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each being given in alternate years. The first J. L. Synge Prize
in Mathematics was shared by John Callan and Raymond Rus-
sell in 1993, and the second was awarded to Conal Kennedy in
1!_)95. The first J. L. Synge Public Lecture was given by Professor
Sir Hermann Bondi in 1592, and the second by Professor Werner
Israel, a student of Professor Synge. The third lecture was given
by Professor Sir Roger Penrose on May 7, 1096.

Professor Synge was a kind and generous man. He encour-
aged and inspired several generations of students who will always
remember him with gratitude, fondness and the deepest respect.

Petros S. Florides,
School of Mathematics,
Trinity College,

Dublin 2,

Ireland.

A CONIC AND A PASCAL LINE
AS CUBIC LOCUS

P. D. Barry

1. Statement of results

This material arose out of an effort to generalize a result of
Williain Wallace in 1797, to the effect that the feet of the perpen-
diculars from a point on the circumcircle of a triangle onto the
side-lines are collinear. Through historical mis-attribution, the
Hines of collinearity have been widely known as Simson lines.
Our most general result is Theorem 3. A reduced case of that

.is Theorem 1. ‘A converse of the latter is Theorem 2, and this

constitutes an enhancement of the configuration in the celebrated
Pascal’s theorem.

Theorem 1. In a projective plane, let A;, A4, As; be non-
collinear points and B, By, B3 distinct collinear points such
that '

By # Az, A3, By # Az, Ay, B3 # Ay, Ao,

AB3 # A3Bs, AsBy # A1B3, A1 By # A2B) (1)
Let Ct, Ca, C5 be the points specified by

Cy=A3BsNAzBy, Oy = AsB1NA By, T3 = A;ByNAyB;. (2)

For a variable point P, take points (J1 € AsAs, Qo € Az4,,
(J3 € Ay Aa, such that Q) € PBy, Q2 € PBy, @3 € PB3. Then
the set & of poinis P for which ¢4, (35, (J3 are collinear, contains
the points A,, As, Az, By, By, Bs, C1, Cs, Cs. It is either the
whole plane or else a conic through A;, Ay, A, Cy, O, C3, and
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the line By By B;. The degenerate case of the plane occurs when
B, € AgAg, By e AgAl, B3y e A1 A,.

Now by (2) we also have
AyC3N AT, = By, A3CiNA1Cs = By, A1C2NAC) = B, (3)

so we have the conic through Ay, Ay, A3, C1, C3 and Cs, and the
Pascal line B, By B;. This is the configuration of Pascal’s theorem.

Working somewhat in reverse and starting differently, we can
also state the following, which is a converse of Theorem 1.

Theorem 2. In a projective plane, let C, be a proper point coxic,
and AI, Ag, Ag, C]_, Cg, C3 distinct pOfIltS on Cl. Let

Ay Oy N A3C, = By, A3Ci N A1053 = By, A1Ca Ayl = Bs,

so that By, By, B; are collinear. If for any point P, PB; meets
Az Aj at )y, PB, meets Az Aq at @, and PBj meets Ay Az at Qs,
then ¢J1, Q2 and Q3 are collinear if and only P is on C; or on the
Iine BleBg.

Figure 1 refers to Theorems 1 and 2.
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A conic and a line constitute a reducible cubic and our locus
is essentially a cubic. Qur approach has caused us to take By, B
and Bj to be collinear, and if we take them to be non-collinear
we find that we obtain a cubic which passes through A;, A2, As,
B]_, Bz, Bg, Cl, Cg, and 03.

Theorem 3. In a projective plane, let ay, as, a3 be disiinct lines
and write

A]_:Cbgnag, Azzagﬂal, A3=alﬂag.

Let By, By, By be distinct points such that (1) is satisfied, and
let C1, Cs, Ca be defined by (2). For a variable poini P, let

PBiNay =G, PBaNay =03, PB3Nas =Qs.

Then the set &£ of points P such that ¢}, Qs, (J3 are collinear
is either a point cubic or the whole plane. The set £ contains

each of the. points Aq,. Az, As, B1, Bq, Bs, (1, Cy, 5, and it
- «degenerates to.the plane if and only if By, B, By are collinear

and By € a1, By € ay, By € as.

2. Proofs

To start on our proofs, in a projective plane we let a4, as, ag be
distinct lines and write

Ai=azNag, Az =azNap, A3 = a;Nag.

Let By, Bs, B; be distinct points satisfying (1). We then introduce
the points Cy, O3, C3 in (2). For a variable point P, let

PBiNa, =0, PByNay = (s, PB3ﬂa3mQ3.

We seek the set £; of points P such that @1, @2, Q3 are collinear.
It can be checked directly from the definition that A;, A,, As,
B1, By, Bs, Cy, Ca, C3 are all in &, and indeed that if B;, By,
Bj are collinear, then every point P of the line B1 By B3 is in &.
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Supposing first that a1, a2, ag are not concurrent, as in [1]
we use homogeneous coordinates and take a triangle of reference
so that

Ay =(1,0,0), Az = (0,1,0), A5 = (0,0,1).
Suppose that
By = (a,b,¢), B2 =(d,e,f), Bs=(g,h,k), P= (z,1,2). (4)
Then

Q1 = (0, —bx + ay, —cx + az),
Q2 = (837 - dyzoaez - fy)ﬂ
Q3 = (}CZL‘ — gz, ky - hZ,O). (5)

Hence for Q, @2, Q3 to be collinear it is necessary and sufficient
that
0 —~bz+ay —cx+az
det | ex — dy 0 ex—fy 1 =0,
kx —gz ky—hz 0
which expands to
(ay — ba)(ez — fy)(kz — g3) + (az — ex)(ez — dy)(ky — hz) =0,
and then to

a(fg — dk)y’z + a(dh — eg)yz” +e(bg — ah)z’z + e(ch — bk)zz®
+ k(bf — ce)x?y + klcd — af)ry’ + (2aek —bfg — cdh)zyz = 0.(6)

Turning now specifically to Theorem 1, we note that a condition
that By, Bz, Bs be collinear is that

a b ¢
A=det| d e f
g h k
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satisfy A = 0. As Ay, As, A3 are not collinear, at least one of
them is not on BBy, If A3 ¢ By By we can solve A = 0 for k and
insert in (6) to obtain the product of

(bf — ceyz + (cd — af)y + (ae — bd)z (7)
which gives the equation of By B, B3, and
a(dh — eg)yz + e(bg — ah)zz + [f{ah — bg) + c(eg — dh)]zy. (8)

This last yields a conic unless all its coefficients are equal to 0, in
which case the locus is degenerate. The other cases are treated
gimilarly. This establishes Theorem 1, apart from analysing fully
the degenerate case which we shall return to later.

For Theorem 2, we start by supposing that 4 Ay, A3, (4,
(5, C'3 are on a proper conic C;. We define Bi, Bs, Bs by (3) and
then {2) holds. Here Az ¢ B;1 B3, so we obtain (7) and (8). Now
(8) cannot degenerate to having all its coefficients equal to 0, as
c.q. B1 g-A2A3, Ag € BgBa 1mply

a#0, dh—eg#0.

Thus (8) gives the equation of a conic through A,, 4y, 43, Cy, Cs,
('3, and hence of ;. This establishes Theorem 2. We note that in
it, the roles of (A, A2, A3) and {Cy, Cs,Cs) are interchangeable.

Continuing so as to cover the case where By, By, By are not
collinear, we suppose that ai, as, as, A1, As, Az, By, By, Bs,
Ci, Ci, Cs, P, 1, (J2, Q3 are as before, except that now we
take a;, @z, a3 to be any three distinct lines (so that they may be
concurrent and then As = A, = A;), and By, Bs, B; to be any
distinet points (and thus not confined to being collinear), such
that (1) is satisfied and so Cj, Cs, C5 are well-defined.

When a,, 23, 23 are not concurrent, we choose coordinates
as before and the calculations above show that £ has the equa-
tion (6). When ai, ag, az are concurrent we take the triangle of
reference so that these lines have the equations

y+z=0,y=0 z=0,
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respectively. With (4) as before, instead of (5) we find that

Q1 = ((b+ )z — ay — az,cy — bz, —cy + bz),
Qs = (ex — dy,0,ez — fy),
Qs = (kx - gz, ky — hz,0).

Then these points are collinear if and only if
(b+c)z—ay—az cy—bz —cy + bz
det ex — dy 0 ez—-fy 1 =0
kx — gz ky — hz 0
which expands to

k(ed — af)y® + elbg — ah)2® +e(ch — bk)zix
+ {alek + f(h — k)] — bdk +e(fg — dh)Yy’z
_ {afe(h— k) — Fh] +b(fg = dh) + ceglyz®

+ k(bf — ce)oy® — bf (h— k) +ch(f —e)leyz =0. (9)

Thus & has this as equation.

Checking the cases in which &; degenerates to the whole plane
is rather detailed. It is convenient to denote by capital letters
the cofactors of the elements in A. When a;, az, ag are non-
concurrent, by (6) degeneracy occurs only if all of

aB=O,aC=0,8Fﬁ0,eD:0,kG=0,kH=O,
aA+eE+kK —-A=0, (10)

hold. We divide into the cases
(i} all three of a,e, k are equal to 0;
(i) exactly two of a, e, k are equal to 0, and by symmetry we can
takee =k =0,a #0;
(i) exactly one of a, €,k is equal to 0, and we can take a = 0, #
0,k #0;
{iv) none of ¢, €, k is equal to 0.
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In (i), as a = 0, we have By € A3 A3 and similarly B2 € A3A4,
Bs € AjAs. As A =0, By, By and Bz are collinear. In this case
&1 degenerates. In (ii), as e = k = 0, we have By € AgA;,
By € A1jAx. As B = C = 0 we have Ay, € B3B3, A3 € By B3,
Thus By = A3, By = Aa, which is incompatible with (1). Similarly
we find that (iii) and (iv) are incompatible with (1).

Similarly when a:, a2, az are concurrent, by (8) £; can degen-
erate to being the whole plane only when

eD = 0,eF = 0,kG = 0,kH =0, fD + hG = 0,
— fE—hH+kK =0,~eE + fF + hK =0. (11)

Now Ch = Cy = {3 = Ay and (1) implies that none of the triples
{Al,Bz, Bg}, {Al, Bg, B]_}, {Al, B]_, Bg} is coll .car. (12)

We divide into the cases
(vye=k=0

o (viy e=0,k #0;

(vii) e £ 0,k # 0.

In (v), as e = k = 0, we have By € a4, B3 € a3 and so
fD+hG=0, fE+hH=0, fF+hK =0.

H we had f = g = 0, then we would have B; € a3, Bs € az and
80

By = By = Ay,

which is ruled out as By # Bs. We then have (f, k) # (0,0) and
80

DH-GE=0, EK-FH =0, FG- DK =0,

that is eA = aA = bA = 0. Now A # 0 would imply that
(a,b,c) = (0,0,0), which is impossible as these are homogeneous
coordinates for By. Thus A = (, and so By, Bs, B; are collinear.
Here (J3 = By, (J3 = B3 and so we need (J; € B2 Bj; this makes
1 = By and so B; € a;. In this case & degenerates. In (vi)
e = 0 implies By € az, and k # 0 implies G = 0 and A; € By Bs.
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These conflict with (12). Similarly (vii) conflicts with (12). These
combined cases establish Theorem 3.

By considering the dual of Theorem 3, it can be deduced
that the set & of lines p that are a line of collinearity Q1Q2Qs
in Theorem 3, is either a line cubic or the set of all lines in the
plane. If @y, a2, ag are concurrent, then the lines on A; form part
of &, and in the non-degeneraie case &, consists of a line conic
and the lines on one of its Brianchon points.

It is evident that we do not obtain all cubics in Theorem 3, as
&, there is determined by the six points Ay, Ag, As, By, By and
Bj. Nonetheless, it yields a large class of cubics with a geometrical
property. This class is closed under projective transformations.

An example X = < + — -
The equation (6) does not suit taking z = 1 to obtain Cartesian
coordinates, as A; and Ap would be points at infinity. Because of -1t

this we introduce Cartesian coordinates (X,Y) for P by applying

the transformation . 2l

=1-X-Y,y=X,z=Y.

In this way A4;, As, Az have Cartesian coordinates (0,0), (1,0,
(0,1), respectively. Taking for an example, By, B2, Bs to have
Cartesian coordinates (3,1}, (3,2), (2,2), respectively, we have Figure 2

By = (~3,3,1), By = (—4,3,2), B3 = (=3,2,2). References

[1] E. A. Maxwell, The Methods of Plane Ceordinate Geometry based on

the Use of General Homogeneous Coordinates. Cambridge University
Press: Cambridge, 1946

Then we find that {6} becomes

2X% —8X2 —2X(Y?-Y -3)-3Y(Y - 1)(Y —4) =0.

: P. D. Barry
The graph of this is shown in Figure 2. Department of Mathematics,
3 University College, |
Cork.




