FORMAL METHODS OF
SOFTWARE DEVELOPMENT
ADVANCES AND RETREATS

D. C. Ince

Abstract: This paper is about the use of discrete mathemasics within
software development. It describes, in outline, how discrete mathem-
atics can be used to specify large computer systems, and how mathem-
atical proof can be used to validate a system. This area of computer
science is exceptionally Promising, but is prevented by major problems
from being adopted on industrial software rrojects, The paper ex-
amines one problem: that of data refinement and cutlines one possible
solution. It concludes by briefly examining the advances that have been
made in formai methods of software development and also looking at
where progress has been slow,

1. Introduction

Modern software development projects are normally organized on
a phase-by-phase basis. One popular model is shown in Figure 1,
Here the development process is split up into a number of separate
activities, with each activity delivering a document which then
forms the input into the next activity, The activities shown are:

Requirements analysis. This is the process of eliciting the re-
quirements of a system from a customer. The requirements
will be a mixture of functions: descriptions of what a sys-
tem is intended to do, and constraints: statements which

This article is the text of an invited lecture given by the author at
the September meeting of the Irish Mathematical Society held at
" the Regional Technical College, Waterford, September 3-4, 1992,

18

] Software development 19

Requirements
analysis

l

System
specification

|

System design

l

Programming +—— Testing
Integration <m——o Tasting

l

System testing

Figure 1: Conventional software development

constrain the system to be produced, or the process of dev'el-
oping the system. An example of the former is a constraint
that a certain response time is required; while an example
of the latter is the fact that the developer should use some
particular programming language.

System specification, This is the process whereby the proper-
ties of the system which were discovered during the process of
requirements analysis are written down. The documegt W}%ICh
is produced by this task is known as the system specification,

although sometimes it is referred to as the requirements spe- -

cification. Normally it is expressed in natural language. ‘
System design. This is the activity in which the system specific-

20 IMS Bulletin 30, 1993 &

ation is used to guide the process of deriving an overall sys-
tem architecture. The architecture being expressed in terms
of moduies (subroutines, procedures, programs),

Programming. This is the process of taking the individual maod-
ules defined during system design and expressing them in
some form of programming language.

Integration. The process of bringing together the programmed
modules to form a final system.

Accompanying these development tasks is a set of parallel tasks
which have the aim of validating the system: checking that user
requirements are encapsulated in the system, and that individual
software tasks such as integration have been carried out carefuily,
Examples of such tasks are: system testing, acceptance testing
and module testing. This is the model of development that has
been tsed for over twenty five years. However, the documents
that are used for software development and which are generated
by developers can be very flawed, leading to budget overruns, time
overruns and even the cancellation of projects, In order to look
at the problems which occur with these documents it is worth
looking at the system specification.

2. Problems with the system specification

Although I am using the system specification as an example it is
worth stressing at this juncture that similar problems occur with
all the document produced by a software project. Life would be
uncomplicated for the software developer if the systemn specifica-
tion consisted ol a series of sections marked

e Functional requirements;

e Non-functional requirements;
Goals;
Data requirements;
Implementation and design directives;

each of which were consistent, unambiguous, and complete and
where the text would be expressed in user terms. Unfortunately,

this very rarely happens. The purpose of this section is to outline
how reality deviates from the ideal.

i3 Software development ' 21

In general, a system specification will be.vague, contra,dict‘ory,
incomplete, and will contain functional requirements, c‘onstramts,
and goals randomly mixed at different levels of a.lngtractlpn. Often,
it will either have a very naive and over-ambitious view of the
capabilities of a software system or a view which was current a
few decades ago.

Vagueness

A system specification can be a very bulky qocument andl to
achieve a high level of precision consistently is an almost im-
possible task. At worst it leads to statements such as

The interface to the system used by radar operators
should be user {friendly.

The virtual interface shall be based on simple overall
concepts which are straightforward to understand and
use and which are few in number.

The former is at too high a level of abstraction and needs to‘be ex-
panded to define requirements for help facilities, shoFt versions of
commands, and the text of user prompts. The latter is a platitude
and should be removed from the specification.

Contradiction

A system specification will often contain functipnal and non-
functional requirements which are at variance w1tl} each other.
In effect they eliminate the solution space of pos.51b'1e sysilzems.
Typically, the sentences that make up the contradictions will be
scattered throughout the document. An extreme example of such
a contradiction is the statement

The water levels for the past three months should be
stored on magnetic tape.

(which may form part of the hardware requirements of a future
system) and the statement

The command PRINT-LEVEL prints out the average
water levels for a specified day during the past three

22 IMS Bulletin 30, 1993 5]

months. The response of the system should be no longer
than three seconds.

Obviously, if a slow-storage medium such as magnetic tape is used
then the response time will hardly be in the range of a few seconds.
A more subtle error occurs with the statements

Data is deposited into the employee file by means of the
WRITE command, This command takes as parameters:

the name of the employee, the employee’s department,
and salary,

’I‘l}e ENTRY-CHECK command will print on the remote
printer the name of each employee together with the date

on which the employee’s details were entered in the em-
ployee file.

whirh are functional requirements together with the non-func-
tional requirement

The .hardware on which the system will be implemented
consists of: an IBM PC with 512k store, asynchronous
I/O ports, keyboard, monitor, and 20 Mb hard disc.

Here the assumption made is that the employee file will contain
an entry date for each employee. Unfortunately, the WRITE com-
mand does not take an entry date as a parameter, and the hard-
ware specified does not include a description of a calendar/clock.

A system cannot be developed which satisfies contradictory
requirements. If this were regarded as a pure example of a contra-
diction, then the ENTRY-CHECK command shouid be deleted.
However, the contradiction could have arisen from a set of incom-
plete requirements. In this case the WRITE command should be
amended to take the entry date as a parameter or the hardware
requirement expanded to include a calendar/clock.

&4 Software dovelopment 23

Incompleteness

One of the most common fanits in o system specification is in-
completeness. An example of this follows. It shows part of the
functional requirements of a system to monitor chemical reactor
temperatures.

The system should maintain the hourly temperatures
from sensors which are attached to functicning reactors.
These values should be stored for the past three months,

The function of the AVERAGE command is te display on
a VDU the daily tamperature of a reactor for a speeified
day.

These statements look correct, However, what happens if a user
types in the AVERAGE command with a valid reactor name but
for the current day? Should the system treat this as an error?
Should it calculate the average tomperature for the hours up to
the hour during which the command was entered. Alternatively,
should there be an hour threshold helow which the command is
treated as an error and, above which, the average temperature for
the current day is displayed?

Mized requirements

Very rarely will you find functional requirements partitioned neat-
ly into functional requirements, non-functional requirements, and
data requirements. Often statements about a system’s function
are intermixed with statements about data that is to be processed.

Naiveté

Another common failing of a system specification is that it will
contain naive views of what a computer system can achieve, This
will be manifested in two ways. First, the statement of require-
ments will contain directives and statements which underestimate
the power of the computer, The most frequent Lransgressors seem
to be electronic engineers with little cxperience of software who
insist on hardware requirements which could be casily satisfied by
software at a much lower cost.

24 IMS Bulletin 30, 1993 &

Another example of customer naivetd occurs in system spe-
cifications for systems which can never be built within budget.
Such systems are normally specified because of the low technical
expertise of the customer. The most common example of require-
ments for an impossible system is the specification of a particular
hardware configuration and a set of functions which will never
meet its performance requirements.

Another example of naiveté occurs when a customer suffers
from a grossly ambitious view of what a system is capable of.
One consequence of the recent rise in artificial intelligence has
been a rash of system specifications which make the predictions

of the wilder members of the artificial inteiligence community seem
almost sage-like. :

Ambiguity

Specifications written in natural language will almost always con-
tain ambiguities. Natural language is an ideal medium for novels
and poetry; indeed, its success depends on the large number of
meanings that can be ascribed to a phrase or a sentence. However,
it is a very poor medium for specifying a computer system with
precision. Some examples of imprecision are

The operator identity consists of the operator name and
password; the password consists of six digits. Tt should
be displayed on the security VDU and deposited in the
login file when an operator logs into the system.

When an error on a reactor overload is detected the er-
ror! screen should be displayed on the master. console
and the error? seroen should he displayed on the link
console with the header line continuously blinking.

In the first statement does the word ‘it’ refer to the password or the
operator identity? In the secoud statement should botl consoles

display a blinking header line or should it only be displayed on
the link console? :

| Software development 25

Miztures of levels of abstraction
A system specification will contain statements which are at differ-
ent levels of detail. For example, the requirement

The system should produce reports to management on
the movement. of all goods to and from all warehouses.

and the requirement

The system should enable a manager to display, on a
VDU, the cash value of all goods delivered from a specific
warehouse on a particular day. The goods should be
summarized into the categories described in section 2.6
of this document.,

are at different levels of abstraction. The second requirement
forms part of the first requirement. In a well-writ’?en state'ment of
requirements the document should be organized into a hierarchy
of paragraphs, subparagraphs, subsubpa:agraph§, etc. Each level
of paragraph represents a refinement of the requirements emlbod-
ied in the next higher level of paragraph. In a poorly written
statement of requircments connected requirements will be spread
randomly throughout the document,

3. Mathematics and the software project

The problems outlined above have prompted the software engin-
eering community to look for better notations and methods for the
main phases of the software project. The research that has.‘: been
carried out has had two flavours., The first has involved the inven-
tion of graphical notations and scftware tools for such notations
— tools known as analyst or designer workbenches. The second
thrust has been in the area of developing mathematical notations.
Good introductions to these notations can be found in (2] and [9].

The development of formal methods can be essentially seen
as a reaction to the vagaries of natural language, and many of t.he
proponents of such methods will cite the fact that the sema,nt}cs
of mathematics is exact. However, there is much more. My claim
that formal methods has a part to play within software deve}op~
ment is based on its modelling properties. System specificat’ons

26 IMS Bulletin 30, 1993

Requirements
analysis
l :::::> Proof
System
specification
i ::::> Proof

System design

;

Programming]

;

Integration

l

Testing

Figure 2: Formal software development

are notoriously cluttered documents, and mathematics enables all
the clutter associated with the task of system specification to be
removed. The way in which we use formal methods in a software
project is shown in Figure 2. It closely mirrors the model put
forward in Section 1 of this paper. Requirements analysis is an
informal process so it is still carried out in the same way. The
difference comes with system specification and design, where a
mathematical notation is used to describe a system. Program-
ming remains the same as before. Where the biggest difference is
seen is in validation, where mathematical proof is used to check
that the system design is a correct reflection of the system spe-
cification, and that the program code is a correct reflection of

u] Software development 27

the system design. Also, mathematical proof is used to explore
the consistency of the system specification; for example, in the
gpecification of an editor the anaiyst would demonstrate math-
ematically that when an insert command is followed by a delete
command which removes the text added by the insert command,
the document that is being edited returns to its original state,

It is worth pointing out that system and acceptance test-
ing are still carried out within projects that use formal methods,
however our limited experience with formal methods seems to sug-
gest that the amount of reworking that occurs because of a failure
of a system or acceptance test is drastically reduced, and the num-
ber of system and acceptance tests that fail is also reduced.

Before looking in a little detail at an example of a formal
method it is worth stating some of the current problems:

¢ The size of the proofs that have to be carried out are very
large. The mathematics that is produced is quite shallow,
but there is quite a lot of it, For an example of the volume
of mathematics that is generated see [1]. :

e There are few tools in existence that effectively support the
formal development process. This is a serious problem given
the amount of mathematics that has to be carried out.

e The customer has major problems understanding a formal
specification.

o The mathematical abilities of many software development
staff is not sufficiently sophisticated to use formal methods.
To use discrete mathematics as a specification medium re-
quires a high degree of facility in proof, and also the posses-
sion of modelling skills which marny analysts, designers and
programmers do not possess. I would regard this problem
as the most serious, and the reason why, I suspect, formal
methods will have limited use on the software projects of the
future.

4. An introduction to mathematics on the

software project
This section has a two aims First, it is a tutorial introduction
to the use of mathematics on the software project. Second, it

28 IMS Bulletin 30, 1993 =

provides a glimpse of some of the research that is being carried
out into reducing the amount of proof that is required with formal
methods. It describes a way of validating a design against a system
specification which seems to be an improvement over previous
methods — although it is still a research question as to how much
an improvement can be achieved.

Before describing the mathematics it is worth stressing that
I am describing one flavour of formal method known as a model-
based method. There are other formal methods which are avail-
able, many of these are described in [2], however, model-based
techniques have had the most industrial penetration.

4.1 The example

The example that I shall use is small, however it is rich enough to
illustrate many of the principles of formal software development
and some of the problems. It also represents a realistic piece of
software which is used in a variety of systems. _

The example is a symboi table handler. A symbol table is a
collection of items which are stored and maintained in a computer
system. Normally a symbol table will contain no duplicates and
will have items added and removed from it during the operation
of a system. Symbol tables are used everywhere in computing, for
example, they are used in communications systems to keep track
of calls, they are used in personnel systems to hold the names
of staff employed by a company and they are used in computer
operating systems to keep track of the users of the system.

I shall make a number of assumptions in writing down a spe-
cification of the symbol table:

e That four operations are required: an operation that adds
an item to the symbol table, an operation that removes an
item from a symbol table, an operation that returns with the
number of items in the table, and an operation which checks
that an identifier is stored in the symbol table. .

That the items in a symbol table will be callé’d identifiers..

e That no more than Maxlds identifiers are allowed in a sym-
bol table. '

= Software development 29

o That no duplicates are allowed in the symbol table.

4.2 The specification

In writing down a model-based formal specification of the syml?ol
table three pieces of mathematics are needed: the state a dgscrlp-
tion of the stored data of the symbol table, a date invariant a
predicate which describes the invariant properties of the state,

and the four operations on the state.
The state is very simple. Since the only property of the sym-
bol table is that no duplicates are allowed then a set can model

the symbol table

SymTable : P identi fiers

" where P is the power set operator. All this states is that Sym-

Table will be a set which contains identifiers. The data invaria.rllt
is also quite simple. The only property that can be retjerred 1o in
the data invariant is that the symbol table will contain no more
than Mazlds identifiers,

#SymTable < Mazlds

where # is the set cardinality operator. The fo‘m" operations
are described by a pre-condition and a post-condition. A pre-
condition is a predicate which must be true for an opclara,tlon to
be defined. A post-condition is a predicate which describes what
happens when an operation is completed, An ‘.axa,m'ple of the use
of these predicates is shown below in the specification of the op-
eration Addldent which adds an identifier to the symbol table.

AddIdent(s : identifiers)
pre s & SymTable A #SymTable < Mazlds

post SymTable' = SymTableU {s}

The pre-condition states that the identifier s which is to be added
to the symbol table must not already be in the table, and .tl.lat
there is Toom for the identifier in the table. The post-condition

30 IMS Bulletin 30, 1903

shows the addition of s to the table, SymTable’ stands for the
val}le of the symbol table after the operation has been completed
This, then, is the formal specification of the Add] dent operator in.
terms of mathematical structures which can be reasoned about
The specifications for the remaining operations are shown be:
low, Removeldent removes an identifier from the symbol table
Numldent returns with the number of items in the symhol l"Lbl(:
and InTable returns true if an identifier is in the synibol tal:;ie. ‘

Removeldent(s : identifiers)
pre s € SymTable
post SymTable’ = SymTable\ {s}

Numldent(s : identi fiers)n : N
pre true

post n = #SymTable A SymTable' = SymTable

InTable(s : identi fiers)b : Boolean
pre true

post b = s € SymTable A SymTable' = SymTable

\ stands for set subtraction and N is the set of natural numbers
The pre-condition for Numldent is true since the operation ié
defined for all values of the state. The post-condition specifies
that the symbol table is unaffected by the operation. The pre-
condition for I'nTable is similarly true. ?

4.3 The development

The.speciﬁcation in the previous subsection represents an exact
specification of a symbol table uncluttered with the noise that is
so often found in industrial specifications. The next step is to
tr.ansfor{n the specification into program code. The tech’niqﬁe I
will use is known as program calculation. This method of develop-
ment takes a specification and then uses a series of programming
laws to transform that specification into program code [7]. The
proponents of the method claim that it mirrors the process of
algebraic manipulation used by mathematicians.

o] Software development 31

The first step in the development process is to select some
computer data structure to model the symbol table. I shall use
a single-dimension array with a fixed number of MazIds -+ 1 loc-
ations. This will contain the identifiers with the last location
holding a special value known as a sentinel. The reason for the
sentinel will become clearer in the next section. This will formally
be modelled by a total function SymTableD which has a domain
of consecutive integers from 1 to Mazlds + 1 and which always
contains Maxlds + 1 elements in its range; a natural number
NumlIds will be used to hold the number of identifiers currently
represented in the state. Sym7'ableD models a single-dimensional
array with bounds 1 . . MaxzIds+1 that contains positive integers.
The convention that I have used here is that the state which forms
the design of the system is postfixed by a capital d. The data
invariant for the state which is made up of both the array and

Numlds is

Numlds < MaxIds A
dom SymTableD = 1.. MaxIds +1A
dom SymTableD = Maxlds + 1

All the invariant states is the fact that the array will contain no
more than MazIds elements, will range from 1 to Mazlds, and
will have a fixed number of MazZds locations for identifiers.

Given this new design state how do you relate the specifica-
tions in the previous subsection to equivalent specifications in the
design state? The answer is a predicate known as the coupling
invariant. This is a predicate which characterizes the relation-
ship between the state used in a specification and a design state.
Whatever happens to the values in the specification state and
the design state the coupling invariant will always hold. In the
example used in this paper the coupling invariant is

SymTable = ran{SymTableD < (1 .. Numlds}))

where < is the domain restriction operator which forms a function
by taking its first argument and restricting it to those elements
which have their first element contained in the second operator.

32 , IMS Bulletin 30, 1993 K

Once the coupling invariant has been specified the next step
is to use it to transform the specifications detailed in the previ-
ous subsection so that they refer to the design state. The only
operation specification I shall consider is

InTable(s : identi fiers)
pre true
post b = s € SymTable A SymTable’ = SymTable

The maunipulations on the other operations are roughly similar.
We can use the coupling invariant to transform the post-condition
to form & new operation InTableD which operates on the design
state, '

InTableD(s : identifiers)

pre true '
post b = s € ran(SymTebleD < (1 .. Numlds)) A
ran(SymTableD' < (1 .. Numlds))

= ran{SymTableDa (1 .. Numlds))

We can now start making some more design decisions about the
operation. I shall assume that the customer for the software has
stated that for 98% of the time only a relatively few identifiers are
examined when the InTable operation is invoked. I shall assume
that the program code which will eventually be produced will
involve a linear search of the array SymTableD: the first element
of the array will be examined, then the next, and so on, until
either the end of the array has been reached or the identifier that
is to be searched for has been found. Given this linear search
strategy an efficient manipulation that can be made is that when
an identifier has been found, it is moved to the first element of
the array and all the remaining elements are shifted down by one,
With this form of organization the most popular elements in the
array for retrieval will usually be found near to the start of the
array; in this way, the linear search will usually only involve a
small number of elements.

In order to reflect the algorithm that wiil be used a number
of transformations need to be applied to the post-condition of the

s Software development 33

InTableD operation, each transformation will preserve correct-
ness. The first just uses-a simple law of predicate calculus which
reorganizes the equivalence.

b= s € ran(SymTableD < (1 .. Numlds)) A
(s € ran(SymTableD a (1 .. Numlds)) A
ran(SymTableD' a (1 .. Numlds))
= ran{SymTableD a {1 .. Numlds)))

v .
(s ¢ ran(SymTableD a (1 .. Numlds)) A
ran{SymTableD' 4 (1 .. Numlds))
= ran(SymTableD < (1 .. Numlids)))

The second disjunct in the predicate can be transformed into

s ¢ ran{SymTableD <« (1 .. Numlds)) A
SymTableD' = SymTableD

Then using a variable [which ranges in value from 1 to Numlds
the first disjunct can be transformed into

s € ran{SymTableD a(1 . . Numlds)} A
SymTableD(l) = s A SymTableD'(1) = s A
Yi:1..l—1e SymTableD (1 + 1) = SymTableD(i)

gince the predicate does not alter the range of SymT ableD.
The post-condition of InTableD has hence been transformed

to

= s € ran(SymTableD < (1 .. Numlds)) A
(s € ran(SymTableD < (1 .. Numlds)) A
SymTableD(l) = s A SymTableD'(1) = s A
Vi:l..l—1s SymTableD'(i + 1) = SymTableD(i))
v
s & ran{SymTableD a (1. . Numlds)) A
SymTableD' = SymTableD

The structure of the eventual software can now be discerned. It
will consist of code which checks whether ¢ is in the array. If s
is in the array then it is moved to the front and the remainder of
the array shifted back one; however if s is not in the array then
the array remains unchanged.

34 IMS Bulletin 30, 1993 =

4.4 Programming

The next stage is to transform the design specification for In-
TableD into program code. I shall use a simple programming
language due to Dijkstra to express the code [3]. The structure of
the program to carry out the search and possible adjustment of
the array will reflect the structure of the post-condition:

Carry out search for s,

if sisin the array — adjust array

[sisnotin array — SymT'ableD := SymTableD
fi

This can be simplified to

Carry out search for s.
if sisin the array — adjust array
fi

By a process of refinement we can gradually aim towards the tar-
get of an implementation. The first part of the code: that of
discovering s in the array requires a loop. It can be dealt with
first. The technique that is used for this is to identify a loop
invariant: a predicate which is true during the execution of the
loop and which, when the loop terminates, will imply the post-
condition which is required. The post-condition that we wish to
satisfy is that connected with the search for s

b=s ¢ ran(SymTableD a (1 .. Numlds))

In order to satisfy this post-condition the first thing we do is to
insert the identifier that is to be locked for in

SymTableD{(Numlds + 1).

This identifier acts as a sentinel which cuts a search short. We
“can then develop code which establishes the post-condition

SymTableD(-l) =sAl1<I< Numlds+1A
¥i:l..l—1eSymTableD(l) # s ‘

2 . Software development 35

The code which established this post-condition will find the first
occurrence of s inside the array SymTableD. A loop can be used

for this with a loop invariant
1<1< Numlds+1AVitl.. | —1e SymTableD(l) # s

The condition that has to be conjoined to the loop invariant to
imply the post-condition is

SymTableD(l) =

If we have a while loop which terminates when the conditivon in
the while loop is false, then the joop condition is the negation of

the above
SymTableD(l) # s

The structure of the program code now looks like

SymTableD{(Numlds + 1) = 5

initialization for the loop

do SymTableD(l) # s -

loop hody

od;

if ¢isin the array — adjust array

fi
Before the loop starts executing the loop invariant must be true.
This can be achieved by initializing ! to one. The loop must be
driven to termination and this is achieved by having a statement

.= [+ 1 inside the loop. This code does not violate the loop

invariant. Finally the predicate b = SymTableD{l) = s can be
established by observing that since

| < Numlds=s € ran(SymTableD a(1 .. Numlds))

and
b=s e ran(SymTebleD a(l .. Numlds))

then

36 IMS Bulletin 30, 1993 =

= < Numlds

which can be established by the statement b := | < NumlIds. The
program can now be expressed as:

- SymTableD{Numlds+ 1) i=s;
=1
do SymTableD(l) # s —
Ii=i+1

od;

b= 1 < Numlds;

if sisin the array — adjust array

fi
The incrementation of the loop does not violate the loop invariant
30 no more statements are required in the loop. The final part of
the program code can now be derived. Since the loop invariant is
true when the loop finishes we can say that the element s is in the
array if b holds, This becomes the condition in the if statement.

The adjustment of the array requires that the post-condition

SymTableD(l) = s A SymT'ableD'(1) = s A
Vi:1l..l—1eSymTableD'(i + 1) = SymTeble) ()

is established. Since the first conjunct has already been estab-
lished ali that is required is to satisfy the remaining two conjuncts.
A loop is used for the third conjunct. A possible loop invariant
involving a loop counter 7 is

1<i<iA
Vi:1..4—1eSymTableD'(l ~i+1) = SymTableD(l — 1)

The condition which must be true in order to imply the post-
condition is that 7 = I. Thus, if the loop is a while loop, the
condition on the loop will be the negation j # I. The invariant is
established by setting the variable j to be 1. The loop is driven
to termination by incrementing j by 1. This means that

15 <IN
Yi:l..je SymTableD'(l —i+ 1) = SymTableD(l — i)

& Software development 37

SymTableD(Numlds + 1) = &,
l:=1;
do SymTableD(l) # s =
=41
od;
h:=1< Numlds;
if b
j=1
doj#1—
SymTableD(l—j+ 1) = SymTableD(l - 7);
Ji=g+1
ad;
SymTable(l) = s
fi

Figure 3: The final program

must be true for the invariant to liold alter the incrementing cf J.
Thus, in order to re-establish the loop invariant what is required
is that the statement SymTableD{l — j -+ 1) 1= SymTableD(l —
j) is executed. The second conjunction in the post-condition
SymTableD'(1) = s can be established by means of the state-
ment SymTable(1) ;= s. Hence the code for the whole program
will be that shown in Figure 3. The most obvious observation one
can make about the mathematics displayed in the previous section
concerns the volume. A large number of lines of set theory and
predicate calculus were generated in order to derive a correct pro-
gram, The nearest analogue in mathematics that I can think of
is the calculation of the derivative of complicated functions from
first principles. In defence 2 number of things can be said. First,
that many of the steps that 1 described could be telescoped, some
of the length of the development came about for didactic reas-
ons. Second, a large number of the steps are quite simple, where
it is obvious to the developer when a mistake is made. Third
software tools are becoming available which enable the developer
to check each step and partially automate the offort. Fourth, ve-
search on development using discrete mathematics is still in its

38 IMS Bulletin 30, 1993 b

early stages, and the use of program calculation as a technique
is still in its comparative infancy. Fifth, some very challenging
algorithms have been developed using the technique described
above. For example, Gries [4] has described an efficient binary
fraction to decimal conversion routine, Morris has described the
derivation of & pattern matching algorithm [8], and van Gasteren
has described the development of a space efficient cyclic permuta-
tion algorithm [10]. Kaldewaij has collected together a number of
program calculations in an advanced undergraduate textbook (5].
A comparison of the technique described in this paper and other
mathematical development methods can be found in [6].

5. Advances and Retreats

It is clear that there are still many years to go before mathem-
atical methods of software development will be used on even a
relatively small proportion of our projects. However, they offer
the hope of software with a very low level of faults and also offer
tantalizing research problems to both the computer scientist and
the mathematician. There have been many advances:

® There are now well-designed notations such as VDM [1] which
are able to describe industrial software systems.

» Formal methods of software development have a secure place
in the syllabus of the vast majority of British university com-
puting degree courses.

» Some software development areas such as the safety-critical
area are now beginning to realize the potential of formal
methods of software development,. -

e The last three years has seen some excellent teaching books
produced, for example [9].

However, to balance these advances there are a number of
failures or areas where advance has been painfully slow:

¢ The penetration of formal methods of software development
in the computing industry is minimal. I would estimate it as
less than 1%.

] Softwdre develcpment 39

¢ There is a lack of tools for software developers who use PC
level computers. Those tools that have been developed are
mainly confined to very powerful workstations.

» The tools that are available are experimental, and tend not
to scale up to industrial size systems. Many such tools tend
to be not very powerful thecrem provers.

* Formal design is still a void. One sclution has been described
in this paper. However, although it seems to offer quite an
improvement over current formal design techniques, it still
requires quite a large amount of rather shallow mathematics
to be generated. '

e There is still a fack of integration of formal methods with
other activities on the software project. For example, we
know very little about the development of system tests from
formal specifications.

References

D. Andrews and D. Ince, Practical Formal Methods with VDM,
McGraw-Hill, 1991.

B. Cohen, W. T. Harwood and M. I. Jackson, The Specification of
Complex Systems. Addison-Wesley, 1686.

E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1876.

D, Gries, Binary to decimal, cne more time in Beauty is our Busines. ,
W. H. J. Feijen et al. (ed.), Springer Verlag, 1990,

A. Kaldewaij, Programming: the Derivation ¢f Algorithms. Prentice-
Hall, 1990.

H. I. Littek and P. J. L. Wallis, Refinement methods and refinement
calculi, Software Engineering Journal (1992), 219-226.

C. Morgan, Programming from Specifications, Prentice-Hall, 1990.

J. M. Morris, Programming by expression refinement in Beauty is our
Business, W. H. J. Feijen et al. (ed.), Springer Verlag, 1930,

B. Potter, I. Sinclair and D. Till, Introduction to Formal Specification
and Z. Prentice-Hall, 1991,

(10]

- 40 IMS Bulletin 30, 1993 [

A.). M. van Gasteren, Experimenting with a refinement calculus in
Beauty is our Business, W. I, J. Feijen et al. (ed.), Springer Verlag,
19%0.

- . C. Ince,

Department of Computing,

. The Open University,

Walton Hall,
Milton Keynes MK7 6AA,
England,

NUMERICAL SOLUTION OF
CONVECTION-DIFFUSION PROBLEMS

Martin Stynes

Abstract: An overview is given of the nature of convection-diffusion
problems and of some methods commonly used Lo solve these problems.

1. Introduction

Think of a still pond. At a point in this pond you pour a small
amount of liquid dye. Approximately what shape will the dye
stain take on the surface of the water as time passes? I think that
we would all agree that the answer is a disc of slowly increasing
radius, as the dye diffuses outwards from the initial point.

Consider next a more complicated situation: suppose that I
replace the still pond above by a river which is flowing strongly
and smoothly. What now is the shape of the dye stain?

The answer is a long thin curved wedge. This shape is the
result of two physical processes: there is as before a tendency
for the dye to diffuse slowly through the water, but the domin-
ant mechanism present is the swift movement of the water, which
rapidly sweeps (this is convection) the dye downstream. Convec-
tion alone would carry the dye along a (one-dimensional) curve
on the surface; diffusion gradually spreads that curve, resulting in
a wedge shape.

Physical situations such as this, where convection and dif-
fusion are both present but convection dominates, are known

This article is the text of an invited lecture given by the author at
the September meeting of the Irish Matlematical Society held at
the Regional Technical College, Waterford, September 3—4, 1992.

41

