INTEGRAL INEQUALITY ESTIMATES
FOR P.D.E.s IN UNBOUNDED BOMAINS

J. N. Flavin

1. Introduction

In the context of problems involving P.D.E.s (boundary value prob-
lems, initial boundary value problems etc.), inequality estimates
for certain, non-negative, L? integral measures of the solution are
of interest: typically, they yield, inter alia, uniqueness of solution
and continuous dependence upon data. The purpose of this note is
to show how such estimates for weighted measures may be obtained
in the context of unbounded domains where (prescribed) growth of
the solution at infinity is allowed. Three results are proved which
represent perhaps the simplest cases of such; they are believed to
be new, or, at least, not well known.

In the matter of notation, subscripts denote partial differenti-
ation, and if will be convenient occasionally to write (for the weight
function) '

glé) = e,

where A is a constant, £ being the appropriate independent vari-
able.

2. An Hyperbolic Equation

Let us commence with (arguably} the simplest example of the (lin-
ear) wave equation in an unbounded region, where growth at infin-
ity 1s allowed which is not faster than exponential. A weighted
energy inequality is derived therefor which has obvious analogues
in all the common cases of wave-like equations in unbounded media
(of whatever type); morecver, it has analogues in nonlinear elast-
odynamics and electrodynamics for certain classes of constitutive
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equations. It is an easy matter to modify the proof of the pro-
position given hereunder in order to include a source term {as in
subsequent Propositions). .

Consider €? solutions of the initial boundary value problem:
u(z,t) satisfies

utt=um,0<$<oo,t>0,
u{x,0), us(z,0) specified , 0 < z < o0,
u(0,t) =0,

Ug, 1wy = O(e"™) as © — oo,

g
b2
e

N

where p is a given positive constant (here and subsequently}.

Proposition 1. The weighted energy associated with the forego-
.ing, namely

Bl = [ o5 (i +u)de 5
where A is a constant such that
A > 2p, ' (6)
satisfies the inequality
E(t) < B(0) exp(t). (7)

Proof: Differentiation, use of (1), followed by integration by parts
using (3)-(6) yields

b g(z) (wpue ), dz = A / g(z)u usde.
dt 0 Jo

Use of the arithmetic-geometric inequality gives

dF
— < AFE
dt —

and the required estimate (7) follows on integration.
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Remark 1. Uniqueness of solution, and continuous dependence
{in a certain sense)} on data, for the problem (1)-{4} follow by
standard means.

Remark 2. The inequality (7) is sharp in the sense that

E()/{E(0) exp(At)} ~ 1 as 2u/1 1 1

when
w(x,t) = sinh px et

Remark 3. An estimate for u(x, ), in terms of the initial data,
follows from {7) via Schwarz’s inequality:

u?{z, t) = (j[; quz)z < (.[ow e)‘”’dm) (/: e‘“’uida:)

<2x ! (e? — 1) E(2).

3. A Parabolic Equation

Consider smooth solutions of the I.B.V.P. for the heat equation
{with source) in a semi-infinite rod: w(z,t) satisfies

Uy = Upe + f2), 0 < 2 < 00, £ >0, (8)
u(z,0) = specified, (9)
u(0,8) =0, | (10)
U, Ug, g = O(e?®) as ¢ — 00, (11)

where p is a positive constant, and f is a given function such that
fF=0(e’*) as £ — o0. {12)

Proposition 2. The weighted L? measure of solution associated
with the foregoing, namely

F(t) = jgm e Moyt da (13)
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=

where A is a constant such that

A> 24, (14)
satisfies .
F(t) < [{FY2(0) + a}e* /% = a]?, (15)
where
o =451 (16)
with

s={ mg(z)fﬂafar}é | (17)

Proof: Differentiation, use of (8), integration by parts (twice) using
(10), (11}, (13}, (14) yields

dF & i =
o= —2j[; g(z)uidr + Aj£ g(z) (ug)mdr + 2]0 glz)ufde

=-2 /:0 g(@)uids + NF + 2 ]'00 g(z)ufde. {18)

Applying the inequality of Appendix 1 to the first term, and
Schwarz’s inequality to the last, we obtain

dF 1 .
— < A2F+ 2812 (19}
whence the proposition. follows by straightforward integration

Fl/z \/_)
Remark 4. Similar to Remark 1.
Remark 5. The inequality {15) is sharp in the sense that both
sides are asymptotically equivalent as 2u/A + 1 when w has the
form

w(z,t) = U(t) sinh pz

{the associated f(z), u(z,0) also being proportional te sinh pz).
Remark 6. A similar-though more involved—analysis may be
carried out, mutatis mutandis, for the measure

F(t):/ e_)‘“’uidz.
0
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Moreover, one may deduce therefrom pointwise bounds, in terms
of data, for |u{z, )| (cf. Remark 3).

4. An Elliptic Equation

Consider smooth solutions of Poisson’s equation in a semi-infinite
strip: u{x,y) satisfies

Ugy + Uyy = (@, y), 0 <o < 1,0 <y < oo, {20)
wiz,0) =0, (213
w(0,y), #(1,y) specified, (22)
U, Uy, 1y = O (") as y — o0, (23)

where y is a given positive constant, and f(z,y) is a given function
such that
flz,y) = O (e} as y = o0 (24)

Proposition 3. The weighted L? (cross-sectional) measure of
solution of the foregoing, namely

o
F(z) z/ e Muldy (25)
0
where \ is a constant such that
A > 2u, (26)
satisfies the estimate
F'2(z) < G(x), (27)

where ((x) satisfies the {simple) boundary value problem
A2
" (I) G = — (), (28)

wherein

o) = { [T y)dy}1/2 , (29)

=i
o
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subject to
G0y = FY2(0), G(1) =F72(1), (30)

(both of which are available from data) PROVIDED
A< 2m. {31)
Proof: Successive differentiations, use of (20) and integration by

parts using (21), (23), (25), (26}, together with the inequality in
Appendix 1, yield '

Flo)= [ 2gyuuedy, (32)
]
) o0 AZ o
F'(z) zzf guidy — ?F+f 29 fudz. (33)
0 0

Assume that £ > 0 strictly. Noting that
12y _ Yozt Lo
(FY2)" = SF AP~ o),

(25), (26), (32), (33), together with Schwarz’s inequality (used
twice) lead to

(FU/2)" 4 (1_2) FY2 > g(x).

The proof is completed on invoking Appendix 2 with A identified
with F'/? — G. The restriction that F > 0 strictly may be removed
without difficulty, but this is not pursued here.

Remark 7. The restriction (31) is irremovable as the example
u = sinh 7y sin wx shows.

Remark 8. It is verifiable that the inequality (27} is shorp in the
sense that both sides are asymptotically equivalent as 2p/X + 1
when w has the form

u = U(z) sinh py




(2]
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(the associated f(x,y), u(0, ¥}, «(1,y) being suitable constant mul-
tiples of sinh zy).

Inequality estimates for integral measures of P.D.E.s in many
contexts are treated in [1]. They include ones for unbounded
regions which allow (prescribed) growth at infinity, of which the
ones given here are perhaps the simplest examples: one of the
earliest - perhaps even the earliest - examples of these latter tech-
nigues in mechanics occur in [2] and in the papers cited therein.

We conclude with the remark that where estimates for
unbounded media of the type considered in this paper are con-
cerned, the exponential weight function used throughout is by
no means essential: growth conditions other than the exponential
ones together with complementary weight functions, can equally
well be contemplated.
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Appendix 1

Proposition. If &(z) € C1(0 < r < o0) is such that $(0) = 0
and

[ e (B2 + %) dr <

Jo

for some positive constant A, but is otherwise arbitrary, then

A? * — AT g2 = —Az 52
— e hdr < e~ dr.
4 Jo 0

Proof: The hypotheses imply that

/ (ff"““I'?)aJ dz =0,
(€] B

[1A]

(24]
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whence

AQ o ; 2 [s'a] 2
(—) (J[ e‘”@zdm) = U e“”@@zd:c)
4 13 0

[aw] 0 .
< / e AP f e Mo dy
0 ¢

by Schwarz's inequality. {For a proof under weaker hypotheses,
see [2].)

The inequality above is sharp in the sense that both sides are
asymptotically equivalent when

& = sinh px,
© being a constant such that A > 2u, and 2u/A 1 1.
Appendix 2
Proposition. Suppose that h{z) € C(0 < x < 1) satisfies
R4 AR 0, =e)0,i(
R(0) = h(1) = 0, '
where A Is any positive constant such that A < w°, then
h<0.

The case A = 0 is geometrically obvious (curve under chord
property for convex functions). Different proofs of the proposition
méay be found in {1A] by means of maximum principles, and in
[2A] by means of Wirtinger’s inequality.
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