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more for second-hand copies. In 1691, it is recorded that a copy
was bought for about 2 guineas. It should be borne in mind that
a good husbandman could be hired for between £3 and £4 a vear
(information from the Mathematical Gazette for December 1948).

Many of the books in Biblictheca Chemico—Mathematica now
cost between 500 and 1000 times what they cost 70 years ago. This
is particularly true of books whose authors have become famous
(like Babbage or Boole) or books produced in small print runs. (A
sum invested at 10% interest compounded annually would increase
1000 fold in about 72 years.) On the other hand, some text books
have really declined in value over the years when inflation is taken
into account. For example, the first edition of Todhunter’s Ana-
lytical Statics was published by Macmillan in 1853 and sold at 10s
6d, which seems expensive for the time. The fifth edition of the
book was still on sale in 1890 at the same price. Today, this book
would probably cost no more than £15, so that it has not held
its value over 140 years. Boole's Laws of Thought was available
from Sotheran’s for £1 15s and it was described as very scarce.
Group theorists who know the impact made in the last century by
Camille Jordan’s Traité des substitutions, published in 1870, may
like to know that this work was available from Sotheran’s for £3
7s 6d and described as very searce. I have not heard of an original
copy for sale in recent times.

In conclusion, I would like to make a small advertisement. I
am interested in buying books, papers or magazines of a scientific
or mathematical nature, preferably pre-20th century. If you have
any such items that you wish to dispose of, you may think of
contacting me at the address below.
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POLYNOMIALS AND SERIES
IN BANACH SPACES®

Manuel GODZélezT and Joaguin M. Gutiérrest

Abstract: We show that homogeneous polynomials acting on Banach
spaces preserve weakly unconditionally Cauchy (w.u.C.) series and
unconditionally converging (u.c.) series. This fact allows to define the
class of unconditionally converging polynomials as those taking w.u.C.
series into u.c. series. 1t includes most of the classes of polynomials
previously considered in the literature. Then we study several “poly-
nomial properties” of Banach spaces, defined by relations of inclusion
between classes of polynomials. In our main result we show that a
Banach space E has the polynomial property (V) if and only if for all
% € ™ the space of homogeneous scalar polynomials P(*E) is reflexive;
hence, its dual space E*, like the dual of Tsirelson’s space, is reflexive
and contains no copies of £5.

Throughout the paper, E and F will be real or complex Banach
gpaces, By the unit ball of £ and E* its dual space. We will write
K for the scalar field, which will be always R or C, the real or the
complex field, and N for the natural numbers. Moreover, P{E, F)
will stand for the space of all {continuous) polynomials from £
into F. Any polynomial P € P(E, F} can be written as a sum of
homogeneous polynomials: P = 30 Py, with Py € P(*E, F),

the space of all k-homogeneous polynomials from ¥ into F.

_ *This note is a summary of the talk given by the second author
at the 5th September Meeting of the Irish Mathematical Society
held in Waterford {1992) _

tSupported in part by DGICY'T Grant PB 91-0307 (Spain)
iSupported in part by DGICYT Grant PB 90-0044 (Spain)

51




32 IMS Bulletin 31, 1993

We will only give here the main results and sketches of somé
of the proofs. A complete exposition, including detailed proofs
can be found in [5].

1. Preservation of series by polynomials

Recall that a series 3 .0, 7; in a Banach space E is weakly uncon-
ditionally Ceuchy (in short, w.u.C\) if for every f € E* we havec
Yoo | f(za) i< o0; equivalently, if

E €%

=1

sup
lei| <1

< 00.

The series Z: 1 %5 I8 uncondatzonatly convergent (in short, u.c
if any subseries is norm-convergent; equivalently, if

o0
lim sup E ez;ll = 0.
T—Fo0 iﬁilﬁl i—r

The series Y oo, z; is absolutely convergent if 3°72, {lzil| < co.

Clearly, absolutely convergent series are u.c.; however, by the
Dvoretsky-Rogers theorem [4], any infinite-dimensional Banach
space contains an u.c. series which is not absolutely convergent;
For example, if e,, denctes the unit vector basis of #;, then the
series Y .., €/7 18 u.c., but not absolutely convergent.

Also, any u.c. series is w.u.C., and the prototype exampl
of w.u.C. series which is not u.c. is given by ¥ .-, e;, where {e;
denotes the unit vector basis of the space ¢p. In fact, for any
w.u.C. series 3, x; which is not u.c. there exist natural numbers
my < ny < --- < my < ng < --- such that the sequence of blocks

St

Yk = Ty, +

is equivalent to the unit vector basis of ¢p. (See [4]).
In this section we give first an estimation of the uncondmonal
-norm of the image of a finite sequence by a homogeneous poly:
nomial, from which we derive the preservation of w.u.C. series
and u.c. series under the action of polynomials. Then we define
the class of unconditionally converging polynomials, and compare
it with other classes of polynomlals that have appeared in the
literature.

..+$nk

el

- PE P(kE,F) and - RO
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Lemma 1. Given k € N there exists Oy > 0 such that for any
z, € E we have

<C’_:c sup {iF Z.u,a:]
ler =<1 —1

We can take Cy = 1 in the complex case, and Cy = (2k)*/k! in
the real case.

The proof of the case in which E and F are complex spaces
relies on the properties of the generalized Rademacher functions
sn(t), n € M, introduced in [3], which are step functions on the
interval [0, 1] verlfymg [3] for any choice of integers 4;,...,4; &k 2>

2?
1 i ) —_ s s
jf 84y (£)..84, (B)dE = {1 ifi; =
o}

0 otherwise.

= ik;

In the case of real spaces, the proof is obtained using the complexi-
fcations of the spaces, and the polarization identities relating a
homogeneous polynomial and its associated symmetric multilinear
map.

Using Lemma 1, it is not difficult to prove the following

:..Theorem 2. Any polynomial P € P(E,F) takes w.u.C. (u.c.)

series into w.u.C. (u.c.) series.

This result suggests introducing the following class of poly-
nomials,

~ Definition 3. A polynomial P € P(E, F } is said to be uncondi-
' tionally converging if it takes w.u.C. series into u.c. series.

We shall denote by P..(*E, F) the class of all k-homogeneous

~unconditionally converging polynomials from £ to F.

Observe that in the case of E or F containing no copies of

¢, any w.u.C. series in that space is w.c. [4]; hence P(*E,F) =

P.c(*E, F}. Moreover, we can characterize unconditionally conver-

‘ging polynomials in terms of the action on sequences equivalent
to the unit vector basis {e,} of ¢.
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Lemma 4. For any P € P(*E, F) which is not unconditionall

converging there exists an isomorphism 1 :
{{Poi)e,} is equivalent to {e,}.

cg — & such th

The proof uses the Bessaga-Pelczyniski principle in order t
select a basic sequence from certain blocks of a suitable w.u.C

series ¥ ..o %; such that 3 .o, Pz, is not u.c.,, and then appli
Lemma 1. )

Next we describe the relation between the class P, and oth
classes of polynomials considered in the literature.

Recall that P € P(*E,F) is weakly compact, denoted b

P € Pueo(XE, F), if it takes bounded subsets into relatively weak

compact subsets, and P is completely continuous, denoted b

P € P..(*E,F), if it takes weakly Cauchy sequences into nor

convergent sequences. These classes were considered in [10] an

[11].

Moreover, we shall consider the class P.o(*E, F) of com

pletely continuous at O polynomials, formed by those P
P(*E, F) taking weakly null sequences into norm null sequence
Clearly P..(*E,F) C P.o(*E, F), but in general (see Propos
tion 14) the containment is strict for & > 1 and F failing t
Schur property.

Recall that A C F is said to be a Rosenthal setif any sequen
{x,) C A has a weakly Cauchy subsequence. In contrast with t
case of linear operators, a polynomial taking Rosenthal sets in
relatively compact subsets need not take weakly null sequenc
into norm null sequences, ag it is shown by the scalar polynomi

Pi(z,)ely— Y s2€R.
n=1
The coaverse implication also fails, since for the polynomial
oo -'Ek.
{xy) € &y — — l(z,) el
Q:(zn) €l (; ;A ) (zn) € &

we have that Q(e; + €,) = (1 + 1/n)(ey + e,,) has no converge
subsequences, although @ takes weakly null sequences into nor
null sequences, because of the factor (3 .o, zx/k).
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Finally, recall that A C E is said to be a Dunford-Peitis

..Sgt [2] i for any weakly null sequence (f,) C E* we have
lim, sUPzca [fn(#)} = 0. Using this class of subsets, we will

say as in [5] that a polynomial P € P(*E, F) belongs t0 Pug
if and only if its restriction to any Dunford-Pettis subset of E,
endowed with the inherited weak topology, is continuous.

Proposition 5. A polynomial P € P(*E, F) belongs to Py, in

the following cases:

(a) P € Peeo. ‘ .

(b) P takes Rosenthal subsets of E into relatively compact sub-
sets of F.

(C) P e Py

(d) Pe p'wcu-

The result in the cases (a) and (b) is an immediate con-
sequence of Lemma 4, since the unit vector basis of g is a weakly
null sequence which forms a non relatively compact set.

Case (c) follows from Lemma 4 also, since given P €
P(*E, F)\Pyc, and an isomorphism ¢ : ¢ — E such that
Poi & Pyclto,F), we have that {ie.} is a Dunford-Pettis
set of E on which P is not weakly continuous; hence P € Pyq.

Finally, we have Puco(*E, F) € Pua(*E, F) (see [5]); hence
(d) follows from {c}).

-'2..Polynnmial properties of Banach spaces

Pelezyniski [10] introduced Banach spaces with the polynomial

* Dunford-Pettis property as the spaces E such that (with our

notation) Puco(*E, F) C Pec(*E, F) for any k¥ € N and F, and

 raised the question whether or not the polynomial Dunford-Pettis

property coincides with the usual Dunford-Pettis property, which
admits the same definition in terms of linear operators (k = 1).
Ryan gave an affirmative answer in [11]. Moreover, Pelczyriski {9]
introduced Banach spaces with property (V) as the spaces E

-such that unconditionally converging operators from F into any

Banach space are weakly compact.
In this section, by means of the class P,. of uncondition-
ally converging polynomials, we introduce and study the polyno-
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mial property (V) and other polynomial versions of properties
Banach spaces viz: the Dieudonné property, the Schur proper
and property {V*). We show that in contrast with the case of t
Dunford-Pettis property, property (V) is very different from ¢t
polynomial property (V), since the prototype of space with t
property is Tsirelson’s space T*. For the other polynomial pro
erties, we show that sometimes the polynomial and the line
properties coincide, and sometimes not, with a general tenden
of the polynomial property to imply the absence of copies of
in the space. Moreover, we obtain additional results relating P
and other classes of polynomials.

Definition 6. A Banach space E has the polynomial property (V}
if for every k and F we have Pu.(*E, F) € Puco(*E, F).

It was shown in [9] that C(K') spaces enjoy property (V). T
next Lemma shows that this is not the case for the polynomial
property.

Lemma 7. IfP,.(*E, E) C Pyco(*E, E) for some k > 1, then B
contains no copies of ¢g.

It has been shown - that a Banach space E such th
P(*E,K) = P(*E) is reflexive for every & € N has many of
the properties of Tsirelson’s space T* [14]. In fact, E must
reflexive, and the dual space E* cannot contain copies of £,
(1 < p < o). Note also that P(*T*) is reflexive for every k € N
[1}. Next we present a characterization of the spaces F such that
P(*E) is reflexive for some k& > 1 in terms of the class Py of
polynomials.

Given P € P(*E, F), we consider the associated conjugate
operator defined by

P feF*— foPe P(E).

Moreover, we need the fact that for every Banach space E, the
space AFE, defined as the closed span of {2 ® - - ®z : x € E}

in the projective tensor product ®:E, is a predual of the space of
scalar polynomials P(*E) {12]. ‘

W Series in Banach spaces 57

Theorem 8. Givenk > 1, we have that the space P(*E) is reflex-
ive if and only if Puc(*E, F) € Puco(*E, F) for any F . In partic-
ular, E has the polynomial property (V) if and only if P(*E) is
reflexive for every k € IN.

For the direct result it is enough t6 note that P € Py, if

and only if the operator P* is weakly compact {13].

For the converse, we derive from Lemma 7 that E contains

no copies of co; hence P(*E, F) = Py (*E, F) = Pyuco(*E, F) for
any k and F, and then we cbserve that there exisis a natural

T

isomorphism between the space of polynomials P(*E, F') and the
space of operators L{(A}E, F') which takes the weakly compact
polynomials onto the weakly compact operators [12].

Extending the definition for operators, we shall say that
P € P(*E,F) is weakly completely continuous, denoted by

P € Puc*E, F), if it takes weakly Cauchy sequences into weakly

convergent sequences.

A Banach space E has the Dieudonné property if weakly com-
pletely continuous operators from E into any Banach space are
weakly compact. Grothendieck [7] introduced this property and
proved that C(K) spaces enjoy it. The next result shows that,
in general, C(K) spaces fail to satisfy the polynomial Dieudonné
property. '

Propositien 8. The following properties are equivalent:

(a) E contains no copies of {;.

(b) Pucc(*E, F) C Pueo(*E, F) for any k and F.

(c) Poc(PE, F) C Puco(*E, F'} for any k and F.

{d) P.c(*E,F) C Pyco(*E, F) for some nonreflexive F and some
k> 1

Corollary 10. P, (*E,F) C Py (*E, F) for any k € N.

Remark 11. It follows from Proposition 9 that, for any & >
1, there is a polynomial P € P,.(*s,co) which is not weakly
compact.

However, any operator from £, into cg is weakly compact and

‘thereby completely continuous, since £, has the Dunford-Pettis

property.
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Then the question arises whether every polynomial from £
into ¢g is completely continuous. '
As a complement of Theorem 8 we have the following

Theorem 12. Given k > 1, we have P.oo(*E, F) C Puco("E, F
for any F if and only if P{F1E) is reflexive.

Remark 13. In order to compare Theorems 8 and 12, we observ
that for the sequence spaces £, the space of polynomials P(*,) i
reflexive if and only if & < p < co.

In fact, it was proved in [8] that for £ < p, all polynomial
in P(*,) are completely continuous; hence, using a result of [12
(see {1]), we conclude that P(*,) is reflexive. For 1 <p < kit i
not difficult to show that P(*,) contains a copy of e

Recall that a Banach space E has the Schur property i
weakly convergent sequences in EF are norm convergent; equival
ently, weakly Cauchy sequences are norm convergent. It is an
immediate consequence of the definition that ¥ has the Schu
property if and only if P(*E,F') = P..(*E,F) for any k and F.
Next we give some other polynomial characterizations of Schur
property.

Proposition 14. The following properties are equivalent:
{a}) E has the Schur property.

(b} Puc(*E,F) C Pe(*E, F) for any k and F.

(b’ ) Peo(*E, F) C Pe(*E, F) for any k and F.

{c) Puc("E, E) C Peo(*E, E) for some k > 1.

(¢’ ) Peco(*E, E) C Po(*E, E) for some k > 1.

—

Another property defined in terms of series is property {V*
introduced in [10]. Recall that a subset A C F is said to be
(V*) set if for every w.n.C. series 3 .., fn in E* we have

lim sup | fo(z)} = 0.
T oreA
A Banach space E has property (V*) if every (V) set in E is re

atively weakly compact; equivalently, if any operator T € L{F, E
with unconditionally converging conjugate T is weakly compac

"
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Finally, we shall show that the polynomial version of the
last formulation coincides with property (V*). We shall dencte
by Pucs(*F, E) the class of all polynomials P € P(*F, E) such
that P* is unconditionally converging.

Pmposition 158. The following properties are equivalent:
(a) E has property (V*).

~ (b) For any k and any F, we have Pyc, ("F, E) C Puco(*F, E).

(c) For some k, we have Puce (%01, E) C Puco(¥1, E).

In the proof we need the fact that given P € P(*F,E), the
conjugate P* is unconditionally converging if and only if P(Br)
is a (V*) set. .

Remark 16. Part of the above results can be extended to holo-

.- morphic maps on Banach spaces. For example, holomorphic maps
. preserve u.c. series and w.u.C. series fulfilling natural restrictions,

and if we define the holomorphic property (V) in the natural way,
we can prove that it coincides with the polynomial property (V).
For the details we refer to [5].

Acknowledgement. The authors are indebted to Professor J.
Diestel for suggesting the study of the polynomial property (V).
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Research Announcement

TAYLOR-MONOMIAL EXPANSIONS
OF HOLOMORPHIC FUNCTIONS
OM FRECHET SPACES

Seén Dineen

Let X := A(A) denote a Fréchet nuclear spaces with Kothe matrix
A and let {E,}. denote a sequence of Banach spaces. Let £ :=
M{En}n) = {(@n)n : Tn € E, and (Jlz.]]), € A(A)} and endow
E with the topology generated by the semi-norms

@a)nlle =3 anslizall, k=1,2,...
n=1

E is a Fréchet space and {E,}, is an unconditional Schander
decomposition of E. Examples of spaces which can be represented
in this fashion, include all Banach spaces and all Fréchet nuclear
(and some Fréchet-Schwartz) spaces with basis. Let H(E) denote
the space of all C-valued holomorphic functions on F and for
meNY m=(my,...,mn,0..) let

Plz) = 1 jf M—dAl-“dAn

(2mi)” APFL gl
[Asl=1
We have
f= Z P, (*)
meENIN)

in the 79, 7w, 75 topologies on H(E).

The expansion () reduces to the Taylor series expansion in
the case of a Banach space (l.e. if B3y = E, E, =0, n > 1) and to
the monomial expansion for Fréchet nuclear spaces with a basis
(when dim (E,,) = 1 all n).
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