On a Problem of Finbarr Holland

Mohamed Akkouchi

1. Introduction

1.1 In his article [H], Finbarr Holland has solved and discussed a problem that the students were given on the first morning of the 1999 IMO in Bucharest. They were asked to find, for all integers $n \ge 2$, the smallest constant C such that

$$\sum_{1 \le i < j \le n} x_i x_j (x_i^2 + x_j^2) \le C \left(\sum_{i=1}^n x_i\right)^4,$$

for all non-negative real numbers x_1, x_2, \ldots, x_n , and to specify when equality occurs for this value of C. At the end of [H], Finbarr Holland proposed the following problem.

1.2 Problem. Let $n \ge 2$ be a positive integer and p a positive number. Determine (a) the best constant $C_{p,n}$ such that

$$\sum_{1 \le i < j \le n} x_i x_j (x_i^p + x_j^p) \le C_{p,n} \left(\sum_{i=1}^n x_i\right)^{p+2},\tag{1}$$

for all non-negative real numbers x_1, x_2, \ldots, x_n , and (b) the cases of equality.

The object of this note is to propose a solution to this problem. Precisely we shall prove the following the result. **1.3 Proposition.** Let $n \ge 2$ be a positive integer and p a positive real number. Then the following assertions hold true.

- (a) The best constant $C_{p,n}$ satisfying (1) depends only on p and satisfies $\frac{1}{2^{p+1}} \leq C_{p,2} = C_{p,n}$ for all integers $n \geq 2$.
- (b) For all p > 0, we have $C_{p,2} = \max\{(1-t)t^{p+1} + t(1-t)^{p+1} : 0 \le t \le \frac{1}{2}\}.$

(c) If
$$p \ge 2$$
, then $C_{p,2} = \frac{p^p}{(p+1)^{p+1}}$

(d) If
$$1 , then $\frac{1}{2^{p+1}} \le C_{p,2} \le \frac{1}{2^{p+2}} + \frac{(p+1)^{p+1}}{(p+2)^{p+2}}$$$

(e) If
$$0 , then $C_{p,2} = \frac{p^p}{(p+1)^{p+1}}$.$$

2. Proofs

We start by giving an equivalent formulation of Problem 1.2.

2.1 Problem. Let $n \ge 2$ be a positive integer and p > 0. Determine (a) the smallest constant $C_{p,n}$ such that

$$\sum_{i=1}^{n} x_i^{p+1} (1-x_i) \le C_{p,n},$$

for all non-negative real numbers x_1, x_2, \ldots, x_n satisfying $\sum_{i=1}^n x_i = 1$, and (b) the cases of equality.

This formulation holds since we have the following equality:

$$\sum_{1 \le i < j \le n} x_i x_j (x_i^p + x_j^p) = \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n x_i^{p+1}\right) - \sum_{i=1}^n x_i^{p+2}.$$

We let $\Delta_n := \{(x_1, x_2, \dots, x_n) \in [0, 1]^n : \sum_{i=1}^n x_i = 1\}$. For every real number t, we set $F_p(t) := (1-t)t^p$. For all $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, we put $H_p^n(x) := \sum_{i=1}^n x_i F_p(x_i)$. Another formulation of Problem 2.1 is then as follows.

2.2 Problem. Let $n \ge 2$ be a positive integer and p > 0. Determine (a) $\sup\{H_p^n(x) : x \in \Delta_n\} = C_{p,n}$, and (b) the set of points in Δ_n where this maximum is attained.

2.3. We start with the case $p \ge 1$. Along the lines of the paper [H], we distinguish four cases; Case (A), in which we suppose all of the x_i

are in the interval $[0, \frac{1}{2}[$; Case (B) in which we suppose that exactly one of the x_i belongs to $]\frac{1}{2}, 1]$; Case (C) in which we suppose that exactly one of the x_i equals to $\frac{1}{2}$; and Case (D) in which we suppose that precisely two of the x_i are equal to $\frac{1}{2}$. These cases exhaust all possibilities.

Case (A). It is easy to see that the function $x \mapsto x^p(1-x)$ is strictly increasing on the interval $[0, \frac{1}{2}[$, and that $\max\{x^p(1-x) : 0 \le x < \frac{1}{2}\} = \frac{1}{2^{p+1}}$. So, in this case, we have

$$\sum_{i=1}^{n} x_i^{p+1} (1-x_i) \le \max_{1 \le i \le n} x_i^p (1-x_i) \sum_{i=1}^{n} x_i$$
$$= \max_{1 \le i \le n} x_i^p (1-x_i)$$
$$< \frac{1}{2^{p+1}}.$$

Case (B). Suppose that x_k belongs to $]\frac{1}{2}, 1]$. We denote it by a and relabel the remaining n-1 variables as $y_1, y_2, \ldots, y_{n-1}$. We have the relation $1-a = \sum_{i=1}^{n-1} y_i$, from which we deduce that each y_i belongs to $[0, 1-a] \subset [0, \frac{1}{2}[$. It follows that

$$y_i^p(1-y_i) \le a(1-a)^p, \ i=1,2,\ldots,n-1.$$

Hence

$$\sum_{i=1}^{n} x_i^{p+1} (1-x_i) = a^{p+1} (1-a) + \sum_{i=1}^{n-1} y_i^{p+1} (1-y_i)$$

$$\leq a^{p+1} (1-a) + \max_{1 \leq i \leq n-1} y_i^p (1-y_i) \sum_{i=1}^{n-1} y_i$$

$$\leq (1-a) a^{p+1} + a(1-a)^{p+1}.$$

We conclude that in this case, we have

$$\sum_{i=1}^{n} x_i^{p+1} (1-x_i) \le \max\{(1-t)t^{p+1} + t(1-t)^{p+1} : \frac{1}{2} \le t \le 1\}.$$

Case (C). This is treated in a similar manner to Case (B), and we obtain

$$\sum_{i=1}^{n} x_i^{p+1} (1-x_i) \le \frac{1}{2^{p+1}}.$$

Case (D) is trivial, and it shows that we have $C_{p,n} \geq \frac{1}{2p+1}$.

The conclusion of this analysis so far is that, if x_1, x_2, \ldots, x_n are non-negative numbers satisfying $\sum_{i=1}^n x_i = 1$, then

$$\sum_{i=1}^{n} x_i^{p+1} (1-x_i) \le \max\{(1-t)t^{p+1} + t(1-t)^{p+1} : \frac{1}{2} \le t \le 1\}.$$

It is clear that

$$C_{p,2} = \max\{(1-t)t^{p+1} + t(1-t)^{p+1} : \frac{1}{2} \le t \le 1\},\$$

and it is easy to see that $C_{p,2}$ at most is

$$C_{p,n} = \max\left\{\sum_{i=1}^{n} x_i^{p+1}(1-x_i) : x_1, \dots, x_n \in [0,1], \sum_{i=1}^{n} x_i = 1\right\}.$$

Thus, we have proved part of (a). The assertion (b) is clear.

2.4. We suppose that p > 0. Let us introduce the function

$$h_p(t) := H_p^2(t, 1-t) = t(1-t)[t^p + (1-t)^p] \quad \forall t \in \mathbb{R}.$$

Since the function F_p is concave on $[0, \infty[$ having $F_p(\frac{p}{p+1})$ as the (only) maximal value, we obtain, for all $t \in [0, 1]$,

$$h_p(t) = tF_p(t) + (1-t)F_p(t)$$

$$\leq F_p(t^2 + (1-t)^2) \leq F_p(\frac{p}{p+1}) = \frac{p^p}{(p+1)^{p+1}}$$

Since $h_p(\frac{1}{2}) = \frac{1}{2^{p+1}}$, we deduce that $\frac{1}{2^{p+1}} \leq C_{p,2} \leq \frac{p^p}{(p+1)^{p+1}}$ for all p > 0.

2.5. We suppose that $p \in [2, \infty[$. We shall prove that $C_{p,2} = \frac{p^p}{(p+1)^{p+1}}$. To this end, we consider $u := \frac{1}{2}(1 - \sqrt{\frac{p-1}{p+1}})$ and $v := \frac{1}{2}(1 + \sqrt{\frac{p-1}{p+1}})$; these are the solutions (belonging to [0,1]) of the algebraic equation $t^2 + (1-t)^2 = \frac{p}{p+1}$. According to the convexity of the function $t \mapsto t^{p-1}$ on $[0, \infty[$, we deduce that

$$h_p(u) = \frac{p}{2(p+1)}(uu^{p-1} + vv^{p-1})$$

$$\geq \frac{p}{2(p+1)}(u^2 + v^2)^{p-1} = \frac{p^p}{2(p+1)^p} \geq \frac{p^p}{(p+1)^{p+1}}$$

159

According to 2.5, we conclude that $C_{p,2} = \frac{p^p}{(p+1)^{p+1}}$. Thus we have proved (c). The assertion (d) is easy to obtain, hence we omit it.

2.6. To complete the proof, we look at the case $0 . It is clear that in this case, the function <math>t \mapsto t^{p-1}$ is decreasing and convex on $]0, \infty[$. For all $t \in]0, \frac{p}{(p+1)}]$, we have $1 - t \ge \frac{1}{p+1}$ and $t^2 + (1-t)^2 \ge \frac{1}{2} \ge \frac{p}{p+1}$, therefore

$$C_{p,2} \ge h_p(t) = t(1-t)(tt^{p-1} + (1-t)(1-t)^{p-1})$$

$$\ge t(1-t)(t^2 + (1-t)^2)^{p-1} \ge t\frac{p^{p-1}}{(p+1)^p}.$$

We deduce then that $C_{p,2} \geq \frac{p^p}{(p+1)^{p+1}}$. For every integer $n \geq 2$ and all $x \in \Delta$, we have

$$\sum_{i=1}^{n} x_i^{p+1} (1-x_i) \le F_p(\frac{p}{p+1}) \sum_{i=1}^{n} x_i = F_p(\frac{p}{p+1}).$$

Thus, we find $C_{p,2} = C_{p,n} = F_p(\frac{p}{p+1}) = \frac{p^p}{(p+1)^{p+1}}$. So we have proved Proposition 1.3.

3. Remarks

3.1. In the case where $1 , we have only obtained upper and lower estimates for the best constant <math>C_{p,n}$. We believe that (in this case) the following equality holds

$$C_{p,2} = F_p(\frac{p}{p+1}),$$

but we have no proof. We conclude this note by giving another problem generalizing Problem 1.2.

3.2 Problem. Let n, k be positive integers such that $k \leq n$ and p > 0. Determine (a) the smallest constant $C_{p,n,k}$ such that

$$\sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} x_{i_1} x_{i_2} \ldots x_{i_k} \left(x_{i_1}^p + x_{i_2}^p + \ldots + x_{i_k}^p \right) \le C_{p,n,k} \left(\sum_{i=1}^n x_i \right)^{p+k},$$

for all non-negative real numbers x_1, x_2, \ldots, x_n satisfying $\sum_{i=1}^n x_i = 1$, and (b) the cases of equality.

Mohamed Akkouchi

References

[H] Finbarr Holland, Three problems in one, Irish Mathematical Society Bulletin 43 (1999), 73–78.

Mohamed Akkouchi, Département de Mathématiques, Faculté des Sciences-Semlalia, Université Cadi Ayyad, Avenue du prince My. Abdellah. B.P. 239, Marrakech, Morocco

Received on 1 March 2000 and in revised form on 5 December 2000.