JONSSON GROUPS, RINGS AND ALGEBRAS

Eoin Coleman’

A Jonsson group ( is one all of whose proper subgroups have
smaller cardinality than . Jonsson ringg and Jonsson algebras
are defined in a similar fashion. In this paper, we present an
introductory account of Jonsgson algebras in the light of pcf theory,
a recent development within set theory. In section 1, we give some
examples and summarize what is known about Jonsson groups and
rings. In section 2, we prove the basic results on Jonsson algebras.
Most of this section is self-contained, and the reader will need to
know little more than some naive set theory and first-order model
theory [H, HS or ChK!. Section 3 contains the elements of pcf
theory, deals with the most recent results on Jonsson algebras,
and summarizes the impact of additional set-theoretic axioms in
this area.

1. Jonsson groups, rings, algebras and cardinals

To start matters off, we define Jonsson groups, algebras and car-
dinals.

Definition : - S

1. A group G is a Jonsson group iff (¢ has no proper subgroup
H of the same cardinality as G, i.e. every proper subgroup of G
has fewer elements than G. :

2. Suppose that F' is a countable set of finitary operations on a
set A. The algebra A = (A, F) is a Jonsson algebra iff A has
no proper subalgebra B = (B, F{B) of the same cardinality as A.
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3. A cardinal A is a Jonsson cardinal iff there is no Jonsson
algebra of cardinality A.

In writing F|B, we mean the family of operations in F', each
restricted to B™ for the appropriate number n of arguments, Since
the nature of the underlying set A is irrelevant, we shall often
assume without comment that it is a cardinal, and also say that
there is a Jonsson algebra on A meaning that there is one on a set
of power A. '

It seems that Jonsson algebras were identified by B. Jonsson
in the fifties, [EH]. Relatively little was known about them (at least
in ordinary set theory) until the early eighties. Devlin surveys the
state of play up to 1973 in section 3 of his paper [D].

Every Jonsson group is a Jonsson algebra (treating the iden-
tity element as a 0-ary operation). It is obvious that every finite

~ algebra is a Jonsson algebra. So the first natural question is

whether there are any (infinite) Jonsson cardinals at all.

Example 1: Let A = (w, {m}), where w (the first infinite ordinal}
is the set of natural numbers and m(z) := z — 1 for all z > 0,
m{0) := 0. The algebra A is a Jonsson algebra of cardinality Ng
(the first infinite cardinal), so ¥y is not a Jonsson cardinal. .

Example 2 [F]: Let p be prime number and let C(p") be the
cyclic group of order p™. Then the p-quasicyclic group,

C(p™) = Uil C"),

is a countably infinite abelian group all of whose proper subgroups
are fintte. In accordance with the convention in abelian group the-
ory, we shall write C'(p®°) additively. It is generated by elements
€1, €2 5 +++y Cny - -, such that

per =0,pcz =0C1,..., PCati = Cpy.- -
and o{c,) = p". It is easy to check that C(p™) is a Jonsson group
of cardinality ¥g. For, if H is a proper subgroup, then there exists

a least n such that ¢,.; does not belong to H. Now (c,) < H.
Conversely, if h € H, then h € C{p™), and so there exists k such
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that h = ke,,, where (p,k} = 1. Since (p™, k) = 1, there exist r
and s such that rk + sp™ = 1, and hence

= (rk + sp™)em =7h € H.

. S0 ¢ € H and m < n, so that h'€ {¢,) and H = (¢},

The family of p-quasicyclic groups contains all the countable
Jonsson abelian groups, since if G is infinite abelian with all its
proper subgroups finite, then 7 is a p-quasicyclic group for socme
prime p.

In 1979, OPshanskii, [O], proved the existence of an infinite
non-abelian group all of whose proper subgroups are finite, solving
Schmidt’s problem?.

Jonsson rings are rings all of whose proper subrings have smal-
ler cardinality.

Example 3 [L]: From the p-quasicyclic group C(p®), it is easy
to construct a countable Jonsson ring by defining all products to
be zero. Since every proper subring of C{p™) is also a proper
subgroup of C(p™), i must be finite.

We know all about countable Jonsson rings. Laffey classified
them in a slightly different terminology, proving in his paper [L]:
Theorem. If R is a countable Jonsson ring, then either
(i) R? = {0} and R = C(p™) for some prime p,
or
{ii) R = Gyp 4 for some primes p and g, where

Gp,q - U:f:oGF(Pqn)

and GF(p?") is the finite field of order p¢" .

In the early sixties, Kurosh conjectured that uncountable
Jonsson groups exist. This conjecture was settled positively by
Shelah in 1980. The group that Shelah built had even stronger
properties:

Theorem. [Sh80] There is a Jonsson group S of cardinality N;.
This group is simple. '

2 Professor Wilfrid Hodges kindly supplied this reference.
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1t follows that R, is not a Jonsson cardinal. We shall derive
a more general version of this consequence in section 2. Shelah
noted too that his group S has no maximal proper subgroup. In
particular, the operation of taking the Frattini subgroup does not
commute with direct products. For if 7(.9) is the Frattini subgroup
of S, i.e. the intersection of all the maximal subgroups of S, then
7(8) = 8, but 7(S x 5) = {{a,a) :a € S}.

To close this section, let us note a rather surprising connection
between Jonsson semigroups and Jonsson groups.

Theorem. [McK] If a semigroup G of cardinality A is a Jonsson
semigroup, then either G is a group, or else A has countable cofi-
nality and (A < A) (A < 27). ’

In particular, if A has uncountable cofinality or if £ < A
implies 2% < A, then every Jomsson semigroup of power A is a

Jonsson group. This means for example that if one wishes to

construct a Jonsson group of power A, where A has uncountable
cofinality (e.g. A a successor cardinal), then it is cuough (or s
hard) to build & Jonsson semigroup.

Within ordinary set theory, there seems to be no easy way to
climb from Jonsson groups of power ¥; to ones of power Ny. The
theory of Jonsson algebras is in this respect a good deal smoother.

2. Jonsson algebras

In this section we prove the easiest results on Jonsson algebras
in ordinary set theory. Although some of these can be established
using combinatorial arguments and historically were first obtained
in this way, one can abbreviate the arguments by employing ele-
mentary submodels. A Jonsson model is a model A = (A, R, F)
where R and F are countable sets of finitary relations and opera-
tions on the set A such that every elementary submodel of A has
smaller cardinality. So every Jonsson algebra is a Jonsson model,
since it has no relations and its elementary submodels are there-
fore subalgebras. The reader can find all relevant basic information
about elementary submodels in the appendix [pp.165-176] of the
monograph by Heindorf and Shapiro, [HS], or in the standard texts
[H, ChK]. :
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Propesition 1. There is a Jonsson algebra of power M\ iff there
1s a Jonsson model of power A.

Proof: For the non-trivial direction, add Skolem functions to the
Jonsson model; the Skolem hull is the required Jonsson algebra.
This is a standard and very useful technique for building algebras
from modeis. We give a brief sketch. Fix a well-order < of the
universe A of the Jonsson model A = (A, R, F'). For each formula
Plxy, ..., xn,y) in the language I = R U F of the model, define

a new n-ary operation fy on A™ as follows: fy(ai,...,a,) is the
<-least element b € A such that ¥(ay,...,a,,b) is true in A if
such an element exists, otherwise fy{as, . .., a,) is any element of

A. Repeat this process for the new (countable) language
Iy =Lu{fy,:¢isan L-formula},

and so on (countably many times) to get the expanded {still count-
able) language
L* =UlL,.

The required algebra is
A = (A, {fy : ¢ is an L*-formula}),

since any proper subalgebra of A** will give rise to a proper ele-
mentary submodel of the Jonsson model A of the same cardinal-
ity. ®

We combine Proposition 1 with some set theory to obtain
a necessary and sufficient criterion for the existence of Jonsson
algebras.

Recall that for a cardinal 8, the collection of sets which are
hereditarily of cardinality less than # is denoted H(d): a set z
helongs to H({#) iff {z| < @ and if y € #, then |y| < 4, and so
on. For reference, we summarize the main features of H{f) in a
theorem:

Theoremn. If # is a regular uncountable cardinal, then H(f) is a
transitive model of ZFC with the possible exception of the power
set axiom. If o Is an ordinal, then o < @ iff « € H(9).

= Jonsson Groups, Rings and Algebras 39

Intiitively, H(8) is a reasonably small universe of most of the
axioms of ordinary set theory. The main properties of elementary
submodels of H(f) are given in detail in [EM, pp.151ﬁ15_2}.

Lemma 2. [BM] Suppose that A is an infinite cardinal. There is
a Jonsson algebra on A iff: _

for some {all) regular cardinal(s) & > X and for all elementary
submodels M < H{#):

(*}if A€ M and [ANM| = A, then A C M.

Proof: For the forward direction, note that since M < H (), there
is a Jonsson algebra A € M on A, say A= (A {fn:n €w}). Let
B = M\ (by hypothesis unbounded in A). So B has cardinality
A (A is regular), and B = (B,{fa|B : n € w}) is a subalgebra of

'A. However, A is Jonsson, hence B = A = X, i.e. MNA = A,

and so AC M.
For the reverse implication, fix M < H(#), |M| =X, A C M.

‘Let h: A — M be a bijection. Then M1 = (M, €, k) is a Jonsson

model of power A. For, if N < M is an elementary submodel of
power A, then A € N (by elementarity, since A is the least ordinal
which does not belong to dom(h)). Also [N N Al = A, and hence
by () A € N, since N < H(#). Therefore range(h) C N. But
range(h) = M, so N = M, and M is a Jonsson model of power
). We appeal now to Proposition 1 to complete the proof. @

Theorem 3. [Sh, BM] If there is a Jonsson algebra on A, then
there is one on A*, where AT is the least cardinal greater than A.
Proof: We use the lemma. Suppose that M < H(A1T), At € M,
|M N AT| = M. We must show A* € M. Suppose that 3 < AT,
Note that A € M (since At € M by elementarity), and Ja €
M N AT, a > 8, such that [M Nal = A, because |[M N AT = AT,
M contains a bijection g from A onto a, hence |[M N Al = A,
and so A C M (applying the lemma to the hypothesis that there
is a Jonsson algebra on ). Therefore @ = range(g) € M. In
particular, 3 € M. Since 8 was arbitrary, it follows that AT C
M =

In fact, for a little move effort and terminclogy, a stronger
result is provable:

Theorem. (Tryba [T], Woodin) If A is regular and there is non-
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reflecting stationary subset of A, then there is a Jonsson algebra
on A.

The short proof can be found in [BM]. In particular, there
is a Jonsson algebra on AT whenever X is regular, since the set
{a < AT :¢f(@) = A} is non-reflecting and stationary in A*.

Example 1 and Theorem 3 yield a corollary:

Corollary 4. (Vn € N)(There is a Jonsson algebra on R,).

The simplest unanswered questions (at least to formulate)
thus far are whether there are Jonsson algebras on R, on Ny 1,
and more generally on the successors of singular cardinals. We
shall discuss these questions in section 3.

For completeness, let me mention two other equivalent condi-
tions for the existence of a Jonsson algebra. The first is based on
results of Los and Sierpiriski (see [D]):

Theorem. There is a Jonsson algebra of cardinality X if there is
a Jonsson algebra of cardinality A with exactly one commutative
binary operation.

The second characterization is related to a question of Myciel-

skt about locally finite algebras: :
Definition An algebra A = (4, {f. - n € N}) is locally finite iff
whenever X is a finite subset of A, then A|X (the subalgebra of 4
generated by X)) is finite.

What can one say about locally finite Jonsson algebras?
Improving a theorem of Erdos and Hajnal, Devlin proved:
Theorem. [D] There is a locally finite Jonsson algebra of cardin-
ality A iff there is a Jonsson algebra of cardinality .

3. pcf theory

Possible cofinality {pcf) theory is the study of the cofinalities of
ultraproducts of sets of cardinals. It was discovered (invented) by
Shelah, and developed in its fullest form in his work on cardinal
arithmetic, [Sh]. The theory has found applications in set theory,
infinitary combinatorics {partition calculus), model theory, algebra
(infinite abelian groups), set-theoretic topology, Boolean algebras
(productivity of chain conditions) and Jonsson algebras. We select
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just the definitions and result that are necessary to prove that there
is a Jonsson algebra on ¥, ;1. A lucid introduction to pef theory is
available in the paper by Burke and Magidor, [BM], which serves
also as an excellent entry-point to Shelah’s treatise.

Suppose that a is a set of regular cardinals and min(a) > |al.
Let D be an ultrafilter on a. The elements of Ile are functions f
such that dom(f) = a and (Va € a){f(a) < a). We can define an
equivalence relation =p on Ila by

f=pgif{a€a: fla) =gla}} € D,

and use the notation f/D {Ila/D) for the equivalence class of f
(the set {f/D : f € Tla}). The ultraproduct (Ila/D, <p), where

f<pgiff {e€a: flo) <gla)} €D,

is a linear order since D is an ultrafilter. Hence it has a true

cofinality:

Definition Suppose-that X is a cardinal. We say that A is the
true cofinality of Ila/D, and write A = tcf(Ila/D}, iff:
{1) A is regular;
(2) 3 a strictly increasing cofinal sequence {f; € Ila.: { < A} in
Ma/D, ie.
(21) ¢ < £ < Ximplies fe <p f:
and (2.2) (Yh € Ta)(3¢ < A)(h <p fo). .
To illustrate the idea, we compute some true cofinalities.

Example 4: If D is a principal ultrafilter on a (sd D is generated
by a singleton subset {a} of a say), then tcf(Ila/D) = a.

Example 5: Suppose that ¢ = {8, : 1 < n < w}. If D is
a non-principal ultrafilter on a, then tcf(Ille/D) > R,. Why?
Well, if {f; € Ia : i < W} is <p-increasing and & < w, then
(¥n > E}{f;:(R,) : # < N} is bounded in R, by 8; say, and so the
function '

G(R) — sup{Bi 1 < W} 4+ 1, ifm > k(= 0,if 1 <m < k)

is an element of [Ta and (¥i < R)(f; <p g), since D contains the
co-finite filter on a. In other words, {f; € Ila : ¢ < Ny} is not
cofinal in Ma/D.
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One of the fundamental tasks in pcf theory is to determine
which cardinals are the true cofinalities of the ultraproducts Ia/D,
or how many possible cofinalities the set o supports.

Definition We define pcf{a), the possible cofinalities of the set a,
to be the collection

{ : for some ultrafilter D on a, tef{Ila/D) = A}.

Example 4 tells us that a C pcf{a). We know too that

there arc 22 ultrafilters on @ (since every ultrafilter belongs to
P(P(a))). Thus trivially

la < [pefla)] < 22

It can be shown that |pcf(a)| < 217! and, for more money, |pcf(a)|
|a{"3. The major open guestion in pcf theory is whether |pcfia)|
|a-

<

For our purposes, we shall need a special case of one of She-
lah’s theorems:

Theorem. [Sh] Suppose that @ = {8, : 1 < n < w}. Then
Ro+1 € pef(a).

So one can represent Nw+] as the true cofinality of a/D for
gome ultrafilter D on a. Note that this does not tell us anything
about ®,, or other singular cardinals, since they can never appear
in a set of possible cofinalities (which are by definition regular).
Shelah demonstrated the power which this representation provides
in his proof of the existence of a Jonsson algebra of cardinality
Ryp1:

Theorem. [Sh] There is a Jonsson algebra on R, ;.
Proof: Let p = R, & = (28)", and fix M < H({#), pt € M,
IMNpt| = ut. We show that y™ C M (and appeal to Lemma 2).

We know that u* € pef{a), where a = {R,, : 1 < n < w}. By

elementarity, it follows that:

(1) a € M;

(2) a C M;

(3) there is an ultrafilter I on a, D € M, and a sequence

{firi<p'te MNIla
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such that {f;/D :i < g} is increasing and cofinal in fla/D.
Claim: {a € a : |M M o} = a} is cofinal in a.
Proof of claim: Otherwise, let g(a) = sup{M Na) (gla) = 0 if
sup(M Na) = ). So g & Ila, and hence by (3) there is k£ < T
such that ¢/D < f./D. So for some a € a, 0 < gla) < fulr)
(D contains the co-finite filter). But fe(a) € M N, and g(a) =
sup{M Na), contradiction. Hence {a € a : |M Na| = a} is cofinal
in a. By Corollary 4, there is a Jonsson algebra on « for each
o € a, and so « € M (by (2) and Lemma 2). Thus: g C M.
Finally, for £ € M N g, u), there is a bijection ¢ from g onto &,
and hence £ € M. But |[Mnut| = pt, hence pt C M. By Lemma
2, this establishes that there is a Jonssen algebra on pt =N, 1. @
Shelah has extended this result to cover a wide class of suc-
cessors of singular cardinals and also the class of inaccessible car-
dinals which are not in some degree Mahlo or have a stationary

‘subset not reflecting in any inaccessible cardinals. These results

are presented in [Sh]. Their broad import is to make it progress-
ively more difficult for Jonsson cardinals to exist. And indeed, if
one increases one’s axiomatic commitments beyond ordinary set
theory {ZFC), this difficulty becomes an impossibility:

Theorem [Frdés-Hajnal-Rado, Keisler-Rowbottom]

(1) If 2* = AT, then there is a Jonsson algebra on At

(2) If V = L, then for every infinite cardinal A, there is a Jonsson
algebra on A.

The relatively easy proofs of these can be found in [BM] or [J]
or [EHMR]). Thus it is consistent that there are no Jonsson cardin-
als at all. For Jonsson groups, additional set-theoretic hypotheses
also have decisive implications:

Theorem. [Sh80] Suppose that X is an uncountable cardinal and
2* = At
(1) There is a Jonsson group of cardinality X™.
(2) Moreover this group is a Jonsson semigroup, is.simple, and
there is a natural number n such that for any subset X of the
group of cardinality A*, any element of the group is equal to the
product of n elements of X.

Whether there can be a Jonsson algebra of singular cardin-
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ality (e.g. N,,) appears more difficult to resolve and different in
character from the regular case. In 1988, Koepke [K], building on
the work of Jensen on inner models of set theory, proved results
‘which indicate that the non-existence of Jonsson algebras of singu-
lar cardinality is essentially connected with large cardinal axioms:
if there is a Jonsson cardinal ¥ such that £ < ¥, then for each w
there is a model of ZFC whose set of uncountable measurable car-
dinals has order type . He also showed that if there is a singular
Jonsson cardinal of uncountable cofinality &, then there is an inner
model of ZFC with & measurable cardinals. These results estab-
lish that the assumption of the non-existence of a Jonsson algebra
of singular cardinality is much stronger than the assuraption that
ZFC is consistent.

To conclude this brief survey, let me mention perhaps the
most attractive open question about Jonsson algebras: can one
prove in ordinary set theory (ZFC) that every successor cardinal
carries a Jonsson algebra?
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