z ∈ A satisfying az = za for all a ∈
A. Note that the center and every C∗-subalgebra of the center are
commutative C∗-subalgebras of A.

Theorem 5.5 (Allan and Douglas). Let A be a unital C∗-algebra
with the unit e and let Z be a C∗-subalgebra of the center of A which
contains e. For each maximal ideal m ∈ M(Z), let Jm be the smallest
closed ideal of A which contains the set m. Then an element a ∈ A
is invertible in A if and only if the elements a + Jm ∈ A/Jm are
invertible in A/Jm for all m ∈ M(A).

We remark that we consider a + Jm as invertible in A/Jm if
Jm = A.

The C∗-algebras A/Jm are referred to as local algebras, the spec-
trum of a + Jm is called the local spectrum of a at m, and every
element am ∈ A for which

am + Jm = a + Jm

is said to be a local representative of a at m. Theorem 5.5 is a
so-called local principle.

If A itself is commutative, we can take Z = A, and since then

A/Jm = A/m → C, a + m 7→ ϕ(a) (m = Ker ϕ)

is a ∗-isomorphism (Gelfand-Mazur theorem), Theorem 5.5 gives the
same conclusion as Theorem 5.4: an element a ∈ A is invertible if
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and only if ϕ(a) 6= 0 for all ϕ ∈ M(A). Clearly, the larger the center
of a C∗-algebra is, the finer we can localize using Theorem 5.5. In
case the center is trivial, that is, equal to {λe : λ ∈ C}, Theorem 5.5
merely says that a is invertible if and only if a is invertible.

Lifting of ideals
The following theorem is concerned with the so-called lifting of an
ideal J , that is, with conditions under which the invertibility of a ∈ A
can be deduced from the invertibility of a modulo an ideal J .

Theorem 5.6 (Roch and Silbermann). Let A be a unital C∗-
algebra and let {Jt}t∈T be a family of closed ideals of A. Denote by J
the smallest closed ideal of A which contains all the ideals Jt (t ∈ T ).
Suppose for each t ∈ T we are given a unital C∗-algebra Bt and
a ∗-homomorphism ψt : A → Bt whose restriction ψt|Jt to Jt is
injective. Then an element a ∈ A is invertible in A if and only if
a + J is invertible in A/J and ψt(a) is invertible in Bt for every
t ∈ T .

Proofs of this theorem are in [51] and [34, Theorem 5.26].

Irreducible representations
Let A be a C∗-algebra. A representation of A is a pair (H,π) of a
Hilbert space H and a ∗-homomorphism π : A → B(H). A closed
subspace K of H is said to be invariant for a representation (H,π)
if π(a)K ⊂ K for all a ∈ A. A representation (H, π) is called irre-
ducible if π is not the zero map and if {0} and H are the only closed
subspaces of H which are invariant for (H,π). Two irreducible rep-
resentations (H1, π1) and (H2, π2) are unitarily equivalent if there
exists a unitary operator U : H1 → H2 such that

π2(a) = Uπ1(a)U−1 for all a ∈ A.

Unitary equivalence is an equivalence relation in the set of all irre-
ducible representations of A. The set of the equivalence classes of the
irreducible representations of A with respect to unitary equivalence
is referred to as the spectrum (or the structure space) of A, and we
denote this set by Spec A. In what follows we denote the equivalence
class of Spec A which contains the representation (H, π) simply by
(H, π).
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Theorem 5.7. Let A be a unital C∗-algebra and let {(Ht, πt)}t∈Spec A

be a family of irreducible representations of A which contains one
element from each equivalence class of Spec A. Then an element
a ∈ A is invertible if and only if πt(a) is invertible in B(Ht) for
every t ∈ Spec A.

Spectrum of ideals and quotients
Given a C∗-algebra A and a closed ideal J of A, put

SpecJ A =
{

(H,π) ∈ Spec A : π(J) = {0}
}

,

SpecJ A =
{
(H,π) ∈ Spec A : π(J) 6= {0}

}
.

Obviously,

Spec A = SpecJ A ∪ SpecJ A, SpecJ A ∩ SpecJ A = ∅. (17)

If (H, π) ∈ SpecJ A, then the map

π/J : A/J → B(H), a + J 7→ π(a)

is a well-defined ∗-homomorphism, and if (H, π) ∈ SpecJ A, then the
map

π|J : J → B(H), j 7→ π(j)

is also a ∗-homomorphism.

Theorem 5.8. Let J be a closed ideal of a C∗-algebra A. Then the
maps

SpecJ A → Spec (A/J), (H,π) 7→ (H,π/J)

and
SpecJ A → Spec J, (H,π) 7→ (J, π|J)

are bijections.

Here is a useful result on the spectrum of the sum of two closed
ideals (recall Proposition 5.2).

Theorem 5.9. Let A be a C∗-algebra and let J1, J2 be closed ideals.
Then

Spec (J1 + J2) = Spec J1 ∪ Spec J2.
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Moreover, if J1 ∩ J2 = {0}, then

Spec J1 ∩ Spec J2 = ∅.

Note that in Theorem 5.9 the elements of Spec Jk are identified
with elements of SpecJk A as in Theorem 5.8.

There are two simple cases in which the spectrum of a C∗-algebra
can be easily described.

Theorem 5.10. (a) If A is a commutative unital C∗-algebra, then
Spec A can be identified with the set M(A): every multiplicative lin-
ear functional ϕ : A → C = B(C) is an irreducible representation of
A, and every irreducible representation of A is unitarily equivalent
to exactly one multiplicative linear functional of A.

(b) If H is a Hilbert space, then the spectrum of the C∗-algebra
K(H) is a singleton: every irreducible representation of K(H) is uni-
tarily equivalent to the identical representation id : K(H) → B(H),
a 7→ a.

6. Toeplitz algebras

Given a C∗-subalgebra B of L∞, we denote by A(B) the smallest
C∗-subalgebra of B(l2) which contains all Toeplitz operators with
symbols in B. Because λT (a) = T (λa) and T (a) + T (b) = T (a + b)
for a, b ∈ L∞ and λ ∈ C, the C∗-algebra A(B) is the closure in B(l2)
of the set of all operators of the form

∑

j

∏

k

T (bjk), bjk ∈ B,

the sum and the products finite. We are interested in the struc-
ture of the C∗-algebras A(C) and A(PC), which correspond to the
continuous and piecewise continuous symbols.

Given c ∈ L∞, we define c̃ ∈ L∞ by c̃(t) := c(1/t) (t ∈ T). In
terms of Fourier series we have

c(t) =
∑

n∈Z

cntn, c̃(t) =
∑

n∈Z

c−ntn (t ∈ T).
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The Hankel operator H(c) generated by c ∈ L∞ is the bounded
operator on l2 given by the matrix

H(c) := (cj+k−1)∞j,k=1 =




c1 c2 c3 . . .
c2 c3 . . .
c3 . . .
. . .


 .

Obviously,

H(c̃) := (c−j−k+1)∞j,k=1 =




c−1 c−2 c−3 . . .
c−2 c−3 . . .
c−3 . . .
. . .


 .

With these notations, we have the following nice formula for the
product of two Toeplitz matrices:

T (a)T (b) = T (ab)−H(a)H (̃b). (18)

This formula can be easily verified by computing the corresponding
entries of the matrices of each side.

Proposition 6.1. If c ∈ C, then H(c) and H(c̃) are compact oper-
ators.

Proof. This can be shown by taking into account that ‖H(c)‖ ≤
‖c‖∞ and ‖H(c̃)‖ ≤ ‖c‖∞ and by approximating c by trigonometric
polynomials, which induce finite-rank Hankel matrices.

Continuous symbols. It is easy to check that A(C) contains all
rank-one operators and hence the set K := K(l2) of all compact
operators (see, e.g., [18, p. 155]). From formula (18) and Proposition
6.1 we infer that if a, b ∈ C, then

T (a)T (b) = T (ab) + compact operator, (19)

and hence A(C) is the closure in B(l2) of the set
{

T (c) + K : c ∈ C, K ∈ K
}

. (20)

But the set (20) is closed. Indeed, the map

C → B(l2)/K, c 7→ T (c) +K
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is a ∗-homomorphism by virtue of (19), and hence its image, the set
{T (c) +K : c ∈ C}, is closed due to Proposition 5.3(b). As the map

B(l2) → B(l2)/K, A 7→ A +K
is continuous, the pre-image of {T (c) + K : c ∈ C}, that is, the set
(20), must also be closed. In summary,

A(C) =
{

T (c) + K : c ∈ C, K ∈ K
}

. (21)

Theorem 6.2. The C∗-algebra A(C)/K is commutative, its maxi-
mal ideal space can be identified with T, and the Gelfand transform
is given by

Γ : A(C)/K → C(T),
(
Γ
(
T (a) +K))

(t) = a(t).

Proof. The commutativity of A(C)/K results from (19) and (21).
The map

C → A(C)/K, c 7→ T (c) +K
is a ∗-homomorphism due to (19), it is surjective by virtue of (21),
and it is injective because of Proposition 4.2(a). Hence, this map is
a ∗-isomorphism.

Piecewise continuous symbols. The C∗-algebra A(PC) also con-
tains K, but as (19) is in general no longer true if a and b have jumps,
we have no such simple description of A(PC) as in (21).

Proposition 6.3. The C∗-algebra A(PC)/K is commutative.

Proof. We have to show that if a, b ∈ PC, then

T (a)T (b)− T (b)T (a) ∈ K. (22)

It suffices to prove (22) in the case where a and b each have only one
jump, at α ∈ T and β ∈ T, say. Suppose first that α 6= β. There
are functions ϕ,ψ ∈ C such that

ϕ2 + ψ2 = 1, ϕ(α) = 1, ϕ(β) = 0, ψ(α) = 0, ψ(β) = 1.

We have

T (ab)− T (a)T (b)

= T (aϕ2b) + T (aψ2b)− T (a)
(
T (ϕ2) + T (ψ2)

)
T (b). (23)
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By (18) and Proposition 6.1,

T (aϕ2b)− T (a)T (ϕ2)T (b)
= T (aϕϕb)− T (aϕ)T (ϕb) + K

= H(aϕ)H(ϕ̃b̃) + K (24)

with K ∈ K. Since ϕb ∈ C, it follows from Proposition 6.1 that (24)
is compact. Analogously one can show that

T (aψ2b)− T (a)T (ψ2)T (b)

is compact. This implies that (23) is compact and therefore proves
(22). If α = β, there are λ ∈ C and c ∈ C such that a = λb + c.
Hence, by (18),

T (a)T (b)− T (b)T (a) = T (c)T (b)− T (b)T (c)

= T (cb)−H(c)H (̃b)− T (bc) + H(b)H(c̃),

and the compactness of H(c) and H(c̃) gives (21).

Theorem 6.4 (Gohberg and Krupnik 1969). The C∗-algebra
A(PC)/K is commutative, its maximal ideal space can be identified
with the cylinder T× [0, 1] (with an exotic topology), and the Gelfand
transform

Γ : A(PC)/K → C
(
T× [0, 1]

)

acts on the generating elements T (a) +K (a ∈ PC) by the rule
(
Γ
(
T (a) +K))

(t, µ) = a(t− 0)(1− µ) + a(t + 0)µ.

Proof. The commutativity of A(PC)/K was established in Proposi-
tion 6.3.

Let ϕ be a multiplicative linear functional of A(PC)/K. Since
the restriction of ϕ to A(C)/K is a multiplicative linear functional
of A(C)/K, Theorem 6.2 implies that there is a t ∈ T such that

ϕ
(
T (c) +K)

= c(t) for all c ∈ C. (25)

Let χt be the characteristic function of the arc {teiθ : 0 ≤ θ ≤ π/2}.
Since

sp
(
T (χt) +K)

= spess T (χt) = [0, 1] (26)
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by Theorem 4.5, we deduce from Theorem 5.4 that there is a µ ∈ [0, 1]
such that

ϕ
(
T (χt) +K)

= µ. (27)

Every a ∈ PC can be written in the form

a = a(t− 0)(1− χt) + a(t + 0)χt + cb (28)

with c ∈ C, c(t) = 0, b ∈ PC. As

T (cb) = T (c)T (b) + H(c)H (̃b) ∈ T (c)T (b) +K
by (18) and Proposition 6.1, we obtain from (25), (27), and (28) that

ϕ
(
T (a) +K)

= a(t− 0)(1− µ) + a(t + 0)µ + c(t)ϕ
(
T (b) +K)

= a(t− 0)(1− µ) + a(t + 0)µ. (29)

Thus, every multiplicative linear functional ϕ is of the form (29) for
some (t, µ) in the cylinder T× [0, 1].

Conversely, suppose we are given (t, µ) ∈ T × [0, 1]. Let now χt

be any function which is continuous on T \ {t} and satisfies

χt(t− 0) = 0, χt(t + 0) = 1, χt(T \ {t}) ∩ [0, 1] = ∅.
From Theorems 4.5 and 5.4 we deduce that there exists a multiplica-
tive linear functional ϕ such that (27) holds. The restriction of ϕ to
A(C)/K must be of the form

ϕ
(
T (c) +K)

= c(τ)

for some τ ∈ T. Suppose τ 6= t. If c ∈ C is any function such that
c(t) = 0 and c(τ) 6= 0, then cχt ∈ C and consequently,

c(τ)χt(τ) = ϕ
(
T (cχt) +K)

= ϕ
(
T (c)T (χt) +K)

= c(τ)µ.

Since χt(τ) /∈ [0, 1], this is impossible. Thus, τ = t, which implies
that (25) holds. But having (25) and (27) at our disposal, we see as
in the preceding paragraph that ϕ satisfies (29) for all a ∈ PC.

Combining (17) and Theorems 5.8, 5.10, 6.2, 6.4 we arrive at the
conclusion that

SpecA(C) ∼= T ∪ {id},
SpecA(PC) ∼=

(
T× [0, 1]

) ∪ {id}.
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7. Algebraization of stability

Let S be the set of all sequences {An}∞n=1 of operators An ∈ B(Cn)
(equivalently, of complex n× n matrices An) satisfying

sup
n≥1

‖An‖ < ∞.

In what follows we abbreviate {An}∞n=1 to {An}. The set S is a
C∗-algebra with the operations

{An}+ {Bn} := {An + Bn}, λ{An} := {λAn} (λ ∈ C),
{An}{Bn} := {AnBn}, {An}∗ := {A∗n}

and the norm
‖{An}‖ := sup

n≥1
‖An‖.

An element {An} ∈ S is invertible in S if and only if the matrices
An are invertible for all n ≥ 1 and supn≥1 ‖A−1

n ‖ < ∞. This is much
more than stability.

Now denote by N (the N is for “null”) the set of all sequences
{An} ∈ S for which

lim
n→∞

‖An‖ = 0.

In other terminology, S is the l∞-direct sum (= direct product) and
N is the c0-direct sum (= direct sum) of the family {B(Cn)}∞n=1.

Obviously, N is a closed ideal of S. If {An} ∈ S, then {An}+ N
is invertible in the quotient algebra S/N if and only if there exists a
{Bn} ∈ S such that

AnBn = Pn + C ′n, ‖C ′n‖ → 0,

BnAn = Pn + C ′′n , ‖C ′′n‖ → 0,

and this is easily seen to be equivalent to the existence of an n0 ≥ 1
such that An is invertible for all n ≥ n0 and

sup
n≥n0

‖A−1
n ‖ < ∞.

Thus, {An}+ N is invertible in S/N if and only if {An} is stable.
At this point we have rephrased the question of stability in terms

of invertibility in some C∗-algebra, and we could now have recourse
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to the tools of Section 5. However the algebra S/N is too large and
therefore useful results (which would be results for every approxi-
mating sequence {An} ∈ S) cannot be obtained in this way.

So let us replace S by a smaller sequence algebra which, however,
contains all the sequences we are interested in. For a C∗-subalgebra
B of L∞ (e.g., B = C or B = PC), let S(B) denote the smallest C∗-
subalgebra of S which contains all sequences of the form {Tn(b)}∞n=1

with b ∈ B. Thus, S(B) is the closure in S of the collection of all
elements ∑

j

∏

k

{
Tn(bjk)

}∞
n=1

with bjk ∈ B, (30)

the sum and the products finite. One can show that N ⊂ S(C)
(see [18, p. 293]) and hence N ⊂ S(B) whenever C ⊂ B. By
Proposition 5.1, a sequence {An} ∈ S(B) (C ⊂ B) is stable if and
only if {An}+ N is invertible in S(B)/N.

In the following two sections we will see that the C∗-algebras
S(C)/N and S(PC)/N can be described fairly precisely.

8. The Silbermann ideals

Suppose B is a C∗-subalgebra of L∞ which contains C. In order to
understand the C∗-algebra S(B)/N, we look for closed ideals of this
algebra.

The analogue of formula (18) for finite Toeplitz matrices is due
to Widom [64] and it is

Tn(a)Tn(b) = Tn(ab)− PnH(a)H (̃b)Pn −WnH(ã)H(b)Wn. (31)

Here we encounter the Hankel operators introduced in Section 6, and
the operators Wn are given by

Wn : l2 → l2, {x1, x2, x3, . . .} 7→ {xn, xn−1, . . . , x1, 0, 0, . . .}.
In what follows we freely identify the image of Wn with Cn and Wn

itself with the n× n matrix



0 . . . 0 1
0 . . . 1 0
...

...
...

1 . . . 0 0


 .
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Notice that W 2
n = Pn, that Wn → 0 weakly, and that

WnTn(a)Wn = Tn(ã), (32)

where, as in Section 6, ã(t) := a(1/t) (t ∈ T). We remark that all
the following constructions have their roots in formula (31).

It can be shown that if K and L are compact operators, then
the sequences {PnKPn} and {WnLWn} belong to S(C) (see [18, p.
293]). Thus, we can consider the two subsets

J0 :=
{
{PnKPn}+N : K ∈ K

}
, J1 :=

{
{WnLWn}+N : L ∈ K

}

of the C∗-algebra S(B)/N.

Theorem 8.1 (Silbermann 1981). The sets J0 and J1 are closed
ideals of S(B)/N and the maps

ϕ0 : K → J0, K 7→ {PnKPn}+ N,

ϕ1 : K → J1, L 7→ {WnLWn}+ N

are ∗-isomorphisms.

Proof. Let Qn = I − Pn. We have

PnKPnPnLPn = PnKLPn − PnKQnLPn.

As Qn → 0 strongly, it follows that ‖QnL‖ → 0 whenever L is
compact. Hence

{PnKPn}{PnLPn} − {PnKLPn} ∈ N

for all K, L ∈ K. This shows that ϕ1 is a ∗-homomorphism. Con-
sequently, by Proposition 5.3(b), J0 = ϕ0(K) is a C∗-subalgebra of
S(B)/N. Since ‖PnKPn‖ → ‖K‖, the map ϕ0 is injective. Thus,
ϕ0 is a ∗-isomorphism.

Analogously, the map ϕ1 is a ∗-homomorphism, because

WnKWnWnLWn = WnKPnLWn = WnKLWn −WnKQnLWn

and ‖QnL‖ → 0 if L is compact. It follows as above that J1 = ϕ1(K)
is a C∗-subalgebra of S(B)/N. The injectivity of ϕ1 results from the
observation that if L is compact and ‖WnLWn‖ → 0, then

‖PnLPn‖ = ‖WnWnLWnWn‖ ≤ ‖WnLWn‖ = o(1),
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whence ‖L‖ = lim ‖PnLPn‖ = 0. The map ϕ1 is therefore also a
∗-isomorphism.

To prove that J0 and J1 are ideals, let K ∈ K and a ∈ B. We
have

PnKPnTn(a) = PnKPnT (a)Pn = PnKT (a)Pn − PnKQnT (a)Pn,

and as KT (a) ∈ K and ‖KQn‖ → 0, we see that J0 is a left ideal
of S(B)/N. Analogously one can verify that J0 is a right ideal of
S(B)/N. That J1 is an ideal can be proved similarly using that

WnLWnTn(a) = WnLWnT (a)Pn = WnLWnT (a)WnWn

= WnLPnT (ã)Wn = WnLT (ã)Wn −WnLQnT (ã)Wn

(recall (32)).

Proposition 5.2 now implies that

J := J0 + J1 =
{
{PnKPn + WnLWn}+ N : K,L ∈ K

}

is also a closed ideal of S(B)/N. Thus, we can consider the C∗-
algebra (S(B)/N)/J. Before proceeding its investigation, we remark
that this C∗-algebra may be interpreted in a slightly different man-
ner. We define the subset I of S(B) as

{{PnKPn + WnLWn + Cn} : K ∈ K, L ∈ K, {Cn} ∈ N
}
. (33)

Proposition 8.2. The set I is a closed ideal of S(B) and the map

S(B)/I → (S(B)/N)/J, {An}+ I 7→ ({An}+ N) + J

is a well-defined ∗-isomorphism.

Proof. The canonical homomorphism

S(B) → (S(B)/N)/J, {An} 7→ ({An}+ N) + J

is a ∗-homomorphism. Its kernel is just I, which gives all assertions.

We are now in a position to reveal the structure of the elements
of S(C).
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Theorem 8.3. The C∗-algebra S(C) coincides with the set of all
sequences of the form

{
Tn(c) + PnKPn + WnLWn + Cn

}
(34)

with c ∈ C, K ∈ K, L ∈ K, {Cn} ∈ N.

Proof. From (31), Proposition 6.1, and Proposition 8.2 we infer that
S(C) is the closure of the set of all elements of the form (34). We
are therefore left with showing that this set is closed. The map

C → S(C)/I, c 7→ {Tn(c)}+ I

is a ∗-homomorphism by virtue of (31) and Proposition 6.1. Conse-
quently, by Proposition 5.3(b),

{
{Tn(c)}+ I : c ∈ C

}
(35)

is a C∗-subalgebra and thus a closed subset of S(C)/I. Its pre-image
under the (continuous) canonical homomorphism S(C) → S(C)/I is
the set of all elements of the form (34). Hence, this set is also closed.

Now we are ready for the “sequence analogues” of Theorems 6.2
and 6.4.

Theorem 8.4. The C∗-algebra (S(C)/N)/J is commutative, its
maximal ideal space can be identified with T, and the Gelfand trans-
form is given by

(
Γ
((
{Tn(c)}+ N

)
+ J

))
(t) = c(t) (c ∈ C).

Proof. From (31) and Proposition 6.1 we infer that the algebra is
commutative. The map

C →
(
S(C)/N

)
/J, c 7→

(
{Tn(c)}+ N

)
+ J (36)

is a ∗-homomorphism (again (31) and Proposition 6.1), which is sur-
jective due to Theorem 8.3. The kernel of (36) consists of the func-
tions c ∈ C for which

Tn(c) = PnKPn + WnLWn + Cn (37)
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with certain K, L ∈ K and {Cn} ∈ N. As PnKPn → K in the norm
and WnLWn → 0 strongly (note that L is compact and Wn → 0
weakly), passage to the strong limit n →∞ in (37) gives T (c) = K,
whence c = 0 due to Proposition 4.2(a). Thus, (36) is injective. This
proves that (S(C)/N)/J is ∗-isomorphic to C = C(T).

Theorem 8.5. The C∗-algebra (S(PC)/N)/J is commutative, its
maximal ideal space can be identified with the cylinder T × [0, 1]
(with the same exotic topology as in Theorem 6.4), and the Gelfand
transform acts at the generating elements by the rule

(
Γ
(
{Tn(a)}+ N

)
+ J

)
(t, µ) = a(t− 0)(1− µ) + a(t + 0)µ.

Proof. Using (31) in place of (18), one can verify the commutativity
of the algebra as in the proof of Proposition 6.3.

Let ϕ be a multiplicative linear functional. From Theorem 8.4
we infer that

ϕ

((
{Tn(c)}+ N

)
+ J

)
= c(t) for all c ∈ C (38)

with some t ∈ T. Let χt be the characteristic function in the first
part of the proof of Theorem 6.4. If λ 6∈ [0, 1], then R(χt − λ) =
{−λ, 1−λ} is contained in an open half-plane whose boundary passes
through the origin. It follows that there is a γ ∈ T such that γR(χt−
λ) is a subset of the open right half-plane. We can therefore find
q ∈ (0, 1) such that qγR(χt−λ) is contained in the disk |z−1| < r for
some r < 1. Consequently, ‖I−qγTn(χt−λ)‖ ≤ ‖1−qγ(χt−λ)‖∞ <
1, which implies that Tn(χt − λ) is invertible and that ‖T−1

n (χt −
λ)‖ < q|γ|/(1− r) = q/(1− r). Thus, {Tn(χt − λ)} is stable, and we
have shown that

sp
((
{Tn(χt)}+ N

)
+ J

)
⊂ sp

(
{Tn(χt)}+ N

)
⊂ [0, 1]. (39)

From (39) and Theorem 5.4 we obtain the existence of a µ ∈ [0, 1]
such that

ϕ

((
{Tn(χt)}+ N

)
+ J

)
= µ. (40)
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Using (38) and (40) we can now proceed as in the proof of Theorem
6.4 to show that

ϕ

((
{Tn(a)}+ N

)
+ J

)
= a(t− 0)(1− µ) + a(t + 0)µ (41)

for all a ∈ PC.
Conversely, let (t, µ) ∈ T × [0, 1]. From Theorem 6.4 we know

that there is a multiplicative linear functional η on A(PC)/K such
that

η
(
T (a) +K

)
= a(t− 0)(1− µ) + a(t + 0)µ

for all a ∈ PC. Sequences in S(PC) have strong limits in A(PC).
The map

ξ : S(PC) → A(PC), {An} 7→ s- lim
n→∞

An

is a ∗-homomorphism. Let I be the ideal (33). Because ξ(I) ⊂ K,
the quotient map

ξ/I : S(PC)/I → A(PC)/K, {An}+ I 7→ ξ({An}) +K

is a well-defined ∗-homomorphism. By Proposition 8.2, we can iden-
tify S(PC)/I and (S(PC)/N)/J. It follows that ϕ := η ◦ ξ/I is a
multiplicative linear functional on (S(PC)/N)/J such that for all
a ∈ PC,

ϕ
((
{Tn(a)}+N

)
+J

)
= η

(
T (a)+K

)
= a(t−0)(1−µ)+a(t+0)µ.

9. Toeplitz sequences algebras

Theorems 8.4 and 8.5 describe the C∗-algebras
(
S(C)/N

)
/J and

(
S(PC)/N

)
/J, (42)

but in order to study the stability of sequences in S(C) and S(PC),
we need invertibility criteria in the C∗-algebras

S(C)/N and S(PC)/N. (43)
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Thus, we must somehow “lift” the ideal J. This can be managed with
the help of Theorem 5.6 (the lifting theorem) or, alternatively, by
determining the irreducible representations of the C∗-algebras (43)
(Theorems 5.7 to 5.10).

Let B = C or B = PC. If {An} ∈ S(B), then the two strong
limits

A := s- lim
n→∞

An, Ã := s- lim
n→∞

WnAnWn (44)

exist and belong to A(B). Indeed, for the strong limit A this was
already observed in the proof of Theorem 8.5. From (32) we see that

s- lim
n→∞

Wn

∑

j

∏

k

Tn(ajk)Wn = s- lim
n→∞

∑

j

∏

k

Tn(ãjk) =
∑

j

∏

k

T (ãjk)

for finite sums of finite products, and an ε/3-argument again gives
the existence of the strong limit Ã ∈ A(B) for all {An} ∈ S(B).
Throughout what follows we assume that A and Ã are given by
(44).

It is readily seen that the two maps

ψ0 : S(B)/N → A(B), {An}+ N 7→ A (45)

ψ1 : S(B)/N → A(B), {An}+ N 7→ Ã (46)

are well-defined ∗-homomorphisms.
We begin with the question of what invertibility in the C∗-algebras

(42) means.

Theorem 9.1. Let B = C or B = PC and suppose {An} ∈ S(B).
Then the coset ({An} + N) + J is invertible in (S(B)/N)/J if and
only if the operator A is a Fredholm operator.

Proof. If An = Tn(a) with a ∈ B, then A = T (a), and we have

Γ
((
{Tn(a)}+ N

)
+ J

)
= Γ

(
T (a) +K)

by virtue of Theorems 6.2/6.4 and 8.3/8.4. Since Γ is a ∗-homomor-
phism, it follows that

Γ
((
{An}+ N

)
+ J

)
= Γ(A +K)
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for all {An} ∈ S(B). The assertion is therefore immediate from
Theorem 5.4.

Here is the desired invertibility criterion for the C∗-algebras (43).

Theorem 9.2. Let B = C or B = PC and let {An} ∈ S(B). Then
{An}+N is invertible in S(B)/N if and only if the two operators A

and Ã are invertible.

First proof: via the lifting theorem. We apply Theorem 5.6
to the C∗-algebra S(B)/N and the two ideals J0 and J1. Clearly,
J = J0 + J1 is the smallest closed ideal of S(B)/N which contains
J0 and J1. The maps ψ0 and ψ1 defined by (45) and (46) are ∗-
homomorphisms and it is clear that ψ0|J0 and ψ1|J1 are injective.
Hence, by Theorem 5.6, {An} + N is invertible in S(B)/N if and
only if

ψ0

(
{An}+ N

)
= A, ψ1

(
{An}+ N

)
= Ã,

and ({An} + N) + J are invertible. But Theorem 9.1 implies that
({An}+N)+J is automatically invertible if A is invertible (and thus
Fredholm).

Second proof: via irreducible representations. We determine
the spectrum of S(B)/N. From (17) we deduce that

Spec
(
S(B)/N

)
= SpecJ

(
S(B)/N

)
∪ SpecJ

(
S(B)/N

)

is a partition of Spec (S(B)/N) into two disjoint subsets. From The-
orem 5.8 we get the identification

SpecJ
(
S(B)/N

) ∼= Spec
(
(S(B)/N)/J

)
,

and since (S(B)/N)/J is a commutative C∗-algebra whose maximal
ideal space is described by Theorems 8.4 and 8.5, we infer from
Theorem 5.10(a) that we have the identifications

Spec
(
(S(C)/N)/J

) ∼= T,

Spec
(
(S(PC)/N)/J

) ∼= T× [0, 1].
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Hence, we are left with SpecJ (S(B)/N). Again by Theorem 5.8,
there is an identification

SpecJ
(
S(B)/N

) ∼= SpecJ = Spec (J0 + J1),

and Theorem 5.9 tells us that

Spec (J0 + J1) = SpecJ0 ∪ SpecJ1,

the partition being disjoint because J0∩J1 = {0}. Theorems 8.1 and
5.10(b) imply that SpecJ0 and SpecJ1 are singletons; irreducible
representations are

τ0 : J0 → B(l2), {PnKPn}+ N 7→ K,

τ1 : J1 → B(l2), {WnLWn}+ N 7→ L.

Obviously, τ0 = ψ0|J0 and τ1 = ψ1|J1 where ψ0 and ψ1 are the
representations (45) and (46). Putting things together, we arrive at
the partitions

Spec
(
S(C)/N

) ∼= T ∪ {ψ0} ∪ {ψ1}, (47)

Spec
(
S(PC)/N

) ∼=
(
T× [0, 1]

)
∪ {ψ0} ∪ {ψ1}. (48)

By virtue of Theorems 5.10(a) and 8.4/8.5, we can rewrite (47) and
(48) in the form

Spec
(
S(B)/N

) ∼= M
(
A(B)/K

)
∪ {ψ0} ∪ {ψ1}.

Now Theorem 5.7 shows that {An}+ N is invertible if and only if

(
Γ(A +K)

)
(m) 6= 0 for all m ∈ M

(
A(B)/K

)
(49)

and
A = ψ0

(
{An}+ N

)
, Ã = ψ1

(
{An}+ N

)

are invertible. As (49) is implied by the invertibility (or even the
sole Fredholmness) of A, we arrive at the assertion.
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Although this will not be needed in the following, we remark that
(47) and (48) yield the identifications

SpecS(C) ∼= T ∪ {σ0} ∪ {σ1} ∪
∞⋃

n=1

{πn}, (50)

SpecS(PC) ∼=
(
T× [0, 1]

) ∪ {σ0} ∪ {σ1} ∪
∞⋃

n=1

{πn}. (51)

Here t ∈ T and (t, µ) ∈ T× [0, 1] correspond to the representations

S(C) → B(C), {An} 7→
(
Γ
(({An}+ N

)
+ J

))
(t),

S(PC) → B(C), {An} 7→
(
Γ
(({An}+ N

)
+ J

))
(t)

where Γ is as in Theorems 8.4 and 8.5, σ0 and σ1 are the represen-
tations

σ0 : S(B) → B(l2), {An} 7→ A,

σ1 : S(B) → B(l2), {An} 7→ Ã,

and πk is the representation

πk : S(B) → B(Ck), {An} 7→ Ak.

The proof of (50) and (51) follows from the decomposition

SpecS(B) = SpecN S(B) ∪ SpecN S(B)
∼= Spec

(
S(B)/N

) ∪ SpecN;

the spectrum Spec (S(B)/N) is given by (47) and (48), while

SpecN ∼=
∞⋃

n=1

{πn}.

10. Stability criteria

We are now ready for the harvest.
Recall that given {An} ∈ S(PC), we let A and Ã always stand

for the two operators (44):

A = s- lim
n→∞

An, Ã = s- lim
n→∞

WnAnWn.
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Theorem 10.1. A sequence {An} ∈ S(PC) is stable if and only if
the two operators A and Ã are invertible.

Proof. This is immediate from Theorem 9.2 and from what was said
in Section 6.

For pure Toeplitz matrices, we arrive at the following.

Corollary 10.2 (Gohberg 1967). Let a ∈ PC. The sequence
{Tn(a)} is stable if and only if T (a) is invertible.

Proof. If An = Tn(a), then A = T (a) and Ã = T (ã). As T (ã) is the
transpose of T (a), the operator T (ã) is invertible if and only if T (a)
is invertible.

We remark that in general Ã is not the transpose of A. For
example, if An = Tn(a)Tn(b), then

A = T (a)T (b), Ã = T (ã)T (̃b),

and the transpose of A is T (̃b)T (ã).
In several applications one encounters perturbed Toeplitz matri-

ces. An especially interesting case is the one in which

An = Tn(a) + PnKPn + WnLWn (52)

with a ∈ PC, K ∈ K, L ∈ K. If the matrices of K and L have
only finitely many nonzero entries, then An results from Tn(a) by
constant perturbations in the upper left and lower right corners. For
instance, if

An =




2 9 2
1 2 5 2

3 7 5 2
3 7 5 2

3 7 5 2
. . . . . . . . . . . .

3 7 5 2
3 1 9

5 4




,

we can write An in the form (52) with

a(t) = 3t + 7 + 5t−1 + 2t−2 (t ∈ T),
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K =




−5 4 0 . . .
−2 −5 0 . . .
0 0 0 . . .

. . . . . . . . . . . .


 , L =




−3 2 0 . . .
4 −6 0 . . .
0 0 0 . . .

. . . . . . . . . . . .


 .

Corollary 10.3 (Silbermann 1981). Let a ∈ PC and K, L ∈ K.
Then the sequence {Tn(a)+PnKPn +WnLWn} is stable if and only
if the operators T (a) + K and T (ã) + L are invertible.

Proof. This is a straightforward consequence of Theorem 10.1.

In particular, the sequence {I +PnKPn +WnLWn} (with K,L ∈
K) is stable if and only if I + K and I + L are invertible. Clearly,
given any two finite subsets M and N of C, we can find operators K
and L whose matrices have only finitely many nonzero entries and
for which sp (I + K) = M ∪ {1} and sp (I + L) = N ∪ {1}.

11. Condition numbers

Theorem 9.2 in conjunction with a simple C∗-algebra argument yields
more than—the already very interesting—results of Section 10: it
gives the limit of the norms ‖An‖ and ‖A−1

n ‖ for sequences {An} ∈
S(PC).

Theorem 11.1. If {An} ∈ S(PC), then

lim
n→∞

‖An‖ = max(‖A‖, ‖Ã‖).

Proof. The direct sum B(l2)⊕B(l2) of all ordered pairs (B,C) with
B,C ∈ B(l2) is a C∗-algebra under the norm

‖(B,C)‖ := max(‖B‖, ‖C‖).
Let ψ0 and ψ1 be the ∗-homomorphisms (45) and (46). The map

ψ = ψ0 ⊕ ψ1 : S(PC)/N → B(l2)⊕ B(l2), {An}+ N 7→ (A, Ã)

is also a ∗-homomorphism, and Theorem 9.2 tells us that ψ preserves
spectra. Hence, by Proposition 5.3(e), ψ also preserves norms, which
means that

lim sup
n→∞

‖An‖ = max
(
‖A‖, ‖Ã‖

)
. (53)
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As An → A strongly, we have

‖A‖ ≤ lim inf
n→∞

‖An‖, (54)

and because WnAnWn → Ã strongly and ‖Wn‖ = 1, we obtain that

‖Ã‖ ≤ lim inf
n→∞

‖WnAnWn‖ ≤ lim inf
n→∞

‖An‖. (55)

Combining (53), (54), (55), we arrive at the assertion.

Recall that we put ‖B−1‖ = ∞ in case B is not invertible.

Theorem 11.2. If {An} ∈ S(PC), then

lim
n→∞

‖A−1
n ‖ = max

(
‖A−1‖, ‖Ã−1‖

)
.

Proof. Suppose first that

max (‖A−1‖, ‖Ã−1‖) = ∞.

Then {An} is not stable by virtue of Theorem 10.1, and hence

lim sup
n→∞

‖A−1
n ‖ = ∞. (56)

If there would exist a subsequence {nk}∞k=1 such that

lim sup
k→∞

‖A−1
nk
‖ < ∞, (57)

then also

lim sup
k→∞

‖(Wnk
Ank

Wnk
)−1‖ = lim supk→∞ ‖Wnk

A−1
nk

Wnk
‖

≤ lim supk→∞ ‖A−1
nk
‖ < ∞,

and proceeding as in the proof of Proposition 1.2, only with the
natural numbers replaced by {n1, n2, n3, . . .}, it would follow that
A and Ã are invertible. Thus, (57) cannot hold, and (56) therefore
shows that actually lim ‖An‖ = ∞.

Now suppose

max (‖A−1‖, ‖Ã−1‖) < ∞.
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Then {An} + N is invertible in the C∗-algebra S(PC)/N due to
Theorem 9.2. Let {Bn} + N be the inverse. Then A−1

n = Bn + Cn

with ‖Cn‖ → 0, and Theorem 11.1 gives

lim
n→∞

‖A−1
n ‖ = lim

n→∞
‖Bn + Cn‖ = lim

n→∞
‖Bn‖ = max(‖B‖, ‖B̃‖).

As, obviously, B = A−1 and B̃ = Ã−1, we get the assertion.

Corollary 11.3. If a ∈ PC, then

lim
n→∞

‖T−1
n (a)‖ = ‖T−1(a)‖.

Proof. In this case Ã = T (ã) is the transpose of A = T (a), whence
‖Ã−1‖ = ‖A−1‖.

The equality lim ‖Tn(a)‖ = ‖T (a)‖ is trivial. We therefore see
that if a ∈ PC, then

lim
n→∞

κ(Tn(a)) = κ(T (a)). (58)

Corollary 11.4. Let a ∈ PC,K ∈ K, L ∈ K, and put

An = Tn(a) + PnKPn + WnLWn.

Then

lim
n→∞

‖An‖ = max
(
‖T (a) + K‖, ‖T (ã) + L‖

)
,

lim
n→∞

‖A−1
n ‖ = max

(
‖(T (a) + K)−1‖, ‖(T (ã) + L)−1‖

)
.

Proof. Because A = T (a) + K and Ã = T (ã) + L, this is immediate
from Theorems 11.1 and 11.2.

In the case where a = 1 identically, we encounter the operators

I + K, I + L, (I + K)−1, (I + L)−1.

Let

K = diag
(

0,−3
4
, 0, 0, . . .

)
,

L = diag
(

2,−1
2
, 0, 0, . . .

)
.
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Then for n ≥ 4,

An := I + PnKPn + WnLWn = diag
(

1,
1
4
, 1, . . . , 1︸ ︷︷ ︸

n−4

,
1
2
, 3

)
.

We have

‖An‖ = 3, ‖A−1
n ‖ = 4,

‖A‖ = ‖I + K‖ = 1, ‖A−1‖ = ‖(I + K)−1‖ = 4,

‖Ã‖ = ‖I + L‖ = 3, ‖Ã−1‖ = ‖(I + L)−1‖ = 2,

and hence

lim
n→∞

κ(An) = 12, max
(
κ(A), κ(Ã)

)
= 6, κ(A) = 4.

This shows that, in contrast to (58), for general {An} ∈ S(PC) the
limit of κ(An) may be larger than max (κ(A), κ(Ã)) and hence larger
than κ(A).

Moral. The reasoning of this section demonstrates the power of the
C∗-algebra approach fairly convincingly. The problem of computing
the limit of ‖T−1

n (a)‖ for an individual Toeplitz operator T (a) is,
of course, much more difficult than the question about the stability
of the individual sequence {Tn(a)}. We replaced this more difficult
problem for an individual operator by a simpler problem, the stabil-
ity, for all sequences from a C∗-algebra, namely for the sequences of
S(PC). Having solved the simpler problem for the C∗-algebra (The-
orem 9.2), it was an easy C∗-algebra argument (Proposition 5.3(e))
which led to the solution of the more difficult problem for the given
operator T (a). Into the bargain we even got the solution of the more
difficult problem for all sequences in S(PC) (Theorem 11.2). The
following strategy seems to be not very promising at first glance,
but it is a standard approach in operator theory, and as the present
section shows, it may also be successful in numerical analysis.
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difficult problem for an individual operator

↓

simpler problem for a C∗-algebra

↓

result for the C∗-algebra

↓

desired result for the individual operator

12. Eigenvalues of Hermitian matrices

We now apply Theorem 10.1 to the problem of studying the asymp-
totic eigenvalue distribution of sequences of matrices. Note that, in
contrast to Section 3, we now let An stand for an arbitrary sequence
in S(PC) and not necessarily for sequences of the form {PnAPn}.
We begin with a simple result for general sequences in S(PC).

Proposition 12.1. If {An} ∈ S(PC), then

lim inf
n→∞

sp (An) ⊂ lim sup
n→∞

sp (An) ⊂ spA ∪ sp Ã.

Proof. Let λ 6∈ spA∪sp Ã. Then A−λI and (A−λI)∼ = Ã−λI are
invertible, and hence Theorem 10.1 implies the existence of a natural
number n0 and a positive number M such that

‖(An − λI)−1‖ < M for all n ≥ n0.

It follows that the spectral radius of (An − λI)−1 is less than M ,
which gives that

U1/M (0) ∩ sp (An − λI) = ∅ for all n ≥ n0;

here Uδ(µ) := {ζ ∈ C : |ζ − µ| < δ}. Consequently,

U1/M (λ) ∩ sp An = ∅ for all n ≥ n0,



C*-ALGEBRAS IN NUMERICAL ANALYSIS 99

and this shows that λ 6∈ lim sup An.

In the case Hermitian matrices, all inclusions of Proposition 12.1
become equalities.

Theorem 12.2. If {An} ∈ S(PC) is a sequence of Hermitian ma-
trices, An = A∗n for all n, then

lim inf
n→∞

sp An = lim sup
n→∞

sp An = sp A ∪ sp Ã.

Proof. The operators A and Ã are necessarily selfadjoint, and all
occurring spectra are subsets of the real line. By virtue of Propo-
sition 12.1, it remains to show that if λ is a real number and λ 6∈
lim inf sp An, then λ 6∈ sp A ∪ sp Ã. But if λ is real and not in
lim inf sp An, then there is a δ > 0 such that

Uδ(λ) ∩ spAnk
= ∅ for infinitely many nk,

whence

Uδ(0) ∩ sp (Ank
− λI) = ∅ for infinitely many nk.

As Ank
−λI is Hermitian, the spectral radius and the norm of (Ank

−
λI)−1 coincide, which gives

‖(Ank
− λI)−1‖ <

1
δ

for infinitely many nk.

Thus {Ank
− λI)}∞k=1 is a stable sequence. The argument of the

proof of Proposition 1.2, only with the natural numbers replaced by
{nk}∞k=1, shows that A−λI is invertible. As {Wnk

(Ank
−λI)Wnk

}∞k=1

is stable together with {Ank
− λI}∞k=1, it follows analogously that

Ã− λI is invertible.

Corollary 12.3. If a ∈ PC is real-valued, then

lim inf
n→∞

sp Tn(a) = lim sup
n→∞

spTn(a) = sp T (a) = [ess inf a, ess sup a].

Proof. Theorem 12.2 tells us that the limiting sets coincide with
spT (a) ∪ sp T (ã). Because T (ã) is the transpose of T (a), we have
spT (a) = sp T (ã). Finally, Theorem 4.5 implies that sp T (a) =
[ess inf a, ess sup a].
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Corollary 12.4. Let a ∈ PC be real-valued and let K and L be
compact and selfadjoint operators. Put

An = Tn(a) + PnKPn + WnLWn.

Then

lim inf
n→∞

spAn = lim sup
n→∞

spAn = sp (T (a) + K) ∪ sp (T (ã) + L).

Proof. Immediate from Theorem 12.2..

Notice that, by virtue of Theorem 4.3 (or, again, in view of Theo-
rem 4.5), sp T (a) is a subset of both sp (T (a)+K) and sp (T (ã)+L).

Once more Example 3.5. Let χ be the characteristic function of
the upper half-circle. The spectrum of the operator of multiplication
by χ on L2(T) is R(χ) = {0, 1}. An orthonormal basis in L2(T) is
constituted by the function {ek}∞k=−∞ where ek(t) = tn/

√
2π (t ∈

T). The matrix representation of M(χ) with respect to the basis

{e0, e1, e−1, e2, e−2, e3, e−3, . . .}
is just the matrix A we encountered in Example 3.5. Thus, sp A =
{0, 1}. On the other hand, there are permutation matrices Πn such
that ΠnAnΠn = Tn(χ), whence

sp An = Tn(χ).

From Corollary 12.3 we therefore see that the uniform and partial
limiting sets of sp An are both equal to [0, 1].

13. Singular values

The singular values of an operator or a matrix A are the points in
the spectrum of the selfadjoint and positively semi-definite opera-
tor/matrix (A∗A)1/2. We denote the set of the singular values of A
by Σ(A).

Clearly, (T ∗n(a)Tn(a))1/2 is in general not a Toeplitz matrix. But
the sequence {(T ∗n(a)Tn(a))1/2} certainly belongs to the C∗-algebra
S(PC), and as this sequence consists of Hermitian matrices, we can
have recourse to Theorem 12.2.
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Theorem 13.1. If {An} ∈ S(PC), then

lim inf
n→∞

Σ(An) = lim sup
n→∞

Σ(An) = Σ(A) ∪ Σ(Ã).

Proof. This follows from applying Theorem 12.2 to {A∗nAn} ∈
S(PC), which gives

lim inf
n→∞

sp (A∗nAn) = lim sup
n→∞

sp (A∗nAn) = sp (A∗A) ∪ sp (Ã∗Ã),

together with the observation sp (B∗B) = {σ2 : σ ∈ Σ(B)}.

Corollary 13.2. If a ∈ PC, then

lim inf
n→∞

Σ(Tn(a)) = lim sup
n→∞

Σ(Tn(a)) = Σ(T (a)) ∪ Σ(T (ã)).

We remark that the identity

Σ(T (a)) ∪ {0} = Σ(T (ã)) ∪ {0}
always holds, but in general Σ(T (a)) and Σ(T (ã)) may be different
sets. Indeed, letting a(t) = t (t ∈ T), we have

T (a) =




0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .

. . . . . . . . . . . . . . .




,

T (ã) =




0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .

. . . . . . . . . . . . . . .




,

so T ∗(a)T (a) and T ∗(ã)T (ã) are equal to



1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .

. . . . . . . . . . . . . . .




and




0 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
. . . . . . . . . . . . . . .




,
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respectively, whence Σ(T (a)) = {1} and Σ(T (ã)) = {0, 1}.

14. Eigenvalues of non-Hermitian matrices

This section does not deal with the application of C∗-algebras to
numerical analysis, its purpose is rather to motivate the next section,
where we will again reap the harvest of the work done by C∗-algebras
in Section 11.

As a matter of fact, only little is known about the limiting sets
of sp Tn(a) for general (complex-valued) symbols a ∈ PC.

It turns out that in the case of rational symbols a the spectra
spTn(a) need not at all mimic sp T (a). The simplest example is

T (a) =




0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .

. . . . . . . . . . . . . . .




,

where sp T (a) is the closed unit disk (which follows from Theorem
4.4), whereas sp Tn(a) = {0} for all n.

For the sake of simplicity, let us consider Toeplitz band matrices,
that is, let us assume that a is a trigonometric polynomial:

a(t) =
q∑

k=−p

aktk (t ∈ T), p ≥ 1, q ≥ 1, a−paq 6= 0.

Given r ∈ (0,∞), define the trigonometric polynomial ar by

ar(t) =
q∑

k=−p

akrktk (t ∈ T)

(note that if a would have infinitely many nonzero Fourier coef-
ficients, then such a definition of ar runs into problems with the
convergence of the Fourier series). Since

Tn(ar) = diag (r, r2, . . . , rn) Tn(a) diag (r−1, r−2, . . . , r−n),

we have sp Tn(ar) = sp Tn(a). Thus, if there were any reason for
Tn(a) to mimic sp T (a), this reason would also force sp Tn(a) to
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mimic sp T (ar). As the spectrum of T (a) is determined by a(T)
and the spectrum of T (ar) is dictated by a(rT), it is clear that in
general both spectra are distinct. The equality sp Tn(ar) = sp Tn(a)
and Proposition 12.1 give

lim inf
n→∞

sp Tn(a) ⊂ lim sup
n→∞

spTn(a) ⊂
⋂

r∈(0,∞)

spT (ar).

Actually we have the following.

Theorem 14.1 (Schmidt and Spitzer 1960). If a is a trigono-
metric polynomial, then

lim inf
n→∞

spTn(a) = lim sup
n→∞

sp Tn(a) =
⋂

r∈(0,∞)

sp T (ar).

One can show that
⋂

r∈(0,∞) sp T (ar) is always connected and
that it is the union of at most finitely many analytic arcs.

A result similar to Theorem 14.1 was proved in 1975 by K.M.
Day for rational symbols. For non-rational symbols, rigorous results
were established by Widom [66], Basor and Morrison [5], [6], Tyr-
tyshnikov and Zamarashkin [61], and Tilli [59], to cite only a few
sample papers (also see [19]). These results are about clusters and
Szegö type formulas for the eigenvalues of Tn(a) for large n.

We confine ourselves to citing a pretty nice recent observation by
Tilli [59]. For a ∈ L∞, let R(a) denote the essential range of a. The
complement C\R(a) is the union of connected components, exactly
one which, say Ω0, is unbounded, while the other components, say
Ω1, Ω2, . . ., are bounded. The extended essential range ER(a) is
defined as

ER(a) = R(a) ∪ Ω1 ∪ Ω2 ∪ . . . .

If C \ R(a) has no bounded components, we put ER(a) = R(a).

Theorem 14.2 (Tilli 1999). For every a ∈ L∞, the set ER(a)
is a cluster for the eigenvalues of Tn(a), that is, if U is any open
set which contains ER(a) and if γ(U, n) stands for the number of
eigenvalues of Tn(a) in U (multiplicities taken into account), then

lim
n→∞

γ(U, n)
n

= 1.
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In other words, only o(n) of the n eigenvalues of Tn(a) lie outside
U as n →∞. If, for example, a ∈ PC and R(a) is a finite set,
Theorem 14.2 implies that lim inf sp Tn(a) contains a point of R(a);
Tilli showed that even all of R(a) is contained in lim inf sp Tn(a).

15. Pseudospectra

Theorem 14.1 tells us that the spectra sp Tn(a) need not mimic
spT (a) as n goes to infinity. In contrast to this, pseudospectra be-
have as nicely as we could ever expect.

For ε > 0, the ε-pseudospectrum spε B of a bounded Hilbert
space operator B is defined as the set

spε B :=
{

λ ∈ C : ‖(B − λI)−1‖ ≥ 1
ε

}
;

here, as usual, ‖(B − λI)−1‖ = ∞ if B − λI is not invertible. Thus
spB ⊂ spε B for every ε > 0.

In the same way the question “Is B invertible ?” is in numerical
analysis better replaced by the question “What is ‖B−1‖ ?” (or,
still better, by the question “What is κ(B) ?”), the pseudospectra of
matrices and operators are, in a sense, of even greater import than
their usual spectra.

The following theorem provides an alternative description of pseu-
dospectra.

Theorem 15.1. Let A be a unital C∗-algebra and b ∈ A. Then for
every ε > 0,

{
λ ∈ C : ‖(b− λe)−1‖ ≥ 1

ε

}
=

⋃

‖c‖≤ε

sp (b + c),

the union over all c ∈ A of norm at most ε.

Taking A = B(H), the C∗-algebra of all bounded linear operators
on a Hilbert space H, we get

spε B =
⋃

‖C‖≤ε

sp (B + C). (59)
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Equality (59) is one of the reasons that the plots we see on the
computer’s screen are sometimes closer to pseudospectra than to the
usual spectra. On the other hand, equality (59) can often be used to
get an idea of the ε-pseudospectrum of a matrix B: simply perturb
B randomly by (say 50) matrices C satisfying ‖C‖ ≤ ε and look
at the superposition of the plots of the spectra (= eigenvalues) of
B + C.

Clearly, to understand the behavior of spε Tn(a) for large n, we
need precise information about the norms ‖T−1

n (a− λ)‖ as n →∞.
But just such kind of information is given by Theorem 11.2. Here is
the result of this section.

Theorem 15.2. If {An} ∈ S(PC) and ε > 0, then

lim inf
n→∞

spε (An) = lim sup
n→∞

spε (An) = spε A ∪ spε Ã.

Proof. We first show that spε A ⊂ lim inf spε An. If λ ∈ sp A, then
‖(An − λI)−1‖ → ∞ by virtue of Theorem 11.2, which implies that
λ belongs to lim inf spε An. So suppose λ ∈ spε A \ spA. Then
‖(A − λI)−1‖ ≥ 1/ε. Let U ⊂ C be any open neighborhood of λ.
As the norm of the resolvent of a Hilbert space operator cannot be
locally constant (see, e.g., [19, Theorem 3.14]), there is a point µ ∈ U
such that ‖(A− µI)−1‖ > 1/ε. Hence, we can find a k0 such that

‖(A− µI)−1‖ ≥ 1
ε− 1/k

for all k ≥ k0.

As U was arbitrary, it follows that there exists a sequence λ1, λ2, . . .
such that λk ∈ spε−1/k A and λk → λ. By Theorem 11.2,

lim
n→∞

‖(An − λkI)−1‖ ≥ 1
ε− 1/k

.

Consequently, ‖(An − λkI)−1‖ ≥ 1/ε and thus λk ∈ spε An for all
n ≥ n(k). This shows that λ = lim λk belongs to lim inf spε An.

Repeating the above reasoning with WnAnWn and Ã in place of
An and A, respectively, we obtain

spε Ã ⊂ lim inf
n→∞

spε WnAnWn.
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Obviously, spε WnAnWn = spε An. In summary, we have proved
that

spε A ∪ spε Ã ⊂ lim inf
n→∞

spε An.

In order to prove the inclusion lim sup spε An ⊂ spε A ∪ spε Ã,
suppose λ is not inspε A ∪ spε Ã. Then ‖(A − λI)−1‖ < 1/ε and
‖(Ã− λI)−1‖ < 1/ε, whence

‖(An − λI)−1‖ <
1
ε
− δ <

1
ε

for all n ≥ n0

with some δ > 0 due to Theorem 11.2. If n ≥ n0 and |µ − λ| <
εδ(1/ε− δ)−1, then

‖(An − µI)−1‖ ≤ ‖(An − λI)−1‖
1− |µ− λ| ‖(An − λI)−1‖

<
1/ε− δ

1− εδ(1/ε− δ)−1(1/ε− δ)
=

1
ε
,

thus µ 6∈ spε An. This shows that λ cannot belong to lim sup spε An.

Corollary 15.3. If a ∈ PC, then for each ε > 0,

lim inf
n→∞

spε Tn(a) = lim sup
n→∞

spε Tn(a) = spε T (a).

Proof. It is clear that spε T (a) = spε T (ã).

16. Asymptotic Moore-Penrose inversion

The purpose of this section is to show how a look at the C∗-algebras
behind the scenes may help us to distinguish between good and no
so good questions of numerical analysis.

Let B be a C∗-algebra. An element a ∈ B is said to be Moore-
Penrose invertible if there exists an element b ∈ B such that

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba. (60)

If (60) is satisfied for some b ∈ B, then this element b is uniquely de-
termined. It is called the Moore-Penrose inverse of a and is denoted
by a+.
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Theorem 16.1. An element a of a unital C∗-algebra is Moore-
Penrose invertible if and only if there exists a number d > 0 such
that

sp (a∗a) ⊂ {0} ∪ [d2,∞).

Such a result is implicit in Harte and Mbekhta’s paper [35]. As
far as I know, it was Roch and Silbermann [52], [53] who were the
first to state the result explicitly. A full proof is also in [19, Theorem
4.21].

Corollary 16.2. Let B be a unital C∗-algebra with the unit e and
let A be a C∗-subalgebra of B which contains e. If a ∈ A is Moore-
Penrose invertible in B, then a+ ∈ A.

Proof. Combine Proposition 5.1 and Theorem 16.1.

Now let H be a Hilbert space and consider the C∗-algebra B(H)
of all bounded linear operators on H. It is well known that an
operator A is Moore-Penrose invertible (as an element of B(H)) if
and only if it is normally solvable, that is, if and only if its range is
closed. In particular, if dim H < ∞, then every operator in B(H) is
Moore-Penrose invertible. The following result is also well known.

Theorem 16.3. Let a ∈ PC. The operator T (a) is normally solv-
able if and only if it is Fredholm.

Heinig and Hellinger [36] studied the following problem.

Question I. Let a ∈ PC and suppose T (a) is normally solvable. Do
the Moore-Penrose inverses T+

n (a) of Tn(a) converge strongly to the
Moore-Penrose inverse T+(a) of T (a)?

The answer is as follows.

Theorem 16.4 (Heinig and Hellinger 1994). Let a ∈ PC and
let T (a) be normally solvable and thus Fredholm. Suppose also that
Ind T (a) 6= 0. Then T+

n (a) converges strongly to T+(a) in exactly
two cases, namely,

(a) if IndT (a) > 0 and the Fourier coefficients (a−1)m of a−1

vanish for all sufficiently large m,
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(b) if Ind T (a) < 0 and the Fourier coefficients (a−1)−m of a−1

vanish for all m large enough.

Clearly, (a) or (b) are satisfied in rare cases only. As the next
result shows, for properly piecewise continuous functions, these con-
ditions are even never met.

Corollary 16.5. If a ∈ PC \C and T (a) is normally solvable, then
the following are equivalent:

(i) T+
n (a) → T+(a) strongly;

(ii) T (a) is invertible, Tn(a) is invertible for all sufficiently large
n, and T−1

n (a) → T−1(a) strongly.

Proof. The implication (ii)⇒(i) is trivial. To prove the reverse impli-
cation, assume (i) holds. If T (a) is invertible, then (ii) follows from
Corollary 10.2 and Proposition 1.1. So assume T (a) is not invertible.
Then, by Theorems 16.3 and 16.4, the function a−1 is a polynomial
times a function in

H∞ ∪H∞ =
{
f ∈ L∞ : fn = 0 for n < 0

}

∪ {
f ∈ L∞ : fn = 0 for n > 0

}
.

By a theorem of Lindelöf functions in H∞∪H∞ do not have jumps.
As we supposed that a ∈ PC \ C, this completes the proof.

Consequently, for symbols in PC \ C Question I does not go
beyond stability and the finite section method.

In algebraic language, Question I asks the following: if T (a) is
normally solvable, is {Tn(a)} Moore-Penrose invertible in S(PC) ?
Indeed, if {Tn(a)} is Moore-Penrose invertible in S(PC), then there
is a sequence {Bn} ∈ S(PC) such that

Tn(a)BnTn(a)− Tn(a) = 0, BnTn(a)Bn −Bn = 0, (61)

and
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(Tn(a)Bn)∗ − Tn(a)Bn = 0, (BnTn(a))∗ −BnTn(a) = 0 (62)

for all n ≥ 1. From (61) and (62) we infer that Bn = T+
n (a), and

passing to the strong limit n →∞ in (61) and (62), we get

T (a)BT (a)− T (a) = 0, BT (a)B −B = 0,

(T (a))∗ − T (a)B = 0, (BT (a))∗ −BT (a) = 0,

which shows that the strong limit B of T+
n (a) coincides with T+(a).

Conversely, suppose the answer to Question I is in the affirma-
tive. Then (61) and (62) are satisfied for Bn = T+

n (a), and since
Bn → T+(a) strongly, the Banach-Steinhaus theorem implies that
sup ‖Bn‖ < ∞. Thus, {Tn(a)} is Moore-Penrose invertible in the
(big) C∗-algebra S introduced in Section 7. From Corollary 16.2 we
deduce that {Tn(a)} is even Moore-Penrose invertible in S(PC).

We know that invertibility in S(PC)/N amounts to stability and
thus to a more natural question than invertibility in S(PC). Ques-
tion I is equivalent to Moore-Penrose invertibility in S(PC). This
led Silbermann to asking what the Moore-Penrose invertibility of
{Tn(a)}+N in S(PC)/N means. Arguing as in the preceding para-
graph, it is easily seen that this is just the following question.

Question II. Let a ∈ PC and suppose T (a) is normally solvable. Is
there a sequence {Bn} of n× n matrices such that

‖Tn(a)BnTn(a)− Tn(a)‖ → 0, ‖BnTn(a)Bn −Bn‖ → 0, (63)

‖(Tn(a)Bn)∗−Tn(a)Bn‖ → 0, ‖(BnTn(a))∗−BnTn(a)‖ → 0, (64)

and Bn → T+(a) strongly?

Here is the answer to Question II.

Theorem 16.6 (Silbermann 1996). If a ∈ PC and T (a) is nor-
mally solvable, then there is a sequence {Bn} ∈ S(PC) such that
(63) and (64) hold and Bn → T+(a) strongly.

The proof of Theorem 16.6 is based on the following nice result,
which is certainly of independent interest.



110 ALBRECHT BÖTTCHER

Theorem 16.7 (Roch and Silbermann 1996). Let a ∈ PC. If
T (a) is Fredholm of index k ∈ Z, then the |k| first singular values
of Tn(a) go to zero, while the remaining n − |k| singular values of
Tn(a) stay away from zero.

An “elementary” proof of this theorem is in [19, Propositions 4.7
and 4.8].

Proof of Theorem 16.6. By Theorem 16.3, we may assume that T (a)
is Fredholm of some index k ∈ Z. Let

(0 ≤) s1(Tn(a)) ≤ s2(Tn(a)) ≤ . . . ≤ sn(Tn(a))

be the singular values of Tn(a) and put

Sn := diag
(
s1(Tn(a)), s2(Tn(a)), . . . , sn(Tn(a))

)
.

There are unitary n× n matrices Un and Vn such that

Tn(a) = UnSnVn

(singular value decomposition). Let S#
n be the diagonal matrix that

arises from Sn by replacing the first |k| singular values s1(Tn(a)), . . . ,
s|k|(Tn(a)) with zero, and put

A#
n := UnS#

n Vn.

Theorem 16.7 shows that

‖Tn(a)−A#
n ‖ = ‖Sn − S#

n ‖ = s|k|(Tn(a)) = o(1),

whence
{Tn(a)}+ N = {A#

n }+ N. (65)

The eigenvalues of (A#
n )∗A#

n = V ∗
n (S#

n )∗S#
n Vn are the diagonal en-

tries of the diagonal matrix (S#
n )∗S#

n , that is, they are the numbers

0, . . . , 0︸ ︷︷ ︸
|k|

,
(
s|k|+1(Tn(a))

)2

, . . . ,
(
sn(Tn(a))

)2

.

From Theorem 16.7 we therefore see that

sp
(
{A#

n }∗{A#
n }

)
⊂ {0} ∪ [d2,∞)
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for some d > 0, and Theorem 16.1 now shows that {A#
n } is Moore-

Penrose invertible in S(PC). It follows that {A#
n } + N is Moore-

Penrose invertible in S(PC)/N, and (65) now implies that {Tn(a)}+
N is Moore-Penrose invertible in S(PC)/N.

17. Quarter-plane Toeplitz operators

Let Q = {(i, j) ∈ Z2 : i ≥ 1, j ≥ 1}. For a ∈ L∞(T2), the quarter-
plane Toeplitz operator T++(a) is the bounded operator on l2(Q)
which acts by the rule

(T++(a)x)ij =
∑
k≥1
l≥1

ai−k,j−lxkl,

where {amn}∞m,n=−∞ is the sequence of the Fourier coefficients of a,

amn =
1

(2π)2

∫ 2π

0

∫ 2π

0

a(eiθ, eiϕ)e−imθe−inϕ dθ dϕ.

We define the projections Pn ⊗ Pn on l2(Q) by
(
(Pn ⊗ Pn)x

)
ij

=
{

xij if 1 ≤ i ≤ n and 1 ≤ j ≤ n,
0 otherwise,

and we put

Tn,n(a) := (Pn ⊗ Pn) T++(a) (Pn ⊗ Pn)|Im (Pn ⊗ Pn).

The sequence {Tn,n(a)}∞n=1 is said to be stable if

lim sup
n→∞

‖T−1
n,n(a) (Pn ⊗ Pn)‖ < ∞.

The purpose of this section is to show how C∗-algebra techniques
can be used to establish a stability criterion for {Tn,n(a)} in the case
where a is piecewise continuous.

The space l2(Q) is the Hilbert space tensor product of two copies
of l2,

l2(Q) = l2 ⊗ l2.

This means that finite sums
∑

j x(j)⊗y(j) are dense in l2(Q), where,
for x = {xk} ∈ l2 and y = {yk} ∈ l2, the sequence x ⊗ y ∈ l2(Q) is
given by x⊗ y = {xkyl}.



112 ALBRECHT BÖTTCHER

Given A,B ∈ B(l2), the operator A⊗B ∈ B(l2(Q)) is defined as
the linear and continuous extension to l2(Q) of the map defined for
x, y ∈ l2 by

(A⊗B)(x⊗ y) := Ax⊗By.

One can show that ‖A⊗B‖ = ‖A‖ ‖B‖. Also notice that if A ∈ B(l2)
and γ ∈ C, then

γI ⊗A = I ⊗ γA, A⊗ γI = γA⊗ I.

For b, c ∈ L∞, we define b⊗ c ∈ L∞(T2) by

(b⊗ c)(ξ, η) := b(ξ)c(η), (ξ, η) ∈ T2.

We let PC ⊗ PC stand for the closure in L∞(T2) of the set of all
finite sums ∑

j

bj ⊗ cj , bj ∈ PC, cj ∈ PC.

If a ∈ PC ⊗ PC is a finite sum a =
∑

j bj ⊗ cj with bj , cj ∈ PC,
then

T++(a) =
∑

j

T (bj)⊗ T (cj), Tn,n(a) =
∑

j

Tn(bj)⊗ Tn(cj).

Our aim is to prove the following result.

Theorem 17.1. Let a ∈ PC⊗PC. The sequence {Tn,n(a)} is stable
if and only if the four operators

T++(a00), T++(a01), T++(a10), T++(a11) (66)

are invertible, where for (ξ, η) ∈ T2,

a00(ξ, η) = a(ξ, η), a01(ξ, η) = a(ξ, η−1),
a10(ξ, η) = a(ξ−1, η), a11(ξ, η) = a(ξ−1, η−1).

Invertibility criteria for general quarter-plane Toeplitz operators
are not known. For symbols in PC ⊗ PC, we have at least an effec-
tively verifiable Fredholm criterion. It is easily seen that for every
a ∈ PC ⊗ PC and each (ξ, η) ∈ T2 the four limits

a(ξ ± 0, η ± 0) := lim
ε→0±0,
δ→0±0

a(ξeiε, ηeiδ).
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exist. Thus, for a ∈ PC ⊗ PC each (τ, µ) ∈ T× [0, 1] we can define
two functions a1

τ,µ and a2
τ,µ in PC by

a1
τ,µ(t) = (1− µ) a (τ − 0, t) + µa (τ + 0, t), (67)

a2
τ,µ(t) = (1− µ) a (t, τ − 0) + µa (t, τ + 0), t ∈ T.

Here is a Fredholm criterion.

Theorem 17.2 (Duduchava 1977). Let a ∈ PC ⊗ PC. The
operator T++(a) is Fredholm on l2(Q) if and only if the operators
T (a1

τ,µ) and T (a2
τ,µ) are invertible for all (τ, µ) ∈ T× [0, 1]. In that

case IndT++(a) = 0.

We now proceed to the proof of Theorem 17.1. Let F stand for
the C∗-algebra of all sequences {An}∞n=1 of operators

An ∈ B
(
Im (Pn ⊗ Pn)

)

such that
‖{An}‖ := sup

n≥1
‖An‖ < ∞,

and let M be the closed ideal of F which consists of all sequence
{An} for which ‖An‖ → 0 as n →∞. Let S and N be as in Section
7. Given two C∗-subalgebras E and G of S/N, we define the C∗-
subalgebra E ⊗G of F/M as the closure in F/M of the set of all
finite sums of the form

∑

j

{
E(j)

n ⊗G(j)
n

}
+ M, {E(j)

n }+ N ∈ E, {G(j)
n }+ N ∈ G.

Put
A := S(PC)/N.

It is easily seen that if a ∈ PC ⊗ PC, then the sequence {Tn,n(a)}
is stable if and only if {Tn,n(a)}+ M is invertible in A⊗A.

In what follows, we use the abbreviations

{An}ν := {An}+ N, {An}µ := {An}+ M.

Lemma 17.3. Let a ∈ PC ⊗ PC. Then {Tn,n(a)}µ is invertible
in A ⊗ A if and only if the four operators (66) as well as the two
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elements

{Tn,n(a)}µ + J⊗A ∈ A⊗A/J⊗A, (68)
{Tn,n(a)}µ + A⊗ J ∈ A⊗A/A⊗ J (69)

are invertible.

Proof. The invertibility of the elements (68) and (69) is equivalent
to the invertibility of the element

{Tn,n(a)}µ + J⊗ J ∈ A⊗A/J⊗ J. (70)

Indeed, the invertibility of (68) and (69) is obviously implied by the
invertibility of (70). Conversely, if (68) and (69) have the inverses

{Bn}µ + J⊗A and {Cn}µ + A⊗ J,

then {
Bn + Cn −BnTn,n(a)Cn

}µ

+ J⊗ J

is readily seen to be the inverse of (70).
Let J0 and J1 be the ideals introduced in Section 8. The ideal

J ⊗ J is the smallest closed ideal of A ⊗A which contains the four
ideals

J0 ⊗ J0, J0 ⊗ J1, J1 ⊗ J0, J1 ⊗ J1.

The maps

ψ00: {An}µ 7→ s- lim
n→∞

(Pn ⊗ Pn)An(Pn ⊗ Pn),

ψ01: {An}µ 7→ s- lim
n→∞

(Pn ⊗Wn)An(Pn ⊗Wn),

ψ10: {An}µ 7→ s- lim
n→∞

(Wn ⊗ Pn)An(Wn ⊗ Pn),

ψ11: {An}µ 7→ s- lim
n→∞

(Wn ⊗Wn)An(Wn ⊗Wn),

are well-defined ∗-homomorphisms from A⊗A to B(l2(Q)), and the
restrictions

ψ00|J0 ⊗ J0, ψ01|J0 ⊗ J1, ψ10|J1 ⊗ J0, ψ11|J1 ⊗ J1

are injective. Let us, for instance, prove the injectivity of ψ01|J0⊗J1.
Finite sums of the form

∑

j

{PnKjPn ⊗WnLjWn}µ, Kj ∈ K, Lj ∈ K.
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are dense in J0 ⊗ J1. Since
∥∥∑

j

Kj ⊗ Lj

∥∥

= lim
n→∞

∥∥(Pn ⊗Wn)
∑

j

(PnKjPn ⊗WnLjWn)(Pn ⊗Wn)
∥∥

≤ lim sup
n→∞

∥∥∑

j

(PnKjPn ⊗WnLjWn)
∥∥

=
∥∥∑

j

{PnKjPn ⊗WnLjWn}µ
∥∥,

we see that every element of J0 ⊗ J1 is of the form

{An}µ =
{

(Pn ⊗Wn)A(Pn ⊗Wn)
}µ

(71)

with some A ∈ K(l2(Q)). But if {An}µ is given by (71), then
ψ01({An}µ) = A, and hence ψ01({An}µ) = 0 implies that {An}µ =
0.

Thus, Theorem 5.6 shows that {Tn,n(a)}µ is invertible if and only
if (70) (equivalently: (68) and (69)) and the four operators

T++(aεδ) = ψεδ

(
{Tn,n(a)}µ

)
, (ε, δ) ∈ {0, 1} × {0, 1}

are invertible.

Thus, to prove Theorem 17.1 we are left with showing that (68)
and (69) are automatically invertible if the four operators (66) are
invertible.

Let A⊗C be the closure in A⊗A of the set of all finite sums
∑

j

{Bn ⊗ γPn}µ, {Bn}ν ∈ A, γ ∈ C.

Since Bn ⊗ γPn = γBn ⊗ Pn, it follows that A ⊗C coincides with
the closure in A⊗A of the set of all finite sums

∑

j

{Bn ⊗ Pn}µ, {Bn}ν ∈ A.
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Clearly A⊗C is a C∗-subalgebra of A⊗A. By virtue of Proposition
5.3(b), the image of A⊗C under the canonical ∗-homomorphism

A⊗A → A⊗A/J⊗A

is a C∗-subalgebra of A⊗A/J⊗A. We denote this C∗-subalgebra
by A⊗C/J⊗A.

Lemma 17.4. The map

A/J → A⊗C/J⊗A, {Bn}ν + J 7→ {Bn ⊗ Pn}µ + J⊗A (72)

is a well-defined ∗-isomorphism.

Proof. The map

A → A⊗C/J⊗A, {Bn}ν 7→ {Bn ⊗ Pn}µ + J⊗A. (73)

is a surjective ∗-homomorphism, and we must show that its kernel
is J. So suppose {Bn}ν ∈ A and

{Bn ⊗ Pn}µ ∈ J⊗A (74)

Sequences in J and A have strong limits in K and A(PC), respec-
tively. Thus, on denoting by B ∈ A(PC) the strong limit of Bn, we
infer from (74) that

B ⊗ I ∈ K ⊗A(PC).

This implies that

‖B −PnB‖ = ‖(B −PnB)⊗ I‖ = ‖B ⊗ I − (Pn ⊗ I)(B ⊗ I)‖ = o(1)

as n →∞, and as PnB has finite rank, it follows that B ∈ K. Conse-
quently, the Gelfand transform Γ(B +K) vanishes identically. From
Theorems 6.4 and 8.5 we therefore deduce that Γ({Bn}ν +J) is also
identically zero, and Theorem 5.4 so shows that {Bn}ν ∈ J.

Lemma 17.5. The C∗-algebra A⊗C/J⊗A is a C∗-subalgebra of
the center of the C∗-algebra A⊗A/J⊗A.

Proof. For {Bn}, {Cn}, {Dn} ∈ A we have

{Bn ⊗ Pn}µ{Cn ⊗Dn}µ = {BnCn ⊗Dn}µ,

{Cn ⊗Dn}µ{Bn ⊗ Pn}µ = {CnBn ⊗Dn}µ,
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and since {BnCn − CnBn}ν ∈ J due to the commutativity of A/J
(Theorem 8.5), we arrive at the assertion.

Lemma 17.5 enables us to have recourse to the local principle
of Allan and Douglas (Theorem 5.5). By virtue of Lemma 17.4 and
Theorem 8.5, we can identify the maximal ideal space of A⊗C/J⊗A
with T× [0, 1]. In accordance with Theorem 5.5, we associate with
(τ, µ) ∈ T × [0, 1] the smallest closed ideal Jτ,µ of A ⊗ A/J ⊗ A
which contains the set{

{Bn ⊗ Pn}µ + J⊗A :
(
Γ
(
{Bn}ν + J

))
(τ, µ) = 0

}
.

Lemma 17.6. Let a ∈ PC ⊗ PC, (τ, µ) ∈ T × [0, 1], and define
a1

τ,µ ∈ PC by (67). Then
(
{Tn,n(a)}µ +J⊗A

)
+Jτ,µ =

({
Pn⊗Tn(a1

τ,µ)
}µ

+J⊗A
)

+Jτ,µ.

(75)
Proof. Since

∥∥∥
{

Tn,n(a)
}µ

+ J⊗A
∥∥∥ ≤ lim sup

n→∞
‖Tn,n(a)‖ ≤ ‖a‖∞

and ∥∥∥
{
Pn ⊗ Tn(a1

τ,µ)
}µ

+ J⊗A
∥∥∥ ≤ lim sup

n→∞

∥∥∥Pn ⊗ Tn(a1
τ,µ)

∥∥∥
≤ ‖a1

τ,µ‖∞ = sup
t∈T

|(1− µ)a(τ − 0, t) + µa(τ + 0, t)|

≤ (1− µ)‖a‖∞ + µ‖a‖∞ = ‖a‖∞,

it suffices to prove (75) in the case where a is a finite sum

a =
∑

j

bj ⊗ cj , bj ∈ PC, cj ∈ PC.

In that case we have, by Theorem 8.5,

a1
τ,µ = (1− µ)

∑

j

bj(τ − 0)cj + µ
∑

j

bj(τ + 0)cj ,

=
∑

j

(
Γ
(
{Tn(bj)}ν + J

))
(τ, µ)cj

=:
∑

j

γj(τ, µ)cj ,
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whence
{
Tn,n(a)

}µ

−
{

Pn ⊗ Tn(a1
τ,µ)

}µ

+ J⊗A

=
∑

j

{
Tn(bj)⊗ Tn(cj)

}µ

−
∑

j

{
Pn ⊗ γj(τ, µ)Tn(cj)

}µ

+ J⊗A

=
∑

j

{
Tn(bj)⊗ Tn(cj)

}µ

−
∑

j

{
γj(τ, µ)Pn ⊗ Tn(cj)

}µ

+ J⊗A

=
∑

j

{(
Tn(bj)− γj(τ, µ)Pn

)
⊗ Tn(cj)

}µ

+ J⊗A. (76)

Because
(

Γ
({

Tn(bj)− γj(τ, µ)Pn

}ν

+ J
))

(τ, µ)

=
(

Γ
({

Tn(bj)
}ν

+ J
))

(τ, µ)− γj(τ, µ) = 0,

we see from the definition of Jτ,µ that (76) belongs to Jτ,µ.

Proof of Theorem 17.1. As already said, it remains to prove that
(68) and (69) are invertible if the four operators (66) are invertible.
The sole Fredholmness of the operator T++(a00) = T++(a) implies
that T (a1

τ,µ) is invertible for all (τ, µ) ∈ T × [0, 1] (Theorem 17.2).
Hence, {Tn(a1

τ,µ)}ν is invertible in A (Theorem 9.2). Let {Bn}ν

be the inverse of {Tn(a1
τ,µ}ν . Then {Pn ⊗ Bn}µ is the inverse of

{Pn ⊗ Tn(a1
τ,µ)}µ, that is

{
Pn ⊗ Tn(a1

τ,µ)
}µ

is invertible in A ⊗A for all (τ, µ) ∈ T × [0, 1]. From Lemma 17.6
we now deduce that

(
{Tn,n(a)}µ + J⊗A

)
+ Jτ,µ

is invertible for all (τ, µ) ∈ T × [0, 1], and Theorem 5.5 therefore
gives the invertibility of (68). Replacing in the above reasoning A⊗
C/J ⊗A by C ⊗A/A ⊗ J, one can analogously prove that (69) is
invertible.
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18. Segal-Bargmann space Toeplitz operators

The Segal-Bargmann space A2(CN , dµ) is the Hilbert space of all
functions f which are analytic on CN and satisfy

‖f‖2 :=
∫

CN

|f(z1, . . . , zN )|2 dµ(z1) . . . dµ(zN ) < ∞,

where dµ(z) = (2π)−1e−|z|
2
dA(z) and dA(z) is area measure on C.

Let us first consider the case N = 1. We denote by C the com-
pactification of C by a circle at infinity. Thus, a ∈ C(C) if and only
if the limit

a∞(t) = lim
r→∞

a(rt)

exists for every t ∈ T and if a∞ ∈ C(T). For a ∈ C(C), the Toeplitz
operator T 1(a) on A2(C, dµ) is defined by

(T 1(a)f)(z) =
∫

C

a(w)ezw/2f(w) dµ(w), z ∈ C.

An orthonormal basis {en}∞n=1 of A2(C, dµ) is constituted by the
functions

en(z) =
(
2n−1(n− 1)!

)−1/2

zn−1.

For a ∈ C(C), let T 0(a) be the bounded operator on A2(C, dµ)
whose matrix representation with respect to the basis {en}∞n=1 is the
Toeplitz matrix T (a∞) = ((a∞)j−k)∞j,k=1 constituted by the Fourier
coefficients of the function a∞. One can show that

T 1(a) = T 0(a) + K (77)

with some compact operator K on A2(C, dµ). We define the projec-
tions Pn on A2(C, dµ) by

Pn :
∞∑

k=1

xkek 7→
n∑

k=1

xkek,

and we put T 1
n(a) := PnT 1(a)Pn|Im Pn. From Corollary 10.3 and

(77) we immediately obtain the following.
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Theorem 18.1. Let a ∈ C(C). The sequence {T 1
n(a)}∞n=1 is stable

if and only if T 1(a) and T 0(a0) are invertible, where a0(z) := a(z)
for z ∈ C.

We now turn to the case N = 2. The space A2(C2, dµ) is the
Hilbert space tensor product of two copies of A2(C, dµ). We let
C(C

2
) stand for the closure in L∞(C2) of the set of all finite sums∑

j bj ⊗ cj with bj , cj ∈ C(C). For a finite sum a =
∑

j bj ⊗ cj ∈
C(C

2
), we define four operators T γ,δ(a) (γ, δ ∈ {0, 1}) by

T γ,δ(a) =
∑

j

T γ(bj)⊗ T δ(cj). (78)

One can show that ‖T γ,δ(a)‖ ≤ ‖a‖∞, which allows us to extend
the definition of T γ,δ(a) to all functions a ∈ C(C

2
). The really

interesting operator is the operator T 1,1(a), which can also be given
by the formula

(T 1,1(a)f)(z) =
∫

C2
a(w)ezw/2f(w) dµ(w), z ∈ C2,

where zw = z1w1 + z2w2 and dµ(w) = dµ(w1)dµ(w2). The opera-
tor T 0,0(a) is obviously unitarily equivalent to the operator T++(a)
studied in Section 17. Put

T γ,δ
n (a) = (Pn ⊗ Pn)T γ,δ(a)(Pn ⊗ Pn)|Im (Pn ⊗ Pn).

Taking into account (78), it is easy to see that

(Pn ⊗ Pn)T γ,δ
n (a)(Pn ⊗ Pn) → T γ,δ(a1,1) strongly,

(Pn ⊗Wn)T γ,δ
n (a)(Pn ⊗Wn) → T γ,0(a1,0) strongly,

(Wn ⊗ Pn)T γ,δ
n (a)(Wn ⊗ Pn) → T 0,δ(a0,1) strongly,

(Wn ⊗Wn)T γ,δ
n (a)(Wn ⊗Wn) → T 0,0(a0,0) strongly,

where

a1,1(z1, z2) = a(z1, z2), a1,0(z1, z2) = a(z1, z2),
a0,1(z1, z2) = a(z1, z2), a0,0(z1, z2) = a(z1, z2).

Using arguments similar to those of Section 17, one can prove the
following.



C*-ALGEBRAS IN NUMERICAL ANALYSIS 121

Theorem 18.2. Let a ∈ C(C
2
) and let (γ, δ) ∈ {0, 1}2. The se-

quence {T γ,δ
n (a)}∞n=1 is stable if and only if the four operators

T γ,δ(a1,1), T γ,0(a1,0), T 0,δ(a0,1), T 0,0(a0,0)

are invertible.

In the case (γ, δ) = (1, 1) we encounter the four operators

T 1,1(a1,1), T 1,0(a1,0), T 0,1(a0,1), T 0,0(a0,0),

that is, the stability of the sequence {T 1,1
n (a)} of the truncations

of a pure Segal-Bargmann space Toeplitz operator is determined
by this operator itself, by the pure quarter-plane Toeplitz opera-
tor T 0,0(a0,0), and by the two “mixed Toeplitz operators” T 1,0(a1,0)
and T 0,1(a0,1).

For (γ, δ) = (0, 0), Theorem 18.2 is the C⊗C (and thus a special)
version of Theorem 17.1. Notice that the operators

T 0,0(a1,1), T 0,0(a1,0), T 0,0(a0,1), T 0,0(a0,0),

are just the operators

T++(a00), T++(a01), T++(a10), T++(a11)

(in this order).

In the case of general N , we associate with every a ∈ C(C
N

) and
every ε = (ε1, . . . , εN ) ∈ {0, 1}N the operator

T ε(a) = T ε1,...,εN (a) ∈ B
(
A2(CN , dµ)

)

and a function
aε = aε1,...,εN ∈ C(C

N
)

in the natural manner. We put

T ε
n(a) = (Pn ⊗ . . .⊗ Pn)T ε(a)(Pn ⊗ . . .⊗ Pn)|Im (Pn ⊗ . . .⊗ Pn).

Theorem 18.3. Let a ∈ C(C
N

) and ε ∈ {0, 1}N . The sequence
{T ε

n(a)}∞n=1 is stable if and only if the 2N operators T εδ(aδ) (δ ∈
{0, 1}N ) are invertible; here

ε · δ = (ε1, . . . , εN ) · (δ1, . . . , δN ) := (ε1δ1, . . . , εNδN ).
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The proof of Theorem 18.3 is rather difficult. It is done by induc-
tion on N and based on ideas analogous to the ones of Section 17.
For pure Segal-Bargmann space Toeplitz operators, Theorem 18.3
reads as follows.

Theorem 18.4. Let a ∈ C(C
N

). The sequence {T 1,...,1
n (a)}∞n=1

is stable if and only if the 2N operators T δ(aδ) (δ ∈ {0, 1}N ) are
invertible.

It is certainly amusing to know that the proof of Theorem 18.3 is
much simpler than the proof of Theorem 18.4. To be more precise:
the only proof of Theorem 18.4 I have is first to prove Theorem 18.3
and then to deduce Theorem 18.4 as a special case from Theorem
18.4; I do not know how to prove Theorem 18.4 in a direct way.

The mystery’s resolution is “the researcher’s paradox”: some-
times a proof by induction does only work if the result to be proved
is sufficiently sharp. Here is an example of this experience taken
from [60].

We want to prove that

1 · 3 · 5 . . . (2N − 1)
2 · 4 · 6 . . . 2N

<
1√
N

. (79)

Since 1/2 < 1, this is true for N = 1. Suppose (79) holds for N . To
prove (79) for N + 1, we consider

1 · 3 · 5 . . . (2N + 1)
2 · 4 · 6 . . . (2N + 2)

, (80)

and (79) for N tells us that (80) is at most

1√
N

2N + 1
2N + 2

.

But the inequality

1√
N

2N + 1
2N + 2

<
1√

N + 1

is equivalent to the inequality

4N3 + 8N2 + 5N + 1 < 4N3 + 8N2 + 4N,
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which is definitely not true.
Now let us replace (79) by the stronger assertion

1 · 3 · 5 . . . (2N − 1)
2 · 4 · 6 . . . 2N

<
1√

N + 1
. (81)

As 1/2 < 1/
√

2, this is valid for N = 1. Assuming that (81) is true
for N , we get

1 · 3 · 5 . . . (2N + 1)
2 · 4 · 6 . . . (2N + 2)

<
1√

N + 1
2N + 1
2N + 2

,

and because the inequality

1√
N + 1

2N + 1
2N + 2

<
1√

N + 2

is equivalent to the inequality

4N3 + 12N2 + 9N + 2 < 4N3 + 12N2 + 12N + 4,

we get indeed the desired result

1 · 3 · 5 . . . (2N + 1)
2 · 4 · 6 . . . (2N + 2)

<
1√

N + 2
.

19. Notes and some history

The first treatise on the numerical analysis of Toeplitz matrices is
Gohberg and Feldman’s book [30]. This book has strongly influenced
the subsequent development, and it already contains such results as
Corollary 10.2.

In the sixties, I.B. Simonenko created his local principle for study-
ing the Fredholmness of so-called operators of local type. Inspired by
the success of this theory, V.B. Dybin proposed to apply local prin-
ciples to the investigation of the stability of approximation methods.
A.V. Kozak, a student of Dybin’s, carried out this program; he gen-
eralized Simonenko’s local principle to general Banach algebras and
used this new tool to dispose of the question of the stability of se-
quences of compressions of multidimensional convolution operators
with continuous symbols [38], [39]. For example, Theorem 17.1 for
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continuous symbols is a 1973 result of Kozak. Due to the work of
Gohberg, Feldman, and Kozak, to mention only the principal fig-
ures, the stability theory for one- and higher-dimensional Toeplitz
operators (on l2 or on lp) with continuous symbols was essentially
complete in the middle of the seventies.

As the Fredholm theory of Toeplitz operators with piecewise con-
tinuous symbols is especially beautiful for lp spaces, people started
investigating the stability of {Tn(a)} for a ∈ PC on lp. In 1977,
Verbitsky and Krupnik [62] were able to prove that if a ∈ PC has
only one jump, then for {Tn(a)} to be stable on lp it is necessary and
sufficient that T (a) and T (ã) be invertible on lp. Clearly, this result
cried for a local principle, but all attempts to prove it for symbols
with at least two jumps failed.

In the late seventies, I became a student of Silbermann’s and
joined his research into the asymptotic behavior of Toeplitz deter-
minants (Szegö limit theorems). We then read Widom’s paper [64],
which contained formula (31):

Tn(a)Tn(b) = Tn(ab)− PnH(a)H (̃b)Pn −WnH(ã)H(b)Wn.

We soon understood how this formula can be used to study the stabil-
ity of {Tn(a)} on lp for a ∈ PC and extended the Verbitsky/Krupnik
result to symbols with a finite number of jumps [16]. I was satisfied,
but Silbermann went further. When tackling symbols with count-
ably many jumps, he realized that local principles work perfectly
modulo the ideal

J =
{
{PnKPn + WnLWn}+ N : K, L ∈ K

}

(note that already the idea of checking whether this is at all an
ideal is daring). In this way, Silbermann was able to prove results
like the lp version of Corollary 10.3, and at the same time he laid
the foundation for a new level of the application of Banach algebra
techniques to numerical analysis and thus for an approach that has
led to plenty of impressive results during the last 18 years.

Another problem people were working on at that time was quart-
er-plane Toeplitz operators with symbols in PC ⊗PC. For symbols
in C ⊗ C, the Fredholm theory was settled earlier by I.B. Simonen-
ko, R.G. Douglas, R. Howe, and V.S. Pilidi. In his 1977 paper [26],
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Duduchava localized over the central subalgebra

A(C)⊗C/K ⊗A(PC) ∼= C(T)

of A(PC)⊗A(PC)/K ⊗A(PC), arrived at local representatives of
the form

T (b)⊗ T (c) + I ⊗ T (d),

and he was able to come up with these rather complicated local rep-
resentatives and to establish Theorem 17.2. It was again the attempt
of extending an l2 result to the lp setting that moved things ahead:
I understood that localization over the larger central subalgebra

A(PC)⊗C/K ⊗A(PC) ∼= C(T× [0, 1])

of A(PC) ⊗ A(PC)/K ⊗ A(PC) results in local representatives of
the pretty nice form

I ⊗ T (d),

which simplifies Duduchava’s l2 theory significantly and, moreover,
also yields the lp version of Theorem 17.2 [7].

Together with Silbermann, we then realized that a localization
analogous to the one sketched in the previous paragraph should also
work when studying the stability of {Tn,n(a)} for a ∈ PC ⊗ PC.
The result was our 1983 paper [17], in which we introduced the C∗-
algebra

A = S(PC)/N,

established Theorem 8.5 for A/J, localized over

A⊗C/J⊗A ∼= C(T× [0, 1]),

obtained local representatives of the form
{

Pn ⊗ Tn(d)
}

,

and arrived at Theorem 17.1. As to the best of my knowledge, this
was the first time C∗-algebras were deliberately used in connection
with a question of numerical analysis.

Subsequently C∗-algebras have been applied to many problems of
numerical analysis, and things have now become a big business. The
general strategy is always to translate the numerical problem into a
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question about invertibility in some Banach or C∗-algebra and then
to find ideals so that the quotient algebras have a sufficiently large
center. Then one can employ a local principle (say Theorem 5.5), and
in the end one has to “lift” things back from the quotient algebras
to the original algebra. (e.g. by Theorem 5.6). The price one has
to pay is that one must pass from individual operators to algebras
of operators, and these usually contain objects that are much more
complicated than the original operator.

Working in C∗-algebras is always more comfortable than being
in Banach algebras, and results obtained with the help of C∗-algebra
techniques are often much sharper than those gained by having re-
course to Banach algebras. Moreover, frequently C∗-algebras auto-
matically do a perfect job for us. For instance, Gohberg’s result

a ∈ PC, T (a) invertible =⇒ lim sup
n→∞

‖T−1
n (a)‖ < ∞

is 30 years old – only 5 years ago it was observed that the simple
C∗-algebra argument

preservation of spectra =⇒ preservation of norms

yields almost at once the undreamt-of improvement

a ∈ PC =⇒ lim
n→∞

‖T−1
n (a)‖ = ‖T−1(a)‖.

The material of this text exhibits only a modest piece of the
business and is restricted to the few things I have participated in and
to my favorite operators, the Toeplitz operators. For more about the
topic the reader is referred to my texts [19] and [11] with Silbermann
and Grudsky and to Hagen, Roch, and Silbermann’s inexhaustible
books [33], [34]. An independent line of the development has its root
in Arveson’s works [3], [4]. The ideas of Arveson are also discussed
in [34].

In what follows I give a few sources for the result of the text.

Sections 1 to 3. Standard.

Section 4. The books [30], [25], [45], [18], [19] contain the results
of this section, historical comments, and much more. For Hankel
operators, we also refer to the books [46], [47].



C*-ALGEBRAS IN NUMERICAL ANALYSIS 127

Section 5. Most of the results of this section are well known. Theo-
rem 5.5 is due to Allan [1], who established even the Banach algebra
version of this theorem. The theorem was independently discovered
by Douglas [25], who was the first to understand the relevancy of
such a theorem in operator theory. A special version of Theorem 5.6
is already in Silbermann’s paper [54]. In the form we cited Theorem
5.6, it appears in Roch and Silbermann’s works [49], [51].

Section 6. Theorem 6.2 is due to Gohberg [28] and Coburn [23],
Proposition 6.3 and Theorem 6.4 were established by Gohberg and
Krupnik [31].

Sections 7 to 10. Corollary 10.2 is a 1967 result of Gohberg [29],
Corollary 10.3 was obtained in Silbermann’s 1981 paper [54], and
Theorem 10.1 is from my 1983 paper [17] with Silbermann. Theo-
rems 8.1 and 9.1 are C∗-algebra modifications of similar results by
Silbermann [54]. The C∗-algebra (S/(PC)/N)/J was introduced in
[17]. In that paper we also proved Theorems 8.3 to 8.5 and Theo-
rem 9.2. The two proofs of Theorem 9.2 given here are from Ha-
gen, Roch, and Silbermann’s book [34]. They use heavy guns, but
they are beautiful concrete illustrations of the C∗-algebra machin-
ery. More “elementary” proofs are in [17], [18, Theorem 7.11], [19,
Theorem 3.11].

Section 11. The results and the C∗-algebra approach of this sec-
tion are from my article [9], which, I must admit, was essentially
influenced by Silbermann’s paper [55]. It should also be noted that
the goal of [9] was to give alternative proofs and extensions of the re-
sults by Reichel and Trefethen [48] on the pseudospectra of Toeplitz
matrices (see Section 15).

For sequences in S(C), that is, for continuous symbols, we now
also have proofs of Theorems 11.1 and 11.2 that do not invoke C∗-
algebras [15]. The techniques developed in this connection allow
passage to operators on lp and, perhaps more importantly, they yield
good two-sided estimates for the differences

‖An‖ −max(‖A‖, ‖Ã‖), ‖A−1
n ‖ −max(‖A−1‖, ‖Ã−1‖)

and, in particular, estimates for the speed with which the norms
‖T−1

n (a)‖ converges to their limit ‖T−1(a)‖; see [32], [11], [14], [13],
[12].
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Sections 12 and 13. Corollary 12.3 is even true for arbitrary real-
valued a ∈ L∞ and is a classical result: Szegö [58] and Widom [63].
Corollary 13.2 is due to Widom [65] and Silbermann [55]. Theorems
12.2 and 13.1 were established by Roch and Silbermann [50].

Section 14. The classical paper by Schmidt and Spitzer is [57].
An alternative proof of Theorem 14.1, which also gives the “limit-
ing measure”, is in Hirschman’s work [37]. Notice that both proofs
are nevertheless rather intricate and that a “transparent” proof of
Theorem 14.1 is still missing.

Section 15. Henry Landau [40], [41] was the first to study ε-
pseudospectra of Toeplitz matrices, and Corollary 15.3 (for smooth
symbols a) is in principle already in his papers. Independently,
Corollary 15.3 (for symbols with absolutely convergent Fourier se-
ries) was discovered by Reichel and Trefethen [48]. These three au-
thors derived the result with the help of different methods. The
approach of Section 15 and Corollary 15.3 for symbols in PC is from
my paper [9]. Theorem 15.2 appeared in the paper [51] by Roch and
Silbermann for the first time.

For matrices (= operators on Cn), Theorem 15.1 is a simple fact.
In the form stated here it was probably first proved by T. Finck and
T. Ehrhardt (see [51]).

I also recommend

http://web.comlab.ox.ac.uk/projects/pseudospectra

which is a wonderful webpage by Mark Embree and Nick Trefethen.

Section 16. For symbols with absolutely convergent Fourier series,
Theorem 16.4 was proved by Heinig and Hellinger [36] using differ-
ent methods. For symbols in PC, the theorem was established by
Silbermann [56]. A very simple proof was subsequently given in my
paper [10]; this proof is also in [19, Section 4.10].

Several versions of Questions I and II have been studied for a
long time; see, for example, the paper [43] by Moore and Nashed.

In the context of Toeplitz operators, Question II was first raised
by Silbermann [56], who also obtained Theorem 16.6. The “splitting
property” described by Theorem 16.7 was discovered by Roch and
Silbermann [52]; their proof makes essential use of C∗-algebras (and
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even gives an analogue of Theorem 16.7 for block Toeplitz matrices).
The “elementary” proof alluded to in the text was found in [10] (and
it does not work for block Toeplitz matrices).

Section 17. Theorem 17.2 was established by Duduchava [26] (a
simpler proof and the extension to lp are in [7]). All other results and
the reasoning of this section are from the paper [17] by Silbermann
and myself.

Section 18. These results were obtained in my paper [8] and my
papers [20], [21], [22] with Wolf.
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1995.

[34] R. Hagen, S. Roch, and B. Silbermann: C∗-Algebras and Numerical
Analysis. Marcel Dekker, New York and Basel 2001.

[35] R. Harte and M. Mbekhta: On generalized inverses in C∗-algebras.
Part I: Studia Math. 103 (1992), 71–77; Part II: Studia Math. 106
(1993), 129–138.

[36] G. Heinig and F. Hellinger: The finite section method for Moore-
Penrose inversion of Toeplitz operators. Integral Equations and Op-
erator Theory 19 (1994), 419–446.

[37] I.I. Hirschman, Jr.: The spectra of certain Toeplitz matrices. Illinois
J. Math. 11 (1967), 145–159.

[38] A.V. Kozak: On the reduction method for multidimensional discrete
convolutions. Matem. Issled. 8 (29) (1973), 157–160 [Russian].

[39] A.V. Kozak: A local principle in the theory of projection methods.
Soviet Math. Dokl. 14 (1974), 1580–1583.
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